350734
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокИнформатикаКонспектыУрок на тему "Электронные таблицы и математическое моделирование" 9 класс

Урок на тему "Электронные таблицы и математическое моделирование" 9 класс

Выбранный для просмотра документ урок 8. ДЗ.docx

библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Информатика и ИКТ 9 кл. Табличные вычисления на компьютере

Урок по теме «Электронные таблицы и математическое моделирование»

Домашнее задание

Построить математическую модель «Пруд», в который запустили карпов для разведения. Модель должна рассчитывать количество карпов на 10 лет вперед с периодом в 1 год по следующим правилам: N - k * N - q * N2. где N- начальное число карпов, k — коэффициент прироста, q коэффициент смертности. Каждый год число карпов изменяется, это количество можно вычислить по формуле: Ni = Ni-1+(kNi-1 qNi-12).

  1. Создать компьютерную модель «Пруд» (см. Сем., с. 129). hello_html_261d4056.png

  2. Провести компьютерный эксперимент с численностью рыб при N= {190, 350, 930, 1000, 1223, 1500, 1800, 2000, 2137, 2530}.

  3. В ячейки Е5:Е8 написать вывод данного эксперимента.

  4. Сохранить в вашу рабочую папку как «Количество рыб» и показать результат учителю.



Выбранный для просмотра документ урок 8. ПР Р Решение су с помощью....docx

библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Информатика и ИКТ 9 кл. Табличные вычисления на компьютере

Урок по теме «Электронные таблицы и математическое моделирование»

Практическая работа «Решение систем уравнений с помощью диаграмм»

Задание 1.

Цель: освоить графический способ решения систем уравнений посредством приложения MS Excel.

Ход работы

Решением уравнения являются значения точек пересечения графика функции с осью абсцисс, а решением системы уравнений являются точки пересечения графиков функций.

Задача.

Найдите решение системы уравнений: hello_html_16b1fc1e.pngОтвет запишите с точностью до 0,1.

Решение:

  1. Преобразуем данную систему к виду .у =f(x) (приведенный

  2. image5


    Произвольно выберем диапазон значений х, например от —10 до 10 с шагом 1 (если на графике не будет точек пересечения, то необходимо подобрать другие значения x). Построим таблицу, состоящую из трех столбцов х, у1 у2 и заполним ее.

hello_html_19fb113f.png

  1. Для оценки решений воспользуемся точечной диаграммой, на которой отобразим графики обеих функций.

Координаты точек пересечения графиков — решения системы, но получены приближенные значения решений с точностью, равной 1.

  1. Для уточнения значений решений построим графики в интервалах от —2 до 0, где находится первое решение, и от 2 до 4, где находится второе решение.

  2. Составляем новую таблицу для -2 < х < 0 с шагом 0,1 и строим точечную диаграмму для получения первого решения.

  3. Составляем новую таблицу для 2 ≤ х ≤4 с шагом 0,1 и строим точечную диаграмму для получения второго решения.

  4. Решением нашей системы будут координаты точек пересечения графиков: х1 = —1,2, у1 = 1,5; х2 = 3,3, у2 = 10,8.

Графическое решение системы уравнений является приближенным.

Задание 2. Задания для самостоятельного выполнения

Решите системы уравнений графически с точностью 0,1.

hello_html_m7817d873.png



Выбранный для просмотра документ урок 8. СР.docx

библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.

Информатика и ИКТ 9 кл. Табличные вычисления на компьютере

Урок по теме «Электронные таблицы и математическое моделирование»

Самостоятельная работа

Вариант 1

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Cl, С2, СЗ. (8; 1; 17.)

hello_html_m1abe6cc9.png

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Dl, D2, D3? (Да; да; нет.)

hello_html_6191448e.png

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Dl, D2, D3. (Да; да; нет.)

hello_html_916663d.png





Информатика и ИКТ 9 кл. Табличные вычисления на компьютере

Урок по теме «Электронные таблицы и математическое моделирование»

Самостоятельная работа

Вариант 2

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Cl, С2, СЗ. (1; 17; 8.)

hello_html_c6b28dc.png

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Dl, D2, D3. (Нет; да; да.)

hello_html_20ed44dc.png

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Dl, D2, D3. (Нет; да; да.)

hello_html_m5715adef.png





Выбранный для просмотра документ урок 8.конспект.docx

библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.



План-конспект урока по информатике в 9 классе на тему «Электронные таблицы и математическое моделирование»


Цель: научить использовать электронные таблицы для создания математической модели.

Требования к знаниям и умениям

Учащиеся должны знать:

  • что такое математическая модель;

  • что такое объект моделирования;

  • что такое вычислительный эксперимент.

Учащиеся должны уметь:

  • использовать инструментарий электронных таблиц с целью создания математической модели.

Программно-дидактическое оснащение: Сем., § 23, с. 125; карточки с тестами для письменного опроса.

Ход урока

  1. Организационный момент

  2. Постановка целей урока

  • Что такое математическое моделирование?

  1. Актуализация знаний

Самостоятельная работа

Вариант 1

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Cl, С2, СЗ. (8; 1; 17.)

hello_html_m1abe6cc9.png

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Dl, D2, D3? (Да; да; нет.)

hello_html_6191448e.png

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Dl, D2, D3. (Да; да; нет.)

hello_html_916663d.png

Вариант 2

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Cl, С2, СЗ. (1; 17; 8.)

hello_html_c6b28dc.png

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Dl, D2, D3. (Нет; да; да.)

hello_html_20ed44dc.png

  1. Дан фрагмент таблицы. Выясните, какие значения будут в ячейках Dl, D2, D3. (Нет; да; да.)

hello_html_m5715adef.png

  1. Работа по теме урока

Современные компьютеры считают со скоростью в сотни тысяч, миллионы и даже миллиарды операций в секунду! Так как расчеты производятся над многозначными числами, то способности человека в этой сфере деятельности практически ничего не стоят по сравнению с компьютером.

Многие процессы, происходящие в природе, в технике, в экономических и социальных системах, описываются сложными математическими соотношениями. Это могут быть уравнения, системы уравнений, системы неравенств и т. п., которые являются математическими моделями описываемых процессов.

Математическая модель — это описание моделируемого процесса на языке математики. Реальную систему, для которой создается математическая модель, принято называть объектом моделирования.

Для людей могут оказаться жизненно важными многие вопросы, связанные с этими объектами и процессами. Например, на какой высоте ракета достигнет первой космической скорости и выйдет на орбиту спутника Земли? Какой может быть максимальная нагрузка на железнодорожный мост, при которой не будет происходить его разрушение? Каким будет уровень воды в водохранилище в тех погодных условиях, которые предсказывают метеорологи? Не вымрет ли данная популяция животных через сто лет?

На эти вопросы желательно получить ответы теоретическим путем, поскольку экспериментальный путь либо невозможен, либо возможен, но опасен.

В математической модели используются количественные (числовые) характеристики объекта. Например, в математической модели полета ракеты учитываются масса и скорость ракеты, сила тяги двигателей и т. д. Все эти величины связываются между собой через уравнения, отражающие физические законы движения тела в воздушной среде, нагревания тела в процессе трения. Из этих уравнений, зная одни величины — исходные данные, можно вычислить другие величины - результаты. Например, зная массу ракеты, силу тяги двигателей, скорость сгорания топлива, коэффициент трения воздуха о корпус, можно вычислить, какой будет высота и скорость ракеты в данный момент времени, а также температура обшивки ракеты.

Можно выделить следующие этапы компьютерного математического моделирования:

  1. выделение количественных характеристик моделируемой системы, существенных для решаемой задачи;

  2. получение математических соотношений (формул, уравнений, систем уравнений и пр.), связывающих эти характеристики;

  3. определение способа решения полученной математической задачи и реализация ее на компьютере с помощью прикладных программных средств или на языках программирования;

  4. решение поставленной задачи путем проведения вычислительного эксперимента.

  • Как называется реализованная на компьютере математическая модель? (Компьютерная математическая модель.)

  • Как называется проведение расчетов с помощью компьютерной модели с целью прогнозирования поведения моделируемой системы? (Вычислительный эксперимент.)

В результате вычислительного эксперимента можно получить прогноз поведения исследуемой системы; выяснить вопрос о том, как изменение одних характеристик системы отразится на других.

  • Назовите важное свойство компьютерных математических моделей. (Возможность визуализации результатов расчетов.)

Этим целям служит использование компьютерной графики и анимации.

  1. Практическая работа

Задание 1. Лабораторная работа «Решение систем уравнений с помощью диаграмм»

Цель: освоить графический способ решения систем уравнений посредством приложения MS Excel.

Ход работы

Решением уравнения являются значения точек пересечения графика функции с осью абсцисс, а решением системы уравнений являются точки пересечения графиков функций.

Задача.

Найдите решение системы уравнений: hello_html_m49ce4623.pngОтвет запишите с точностью до 0,1.

Решение:

  1. Преобразуем данную систему к виду .у =f(x) (приведенный

  2. image5


    Произвольно выберем диапазон значений х, например от —10 до 10 с шагом 1 (если на графике не будет точек пересечения, то необходимо подобрать другие значения x). Построим таблицу, состоящую из трех столбцов х, у1 у2 и заполним ее.

hello_html_m2c3883b8.png

  1. Для оценки решений воспользуемся точечной диаграммой, на которой отобразим графики обеих функций.

Координаты точек пересечения графиков — решения системы, но получены приближенные значения решений с точностью, равной 1.

  1. Для уточнения значений решений построим графики в интервалах от —2 до 0, где находится первое решение, и от 2 до 4, где находится второе решение.

  2. Составляем новую таблицу для -2 < х < 0 с шагом 0,1 и строим точечную диаграмму для получения первого решения.

  3. Составляем новую таблицу для 2 ≤ х ≤4 с шагом 0,1 и строим точечную диаграмму для получения второго решения.

  4. Решением нашей системы будут координаты точек пересечения графиков: х1 = —1,2, у1 = 1,5; х2 = 3,3, у2 = 10,8.

Графическое решение системы уравнений является приближенным.

Задание 2. Задания для самостоятельного выполнения

Решите системы уравнений графически с точностью 0,1.

hello_html_m2f8cd401.png





  1. Подведение итогов урока

Итак, математическая модель - это описание моделируемого процесса на языке математики.

  • Назовите его этапы. (1) Выделение количественных характеристик; 2) получение математических соотношении;

  1. реализация решения задачи на компьютере; 4) решение поставленной задачи путем проведения вычислительного эксперимента.)

Домашнее задание

Построить математическую модель «Пруд», в который запустили карпов для разведения. Модель должна рассчитывать количество карпов на 10 лет вперед с периодом в 1 год по следующим правилам: N - k * N - q * N2. где N- начальное число карпов, k — коэффициент прироста, q коэффициент смертности. Каждый год число карпов изменяется, это количество можно вычислить по формуле: Ni = Ni-1+(kNi-1 qNi-12).

  1. Создать компьютерную модель «Пруд» (см. Сем., с. 129).

hello_html_261d4056.png

  1. Провести компьютерный эксперимент с численностью рыб при N= {190, 350, 930, 1000, 1223, 1500, 1800, 2000, 2137, 2530}.

  2. В ячейки Е5:Е8 написать вывод данного эксперимента.

  3. Сохранить в вашу рабочую папку как «Количество рыб» и показать результат учителю.



Общая информация

Номер материала: ДВ-280076

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Информационные технологии в деятельности учителя физики»
Курс повышения квалификации «Методика преподавания информатики в начальных классах»
Курс повышения квалификации «Современные информационные технологии и их использование в работе преподавателей. Системы автоматизированного проектирования одежды и организация технологического процесса»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Организация работы по формированию медиаграмотности и повышению уровня информационных компетенций всех участников образовательного процесса»
Курс «Фирменный стиль» (Corel Draw, Photoshop)
Курс «Оператор персонального компьютера»
Курс «3D Studio MAX»
Курс «WEB-ВЕРСТКА (HTML, CSS)»
Курс повышения квалификации «Использование компьютерных технологий в процессе обучения в условиях реализации ФГОС»
Курс повышения квалификации «Введение в программирование на языке С (СИ)»
Курс профессиональной переподготовки «Управление в сфере информационных технологий в образовательной организации»
Курс повышения квалификации «Специфика преподавания дисциплины «Информационные технологии» в условиях реализации ФГОС СПО по ТОП-50»
Курс повышения квалификации «Современные языки программирования интегрированной оболочки Microsoft Visual Studio C# NET., C++. NET, VB.NET. с использованием структурного и объектно-ориентированного методов разработки корпоративных систем»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.