Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015

Опубликуйте свой материал в официальном Печатном сборнике методических разработок проекта «Инфоурок»

(с присвоением ISBN)

Выберите любой материал на Вашем учительском сайте или загрузите новый

Оформите заявку на публикацию в сборник(займет не более 3 минут)

+

Получите свой экземпляр сборника и свидетельство о публикации в нем

Инфоурок / Математика / Конспекты / Урок по алгебре и началам анализа для 11 класса по теме "Вычисление производных суммы"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

Урок по алгебре и началам анализа для 11 класса по теме "Вычисление производных суммы"

библиотека
материалов

Муниципальное общеобразовательное бюджетное учреждение средняя общеобразовательная школа № 28

имени Героя России С.Н. Богданченко

ст. Вознесенской муниципального образования Лабинский район Краснодарского края






Мультимедийный урок

по теме



«Вычисление производных суммы»



11 класс











Урок разработан:

учителем математики

Кондрашевой

Светланой Михайловной





Тема: Вычисление производных суммы

Цель: - узнать правило дифференцирования суммы функций, научиться применять его в решении практических заданий;

- развивать умение решать задачи с применением производной (КИМ ЕГЭ);

- воспитывать ответственное отношение к подготовке к ЕГЭ

Ход урока:

  1. Оргмомент

  2. Вопросы по домашней работе

  3. Повторение теоретического материала: (по слайдам презентации)

- понятие производной

- физический смысл производной

- геометрический смысл производной

- формулы для нахождения производной

- уравнение касательной к графику функции

4. Решение задач на повторение (слайды)

5. Изучение новой темы:

- Производная суммы (разности) равна сумме (разности) производных (слайд)

(f(x) + g(x))1 = f ’(x) + g ’(x)

Доказательство рассмотреть в учебнике на странице 240.

Примеры вычисления производных по правилу: Задача 1

- вынесение постоянного множителя за знак производной с f(х))’= с f ’(x)

Примеры вычисления производных по правилу: Задача 2

6. Закрепление изученного:

802 –устно

803 – самостоятельно, с дальнейшей проверкой

806 с самопроверкой: 1) f ’(x) = 2х-2, f ’(0)=2*0-2= -2; f ’(2) =2*2-2=2

3) f ’(x)=-3х2 + 2х; f ’(0) = 0; f ’(2) = -8

809 1) f ’(x)= 3х2 – 2, f ’(x)= 0, 3х2 – 2=0, х=±hello_html_1bdb0922.gif

6) f ’(x)= 4х3 +12 х2 -16х, 4х(х2 +3х- 4)=0, х1=0, х2=1, х3=-4

7. Выводы: применяя правило дифференцирования суммы функций, используем формулы для нахождения производных слагаемых.

8. Самостоятельная работа:

Вариант 1

Вариант 2

1 На рисунке изображен график функции

y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Нахождение производной по графику касательной - функция возрастает

1 На рисунке изображен график функции

y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Нахождение производной по графику касательной - функция убывает


2 Материальная точка движется прямолинейно по закону x(t)=6t^2-48t+17 (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). Найдите ее скорость (в м/с) в момент времени t=9 с.

2 Материальная точка движется прямолинейно по закону x(t)=t^2-13t+23 (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). В какой момент времени (в секундах) ее скорость была равна 3 м/с?

9. Д/з §46 стр.240. №806 (2,4); 809 (2-5)

Автор
Дата добавления 28.10.2015
Раздел Математика
Подраздел Конспекты
Просмотров157
Номер материала ДВ-105163
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх