Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Урок "Некоторые приемы решения целых уравнений" (алгебра, 9 класс)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Урок "Некоторые приемы решения целых уравнений" (алгебра, 9 класс)

библиотека
материалов

hello_html_1499895f.gifhello_html_m630e127c.gifhello_html_56d03524.gifhello_html_4c3edb96.gifhello_html_m4a32635.gifhello_html_479b79fc.gifhello_html_3dd0be10.gifhello_html_m350cb1db.gifhello_html_m612f027b.gifhello_html_7d27dd68.gifhello_html_medfd9f4.gifhello_html_3762a74f.gifhello_html_553615a.gifhello_html_m4773db73.gifhello_html_m2079ecf9.gifhello_html_m2079ecf9.gifhello_html_m2a7690f7.gifhello_html_720d502b.gifhello_html_566f1aaf.gifhello_html_m4e4fce1a.gifhello_html_7e70b6a9.gifhello_html_4639d775.gifhello_html_m3a88f75b.gifhello_html_m4f1ed025.gifhello_html_7f23cbaf.gifhello_html_4a6ea58d.gifhello_html_5cbf4dee.gifhello_html_4a6ea58d.gifhello_html_2828178.gifhello_html_m757ff0da.gifhello_html_12062974.gifУрок по алгебре в 9 классе.

Учитель математики Университетского лицея

г. Димитровграда Давыдова Г.В.

Тема: Некоторые приемы решения целых уравнений.

Цели:

Образовательные:

- систематизация и обобщение, расширение и углубление знаний учащихся по решению

целых уравнений с одной переменной высших степеней;

- подготовка учащихся к применению знаний в нестандартной ситуации;

- подготовка к ОГЭ;

- формирование компетентности учащихся в сфере самостоятельной познавательной деятельности;

Умений увидеть проблему и наметить пути ее решения.


Развивающие:

- способствовать развитию интеллектуальных способностей, мыслительных умений, формированию умения применить приемы переноса знаний в новую ситуацию; развивать умение обобщать, правильно отбирать способы решения уравнений; развивать внимание и память; навыки самоконтроля и самооценки;

-формированию компетенций: математической, информационной, учебно-познавательной, самосовершенствования.


Воспитательные:

- содействовать воспитанию интереса к предмету.

- формирование умения давать адекватную самооценку своим возможностям и знаниям; отстаивать свою точку зрения и принимать точку зрения товарищей; сопоставлять свое «я» с самим собой и окружающими; развитие математической речи;

- воспитывать волю и настойчивость для достижения конечных результатов.


Тип урока: Урок применения знаний и умений.

Мотивация: создание ситуации успеха; обеспечение психологического и физического здоровья учащихся на уроке.

Методы обучения: Частично-поисковый, метод самопроверки и самоанализа.


Методы контроля и самоконтроля учебной деятельности: индивидуальный, фронтальный, письменный.

Оборудование: компьютер, проектор, интерактивная доска, листы заданий для учащихся; раздаточный теоретический материал;


  1. Учебно-воспитательные моменты.

1.Оргмомент.

2.Актуализация опорных знаний учащихся: проведение теста.

3.Проверка домашнего задания.

Мотивационная беседа

4.Постановка целей урока.

5.Решение упражнений.

6.Постановка домашнего задания.

7.

Ход урока.

1.Оргмомент. Проверка отсутствующих.

Друзья мои! Я очень рада

Войти в приветливый ваш класс

И для меня уже награда

Вниманье ваших умных глаз

Я, знаю, каждый в классе гений,

Но без труда талант не впрок

Из ваших знаний и умений

Мы вместе сочиним урок.


14-15 лет – время, когда уже пора задуматься над вопросом, который вы хорошо знаете по знаменитым строкам В.В. Маяковского «У меня растут года, будет и 17. Где работать мне тогда, чем заниматься». Как бы не были хороши советы родителей, учителей, друзей, решать придется самим. Но хорошее решение можно принять только на основе знаний, вы должны знать математику не только на минимальном уровне, но и применять ваши знания в нестандартных ситуациях. В заданиях ОГЭ и ЕГЭ часто встречаются уравнения высших степеней. В этом году у вас первое испытание: вам предстоит сдавать экзамены, в числе которых и математика. Повторенье – мать ученья.Все, наверное, помнят эту поговорку. Математика – не исключение, и , чтобы хорошо усваивать ее, надо постоянно повторять изученное.


2.Актуализация опорных знаний учащихся.

И сейчас мы повторим решение заданий ОГЭ. Перед вами лежат листы с тестовыми заданиями, которые нужно выполнить. Критерии записаны на листах.

Проведение теста на 2 варианта.

Вариант 1.

  1. Какое из приведенных ниже неравенств является верным при любых значениях а и b, удовлетворяющих условию a>b

А) 2a<2b Б) -3a<-3b В) -2b<-2a Г) 2a<3b

  1. Самая отдалённая от Солнца планета – Плутон имеет средний радиус орбиты около 6 млрд км. Записать число в стандартном виде

А) 6 * 10⁹ км Б) 6 * 10⁸ км В) 0,6 *hello_html_2cafef4d.gif км Г) 0,6 * 10⁹ км

  1. Выразите в километрах 650000 метров

  2. Укажите одночлен, записанный в стандартном виде

А) 3ahello_html_54fefaca.gifБ) hello_html_7f8f9891.gifabc + a B) 3hello_html_532091fd.gifb + ab Г) hello_html_7f8f9891.gifabc * hello_html_m20f62a32.gif

5. При каких значениях aвыражение a - –hello_html_46b3cb10.gif не имеет смысла

А) 0 Б) -7 В) 7 Г) -4

Определить знаки a, b, c

у



х

у

х




  1. Является ли корнем уравнения число х=1

Х7 + 5х4 – 3х +4х -7=0

8.Решить неравенство: (х – 2) ( х + 5) ≤ 0

Ответ:

9.Решить уравнение, используя свойство коэффициентов: 2х – 5х +3 = 0.


10.На каком рисунке изображен график четной функции.



А) у Б) у В) у



x х х





Критерии: 6 заданий – «3», 7-8 заданий –«4», 9-10 заданий – «5».


Вариант 2.

1.Какое из приведенных ниже неравенств является верным при любых значениях а и b, удовлетворяющих условию a<b.

А) -2a< -2b Б) 5a<5b В) -6+а<7+в Г) 25a<20b

2.Россия занимает территорию, площадь которой – 17млн 80тыс км2. Как эта величина записывается в стандартном виде?

А) 1,708* hello_html_m1900c49e.gif км2 Б) 1,708* hello_html_m4208c856.gif км2 В) 01,708 * 10⁸ км2 Г) 0,6 * hello_html_5b4ce339.gif км2

3.Выразите в километрах 2700000 сантиметров

4.Укажите одночлен, записанный в стандартном виде

А) 2ху +х Б) 3хуу+ a B) 2 hello_html_m15c889.gif +5 Г) hello_html_27777430.gif

5. При каких значениях aвыражение a +hello_html_31253346.gif не имеет смысла

А) 0 Б) – 6 В) 6 Г) 1

6.Определить знаки a,в, c у

х



7.Является ли корнем уравнения число х=1

8 Х7 - 6 x5 + 3 х4 +4 x3 -7х2 +1 = 0.

Ответ:

8.Решить неравенство: (х – 3) ( х + 4) ≤ 0

Ответ:

9.Решить уравнение, используя свойство коэффициентов: 3х – 8х +5= 0.


10.На каком рисунке изображен график четной функции.





Х х

Х





Критерии: 6 заданий – «3», 7-8заданий –«4», 9-10 заданий – «5».


Самооценка работы.



1задание

2задание

3задание

4задание

5задание

6задание

7задание

8задание

9задание

10задание

1вариант

Б

А

6,5км

А

В

а<0,в>0,

с>0

да

[-5;2]

1;1,5

А

2вариант

Б

Б

27км

Г

Б

а> 0, с<0,в <0

нет

[-4;3]

1; 5\3

Б


2. Проверка домашнего задания.

На экране показывается решение заданий. Самопроверка(учащиеся проверяют и ставят оценку за выполнение домашнего задания).


  1. Решить неравенство:(3x-7)2 ≥ (7x-3)2















1способ:

(3x-7)2_ (7x-3)2≥ 0,

(3х – 7 -7х +3) (3х – 7 + 7х -3)≥ 0,

( -4х – 4) ( 10х – 10) ≥ 0,

(х -1) ( х + 1) ≤ 0,

У= (х -1) ( х + 1).

Нули функции: -1, 1.



-1 1

У(-2)= (-2 -10 ( -2 +1) > 0

У(0) = (0-1) ( 0+1) < 0

У(2) = (2-1) (2+ 1) > 0

У≤ 0 при х при xϵ[-1;1], значит решением неравенства является отрезок [-1;1].

Ответ: [-1;1].

2способ:

9 x2– 42х +49 ≥ 49 x2– 42х +9.

9 x2– 42х +49 ≥ - 49x2 +42х -9 ≥0,

- 40 x2+40х ≥0,

x2 -1 ≥0 . Найди ошибку. (x2 -1) ≤ 0

У=x2 -1, квадратичная функция, график – парабола, ветви – вверх(а>0).

Нули функции: -1,1.

y ≤ 0 при xϵ[-1;1], значит у

решением неравенства

является отрезок [-1;1].

х

Ответ: [-1;1].







Решить уравнения.

hello_html_1a436c6.gif +2x2 - х -2 =0 ,



x2 ( х+ 2) – ( х+ 2) =0,

( х +2 ) (x2 - 1) = 0,

( х + 2) ( х- 1) ( х+ 1) = 0,

hello_html_7bfaffce.gif



Ответ: - 2, -1, 1.




hello_html_5168666.gif + hello_html_m47f1e93a.gif= 1.

hello_html_5168666.gif + (hello_html_m65f0ce2f.gif+ 1) -1 =0,

hello_html_5168666.gif + hello_html_m65f0ce2f.gif =0,

hello_html_m65f0ce2f.gif= р,

hello_html_8f05c9a.gif + р =0,

Р ( р+1) =0,

Р = 0 или р= -1.

hello_html_m65f0ce2f.gif=0 илиhello_html_m65f0ce2f.gif= -1

Х=0 или х=2 х= 1.

Ответ:0,1,2.

  1. При каких значениях параметра а уравнение имеет единственное решение.

(а – 3)hello_html_m6ea82a6e.gif + (а +12) х + а +21 =0,

  1. а – 3 = 0, т. е. а =3 0 + 15х +24 = 0, х = - hello_html_m2c4e06e0.gif . х=-1,6.

2. а-3=0,т.е. а=3, Д= (а+12)2 -4(а-3)(а+21)= а2 +24а+144 -4( а-3а+21а-63)=а2+24а +144 -4а -72а +252 = -3а2 -48а+396

Д=0, если -3а2 -48а+396=0, а2 +16а - 132=0.

Д1=64+132=196, hello_html_m75523467.gif= 14hello_html_11852162.gifhello_html_m2e5dde82.gif

Ответ: -22; 3;6.

Вычислить: (- 6 hello_html_m795cfe5a.gif - 1hello_html_6eec8aff.gif + 5 hello_html_m11f0fb5b.gif ) : 0,5 +0,5 = (- 6 hello_html_2496a1fd.gif - 1hello_html_md8777a6.gif + 5 hello_html_18622ead.gif ) *2 +0,5 =(- 7hello_html_m7c51b347.gif + 5 hello_html_18622ead.gif ) *2 +0,5=-4hello_html_mf455bc8.gif

Вопрос: какое задание вызвало затруднение?

Восточная мудрость гласит: «Приобретать знания – храбрость, приумножать их – мудрость, а умело применять – великое искусство». Какие – то знания по данной теме мы уже приобрели, приумножить знания никогда не поздно, поэтому сегодня мы будем мудрыми, и еще раз посмотрим, насколько умело мы применяем наши знания.

Эпиграфом нашего урока будут слова:


«Уравнение представляет собой наиболее серьезную и важную вещь в математике»

Лодж О.



Чем же мы сегодня будем заниматься на уроке? Учащиеся ставят цели урока:

-рассмотреть методы решения уравнений.

И в конце урока мы должны ответить на вопросы: как, почему, каким?

Какие же мы знаем методы решения уравнений? У вас имеется раздаточный теоретический материал.

  1. Методы решения уравнений.

1.Метод разложения на множители:

-вынесение общего множителя

-применение формул сокращенного умножения

-выделение полного квадрата

-группировка

-метод неопределенных коэффициентов

2.Введение новой переменной.

3. Функционально - графический способ.

4.Использование основных свойств функции:

-ограниченности функции

-монотонности функции

-использование области определения функции

5.Свойство четности функции.

6.Теорема, обратная теореме Виета.

7.Угадывание корня уравнения.

8.Использование симметричности уравнения.

9.Умножение уравнения на функцию.

10.Использование свойств абсолютной величины.

11.Метод мажорант. Нестандартный метод решения уравнений и неравенств. Заключается в том, что одна часть уравнения (или неравенства) ограничена сверху неким числом М, а другая часть уравнения (или неравенства) ограничена снизу неким числом М.

Какие же методы вы применили при решении уравнений в домашней работе?

Это метод разложения на множители, графический способ, введение новой переменной.

Уравнение – это самая простая и распространенная математическая задача. Они сами по себе представляют интерес для изучения. Полностью алгоритмизировать процесс решения уравнений нельзя, однако полезно запомнить наиболее употребительные приемы, общие для всех типов уравнений. Многие уравнения при решении нестандартными приемами решаются гораздо легче. Из истории. Сообщение ученика. Самые ранние рукописи свидетельствуют о том, что в Древнем Вавилоне и Древнем Египте были известны приемы решения линейных уравнений. Знаменитый труд ученого Аль – Хорезми считается первой книгой по алгебре, он изучил линейные и квадратные уравнения.

На экране показываются уравнения.

1.x2-6|x|+8=0

7.hello_html_2fb22581.gif-2=0

2. x5+2x+1=0

8. 3x4-10x2+3=0

3.x5+x3+2x-4=0

9. (x2-5x+2)(x2-5x-1)=28

4. (х+1)(х+2)(х+4)(х+5)=4


10. hello_html_5fb48f9a.gif

5. 2x4+x3-6x2+x+2=0

11. 2x4-9x3+4x2+21x-18=0

6. (x+2)(x+3)(x+8)(x+12)=4x2

12. hello_html_m1dfb9f99.gif = 4 + Cos2hello_html_609cf1d4.gif


13. x2+hello_html_m260be89c.gif

14. (x-1)3+(x+3)4=82



Сегодня на уроке продолжим рассмотрение решения некоторых уравнений. Мы хорошо умеем решать квадратные уравнения. Многие уравнения более высоких степеней можно привести к квадратным.

Ваши предложения по решению уравнения. Каковы особенности данного уравнения?

Пример №1: Один ученик решает на доске.

x2-6|x|+8=0 Найти произведение корней.

1способ: преобразовать знак модуля, применив свойство абсолютной величины.

hello_html_m2aad7e54.gif



2способ: введение новой переменной.

x2=|x|2

|x|=t, t≥0

t2- 6t + 8 = 0


3способ: свойство четности функции. График функции у = x2-6|x|+8=0 симметричен относительно оси координат. При решении уравнения достаточно найти его неотрицательные решения, остальные восстановить по соображениям симметрии.

X2-6x+8=0 (-4)*(-2)*2*4=64 hello_html_m3699b1ac.gif



Ответ: -4,-2.2,4.

Вывод: при решении этого уравнения мы рассмотрели три случая.

Повторить при каких условиях функция возрастает и убывает.



y=xn, n-нечетное

у



х

y=kx+b, k˃0 возрастающая

k˂0 убывающая



При решении уравнений высших степеней иногда применяется процедура угадывания хотя – бы одного корня.

Пример №2: При решении уравнения воспользуемся свойством монотонности функции: если функция у= f (х) убывает, а функция у=g(х) возрастает и если уравнение f (х)=g(х имеет корень, то только один.

x5+2x-3 = 0,

x5 =-2x+3.


y=x5 - возрастающая, а у=-2х+3– убывающая, то корень у заданного уравнения один, и этим корнем является значение х=1.

Ответ: х = 1.

Физзарядка.

Пример№3: Самостоятельно в тетрадях.

x5+x3+2x-4=0

У= x5 - возрастающая, у = x3 –возрастающая, у= 2х-4 –возрастающая. Значит уравнение имеет не более одного корня. Целые делители: -4, -2, -1,1,2,4. Подбором находим х=1.

Ответ:х=1.

Пример№4: Один ученик решает на доске.

(х+1)(х+2)(х+4)(х+5)=40

Уравнение вида (х +а)(х + в)(х +с)(х+к)= р сводится к квадратному, если а +с= в + к или а + в = с +к и т. д.

1+5=2+4, мы видим симметрию левой части.

2 +6х+5) (х2 + 6х+8) = 40, Х2 +6х+5 =t, t(t+3)= 40, t2 +3t -40=0, по теореме, обратной теореме Виета t =-8 или t=5. Получаем Х2 +6х+5=-8, где х=0 ,х=-6 или Х2 +6х+5 =3, где х=-4, х=-2.

Ответ: -6,-4,-2,0.

Пример №5: Один ученик решает на доске.

2hello_html_m65892b15.gif+x3-6х2+х+2=0
Это возвратное уравнение. Коэффициенты, стоящие на симметричных позициях, равны.

ax4+bx3+cx2+bx+a=0

Х=0 не является корнем уравнения, поэтому разделим на х2

hello_html_m78d33cb7.gif

hello_html_4e875d22.gif

hello_html_m7f8ce4de.gif

hello_html_4d9118af.gif

Дорешать уравнение дома.

Постановка домашнего задания. П.16,№346(а), 348(а), 350, 371(а).

Итог урока. Какими же методами мы научились решать уравнения?

Все учащиеся выставляют самооценку за урок.

- Кто доволен своей работой на уроке?

- Кому удалось ликвидировать пробелы в знаниях?

- Кто справится с самостоятельной работой на следующем уроке?

Установите соответствие

Уравнение

Метод решения

1. x4-6x2+8=0

2.5.6

2. x3+2x2-3x=0

1

3. x3-3x2-4x+12=0

1

4. x3-2x-2=0

3,7

5. x2-10|x|+21=0

2,10





Рефлексия.

Оцените свое самочувствие на уроке, поставив какой – нибудь значок на графике квадратичной функции. Где вы себя ощущаете: не гребне волны параболы, или во впадине

у

у







х х







































1.Метод разложения на множители:

-вынесение общего множителя

-применение формул сокращенного умножения

-выделение полного квадрата

-группировка

-метод неопределенных коэффициентов

2.Введение новой переменной.

(Заменить некоторое выражение в уравнении некоторой переменной и получим более простое уравнение относительно новой переменной, находим эту переменную и вычисляем корни уравнения).

3. Функционально - графический способ.

Уравнение f(x)=g(x).Строим в одной системе координат графики y=f(x) иy=g(x). Абсциссы точек пересечения этих графиков является корнями уравнения. Но этот способ не обеспечивает высокую точность.

4.Использование основных свойств функции:

-ограниченности функции

-монотонности функции

-использование области определения функции

5.Свойство четности функции.

График четной функции симметричен относительно оси Oy.При решении достаточно найти его неотрицательные корни, остальные восстановить по симметрии.

6.Теорема, обратная теореме Виета.

x2+ px +q =0; x1+x2=-p; x1x2=q

ax2+ bx +c =0; x1+x2=-b/a; x1x2=c/a

При решении уравнений второй степени можно использовать свойства коэффициентов.

ax2+bx+c=0, если a +b + c =0, тоx1=1, x2=c/a.

ax2+bx+c=0, если a-b +c =0, тоx1=-1, x2=-c/a.

7.Угадывание корня уравнения.

8.Использование симметричности уравнения.

9.Умножение уравнения на функцию.

10.Использование свойств абсолютной величины.

11.Метод мажорант. Нестандартный метод решения уравнений и неравенств. Заключается в том, что одна часть уравнения (или неравенства) ограничена сверху неким числом М, а другая часть уравнения (или неравенства) ограничена снизу неким числом М.



Автор
Дата добавления 26.12.2015
Раздел Математика
Подраздел Конспекты
Просмотров763
Номер материала ДВ-289651
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх