Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Урок "Олимпиада 10 - класс"

Урок "Олимпиада 10 - класс"


До 7 декабря продлён приём заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)

  • Математика

Поделитесь материалом с коллегами:



Математика


10 класс.

1. Решить уравнение в целых числах:

(x – y)3 + (y – z)3 + (z – x)3 = 30. ( 6 баллов)


Решение. Преобразовав данное уравнение, получим:

3(x – y)(y – z)(z – x) = 30 или (x – y)(y – z)(z – x) = 10.

Значит, целые числа (x – y), (y – z), (z – x) — делители числа 10, сумма этих делителей равна нулю. Не трудно убедиться, что таких делителей у числа 10 нет.



2. Из трехзначного числа вычли сумму его цифр. С полученным числом сделали то же самое и так далее, 100 раз. Доказать, что в результате получится нуль. ( 6 баллов)

Решение. Так как hello_html_m762c237.png– (a + b + c) = 9  (11a + b), то первая разность делится на 9. Сумма ее цифр делится на 9, значит, вторая, и, аналогично, все остальные разности будут делиться на 9.

Сумма цифр трехзначного числа, делящегося на 9, может быть равна 9, 18 или 27. Значит, за 100 операций число либо станет равным 0, либо уменьшится не менее чем на 900. Поэтому, любое число, меньшее 900, станет равным нулю.

Пусть число не менее 900. Тогда после первого хода получится число, кратное 9, от 900 – 9 = 891 до 999 – 27 = 972. Таких чисел 9. Перебором можно убедиться, что они также обратятся в 0 через 99 операций.

3. Существуют ли всюду определенные функции f(x) и g(у), что для любых х и у выполняется f(x g(y) = x + y – 1? ( 6 баллов)


Решение. Пусть такие функции существуют. Тогда при любом y

при x = 0: f (0)  g (y) = y – 1,

при x = 1: f (1)  g (y) = y.

Очевидно, что f (0) ≠  0, f (1) ≠  0, отсюда

hello_html_33429715.png.

Это равенство выполняется не при всех y (при y = 0 оно неверно), значит, таких функций не существует.

4. Решить уравнение

hello_html_4ff728a7.gif. (6 баллов)

Р е ш е н и е. Подстановка y = x + 7 делает рассматриваемое уравнение симметричным:

hello_html_m31da5287.gif.

Сгруппируем следующим образом

hello_html_64917757.gif= 0.

Это даёт

hello_html_4f6f7450.gif,

т.е.

hello_html_m3cfa3df3.gif,

откуда y = 0, т.е. x = 7, или (после подстановки z = y2)

hello_html_m818b3d4.gif.

Группируем

hello_html_2f11e673.gif.

Это даёт

hello_html_6df1715.gif.

Сокращая на 16 и приводя к общему знаменателю, получаем

3(z2 – 34z + 225) + (z2 – 50z + 49) = 0

и, разумеется, z 1, z 9, z 25, z 49. Приводя подобные, имеем 4z2 – 152z + 724 = 0, откуда, сокращая на 4, получаем z2 – 38z + 181 = 0. Корнями этого уравнения являются

hello_html_m1cbd9312.gif,

откуда hello_html_m179d4659.gif и, наконец, hello_html_1faa5609.gif, причём возможны различные комбинации знаков.

О т в е т: x = 7, hello_html_m5b4c649e.gif.

5. В выпуклом четырёхугольнике ABCD с внутренними углами < 180о точка E – точка пересечения диагоналей, F1, F2 – площади треугольников ABE, CDE, F – площадь четырёхугольника ABCD. Доказать, что hello_html_5692906d.gif. В каком случае возможно равенство? (6 баллов)

Р е ш е н и е.

hello_html_m5bf13f77.gif

Имеем F = F1 + F2 + F3 + F4. Доказываемое неравенство равносильно тогда неравенству

hello_html_m1a45ecc9.gif.

После возведения в квадрат получаем, что последнее равносильно неравенству

hello_html_121311eb.gif.

Треугольники ABE и ADE имеют одинаковую высоту, следовательно, hello_html_m2df79078.gif. Аналогично, hello_html_m3f62af62.gif. Отсюда получаем hello_html_m4a420f78.gif, так что F1F2 = F3F4. Доказываемое неравенство сводится тогда к такому: hello_html_m18db4d2f.gif. Это последнее неравенство очевидно, поскольку F3hello_html_m4fc43611.gif + F4 = hello_html_3150d96e.gif 0.

Равенство достигается в случае F3 = F4. В свою очередь это равносильно условию SABD = F1 + F4 = F1 +
+ F3 = SABC. Но треугольники ABC и ABD имеют общее основание AB, следовательно, должны иметь одинаковые высоты. А это выполняется в случае, когда AD параллельно CD, т.е. когда ABCD – трапеция.


57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)

Автор
Дата добавления 31.01.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров107
Номер материала ДВ-397483
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх