Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Урок по алгебре 9 класс "Формула суммы п первых членов арифметической последовательности"

Урок по алгебре 9 класс "Формула суммы п первых членов арифметической последовательности"

  • Математика

Поделитесь материалом с коллегами:

Урок по алгебре 9 класс«Формулы суммы n первых членов арифметической прогрессии

Тема: "Формулы суммы n первых членов арифметической прогрессии".

Тип урока: Урок изучения нового материала.

Цели и задачи: образовательные - познакомить учащихся с выводом формулы сумм n первых членов арифметической прогрессии; научить учащихся применять полученные формулы при решении задач.
развивающие - сформировать умение строить и интерпретировать математическую модель некоторой реальной ситуации.
воспитательные - прививать учащимся интерес к предмету посредствам применения информационных технологий (с использованием компьютера), решения исторических задач;. Ход урока

  1. Орг.момент.

  2. Проверка домашнего задания.

1. Устный фронтальный опрос:

  1. Прочитайте определение арифметической прогрессии

  2. Какое число называется разностью арифметической прогрессии?

3)Какие из перечисленных последовательностей являются арифметическими прогрессиями? (an): 0; 1; 8; 27; 64; …(bn): 7; 5; 3; 1; -1; …(xn): 2; 2,2; 2,6; 3,2; 4; …(cn): 6; 12; 18; 24; 30; …

II. Актуализация знаний

Задача. Новый русский решил

отгородить бассейн на даче фигурной стеной. Позвав строителей, начал объяснять. - В нижний ряд укладывается 19 блоков, на него кладётся 17 блоков, затем 15 и так далее. Всего 8 рядов. «Арифметическая прогрессия какая-то получается», - произнес бригадир. Прав бригадир?

III. Обьяснение нового материала Задача
Рабочий выложил плитку следующим образом: в первом ряду - 3 плитки, во втором - 5 плиток и т.д., увеличивая каждый ряд на 2 плитки. Сколько потребуется рабочему плиток, чтобы выложить 6 рядов
Решение:

Составьте к задаче последовательность из 6 чисел: 3, 5, 7, 9, 11,13

Нетрудно убедиться, что данная последовательность является арифметической прогрессией.

Чтобы узнать количество всех плиток, надо узнать сумму этих чисел, т.е найти сумму первых 6 членов ар.прог.

Подумайте как найти количество всех плиток

(Ответы учеников)

Да, можно решить эту задачу непосредственным сложением чисел. Но этот способ не рационален. А если бы перед вами стояла задача: найти S100, как вы думаете сколько времени вам потребовалось?

Рассказывают, что, когда, великий немецкий математик Карл Гаусс учился в начальной школе, преподаватель предложил ученикам самостоятельно найти сумму ряда от 1 до 100. Он предполагал, что ученики будут складывать эти числа по порядку, на что потребуется не менее 10 минут. Какого же было его удивление, когда маленький Карл через 1-2 минуты заявил, что он задание выполнил и дал правильный ответ.

Как же так быстро далось маленькому мальчику найти ответ?

Сам Гаусс объяснял это так:

"Я заметил, что 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101 и т. д. Пара ровно отстоящих от краёв ряда чисел даёт 101 и последняя пара средних чисел даёт 101 = 50 + 51. Числа, взятые по паре с начала и с конца ряда встречаются в середине после 50 сложений этих пар. Поэтому надо 101 x 50 = 5050. Это число и будет суммой всех 100 чисел".

Воспользуйтесь идеей Гаусса для решения задачи про плитки.

Что получилось?

А теперь попробуйте решить эту же задачу, но для 5 рядов.

Можно ли решить эту задачу тем же самым сособом? Почему?

Значит существует другой способ решения данной задачи.

hello_html_2c3cf7ed.png
Рис. 1
Сумму 3+5+7+9+11 можно изобразить так, как показано на рис. 1 и из двух таких фигурок составить прямоугольник .Продолжим рассуждения:
S = 3 + 5 + 7 + 9 + 11.
Напишем в обратном порядке:
S = 11 + 9 + 7 + 5 + 3.
И сложим эти равенства:
S = 3 + 5 + 7 + 9 + 11 + + 11 + 9 + 7 + 5 + 3.
В каждом столбце стоят 2 числа, дающие в сумме 14. Поэтому:
hello_html_m3bad533.png
Подтвердим, что применяя этот способ, можно легко найти S100 натуральных чисел.(Самостоятельная работа учащихся)

Во всех задачах мы находили Sn. Выведем формулу Sn для общего случая.

Вывод: в общем случае будет n столбцов с одинаковой суммой, равной сумме первого и последнего членов.
Поэтому
hello_html_4b1cb63d.png

Вернёмся на дачу к нашим героям. Как по - быстрее вычислить количество блоков в фигурной стене?

Ребята, найдите ответ задачи. Что получилось?

Физкультминутка-релакс(упражнения для глаз)

IV. Первичное закрепление

Готовимся к ГИА

  1. Последовательность ( аn) арифметическая прогрессия. Найдите первые пять ее членов если а1=5,а2=9, а3=13.

  2. Последовательность ( аn) арифметическая прогрессия. Найдите сумму ее шести членов а2=17, а5=65

  3. Найдите сумму всех нечетных натуральных двузначных чисел

  4. Последовательность ( аn) арифметическая прогрессия. Найдите сумму первых ее членов если а1=8, а3=18.

  5. Итоги урока

  6. Домашнее задание


Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 11.02.2016
Раздел Математика
Подраздел Конспекты
Просмотров331
Номер материала ДВ-444587
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх