Инфоурок / Математика / Конспекты / Урок по алгебре на тему "Решение задач на движение"
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Я люблю природу», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 15 ДЕКАБРЯ!

Конкурс "Я люблю природу"

Урок по алгебре на тему "Решение задач на движение"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов


Решение задач на движение с помощью
систем уравнений второй степени

Цели: формировать умение решать задачи на движение с помощью систем уравнений второй степени.

Ход урока

I. Организационный момент.

II. Устная работа.

Периметр прямоугольника равен 20 см, а его площадь равна 21 см2. Пусть х и у – стороны этого прямоугольника. Какая из систем соответствует условию задачи?

а) hello_html_m23b1f531.gif б) hello_html_14ab1750.gif в) hello_html_30e19c56.gif

III. Проверочная работа.

В а р и а н т 1

1. Разность двух чисел равна 5, а их произведение равно 84. Найдите эти числа.

2. Прямоугольный участок земли площадью 2080 м2 обнесен изгородью, длина которой равна 184 м. Найдите длину и ширину участка.

В а р и а н т 2

1. Сумма двух чисел равна 25, а их произведение равно 144. Найдите эти числа.

2. Прямоугольный участок земли площадью 3250 м2 обнесен изгородью, длина которой равна 230 м. Найдите длину и ширину участка.

IV. Формирование умений и навыков.

Сначала необходимо актуализировать знания учащихся о решении задач на движение, выделив р я д э т а п о в.

1) Анализ условия:

Какие объекты рассматриваются в задаче?

Какое движение описано в задаче (однонаправленное, движение навстречу, по кругу и т. д.)?

Значения каких величин известны?

2) Выделение процессов, которые описаны в задаче.

3) Выбор неизвестных величин и заполнение таблицы.

4) Составление системы уравнений.

5) Решение системы уравнений.

6) Интерпретация и проверка полученного решения.

Как реализуются описанные этапы, можно разобрать на примере задачи № 472.

Р е ш е н и е

1) В задаче описано движение двух пешеходов навстречу друг другу. Известно расстояние между пунктами и расстояние, которое прошли пешеходы за 4 часа.

2) Выделим два процесса:

реальное движение пешеходов;

движение при условии выхода одного из пешеходов на 1 ч раньше.

3) Пусть х км/ч – скорость первого пешехода и у км/ч – скорость второго пешехода.

Заполним две таблицы:

Реальное движение пешеходов


Движение с заданным условием


S

V

t


S

V

t

1-й

4х км

х км/ч

4 ч

1-й

20 км

х км/ч

hello_html_125091ce.gif ч

2-й

4у км

у км/ч

4 ч

2-й

20 км

у км/ч

hello_html_m1b1aabd6.gif ч

4) Известно, что расстояние от А до В равно 40 км, поэтому получим уравнение: 4х + 4у = 36. Известно, что при движении с заданным условием первый пешеход был в пути на 1 ч дольше, то есть получим уравнение: hello_html_m143fd86c.gif = 1.

Составим систему уравнений:

hello_html_m36627876.gif

5) Решим ее способом подстановки:

hello_html_1df7b260.gif

20у – 20 (9 – у) – у (9 – у) = 0;

20у – 180 + 20у – 9у + у2 = 0;

у2 + 31у – 180 = 0;

у1 = 5 hello_html_m7646c166.gifх1 = 9 – 5 = 4;

у2 = – 36 (не подходит по смыслу задачи).

6) Получаем скорости пешеходов: 4 км/ч и 5 км/ч.

О т в е т: 4 и 5 км/ч.

Упражнения:

1. № 473, № 547.

2. № 461.

Р е ш е н и е

hello_html_m2ab10a8d.png

Пусть х км/ч – скорость первого отряда и у км/ч – скорость второго отряда.

Заполним таблицу:


S

V

t

1-й отряд

4х км

х км/ч

4 ч

2-й отряд

4у км

у км/ч

4 ч

Известно, что первый отряд прошел на 4,8 км больше, чем второй. Получим уравнение:

4х – 4у = 4,8.

На рисунке ОА = 4х и ОВ = 4у. По теореме Пифагора, получим уравнение:

(4х)2 + (4у)2 = 242.

Составим систему уравнений:

hello_html_43fc206b.gif

Решая систему способом подстановки, находим, что х = 4,8 и у = 3,6 (другое решение является отрицательным).

О т в е т: 4,8 и 3,6 км/ч.

Сильным в учебе учащимся можно дополнительно дать выполнить № 548.

Р е ш е н и е

Пусть х км/ч – скорость первого автомобиля, а у км/ч – скорость второго.

В первую таблицу занесем данные о прохождении каждым автомобилем всего пути, а во вторую – об их движении после встречи.


S

V

t



S

V

t

1-й

90 км

х км/ч

hello_html_4f47c95e.gif ч

1-й

1,25х км

х км/ч

1,25 ч

2-й

90 км

у км/ч

hello_html_m5881e7f7.gif ч

2-й

0,8у км

у км/ч

0,8 ч

Поскольку после встречи первый автомобиль приходит в N через 1,25 ч, а второй в М через 0,8 ч, то первый на весь путь тратит на 1,25 – 0,8 = 0,45 ч больше. Получим уравнение:

hello_html_m2162789e.gif= 0,45.

После встречи первый автомобиль проходит 1,25х км, а второй – 0,8у км. Получим уравнение:

1,25х + 0,8у = 90.

Составим систему:

hello_html_258e997e.gif

Решая эту систему, находим, что х = 40 и у = 50.

О т в е т: 40 км/ч и 50 км/ч.

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

Опишите различные способы решения систем уравнений второй степени.

Перечислите этапы решения задач на движение.

Какие виды движения могут описываться в задаче?

В чем заключается интерпретация полученного решения?

Домашнее задание: № 462, № 474.

Д о п о л н и т е л ь н о: № 549.

Ресурсы: учебник для 9 класса общеобразовательных учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под редакцией С. А. Теляковского.  М.: Просвещение, 2009.

электронное пособие «Алгебра. 9 класс: поурочные планы по учебнику Ю. Н. Макарычева» серии «Для преподавателей»


Общая информация

Номер материала: ДВ-272779

Похожие материалы