Инфоурок / Математика / Конспекты / Урок по математике в 8 классе по теме "Решения квадратных уравнений"
Обращаем Ваше внимание: Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии (2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации).

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Я люблю природу», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

ПРИЁМ ЗАЯВОК ТОЛЬКО ДО 15 ДЕКАБРЯ!

Конкурс "Я люблю природу"

Урок по математике в 8 классе по теме "Решения квадратных уравнений"

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов


Учитель: Андреева Ирина Валериановна

Тема: Решения квадратных уравнений.

Класс: 8

Цели урока:

  1. Познакомить учащихся с решением квадратных уравнений более рациональными способами (графический, свойства коэффициентов, способ «переброски»).

  2. Развивать умение пользоваться инструкционными картами, алгоритмами; умение логически мыслить.

  3. Показать красоту математических решений, дать толчок к поиску своих оригинальных способов решения квадратных уравнений.


Когда уравненье решаешь, дружок,

Ты должен найти у него корешок.

Значение буквы проверить несложно,

Поставь в уравненье его осторожно.

Коль верное равенство выйдет у вас,

То корнем зовите значенье тотчас.

О. Севастьянова.


Действие учителя

Ход урока

Действия учеников

Здравствуйте, ребята. Надеюсь, что сегодня каждый из вас узнает новые способы решения КВУР, продолжит развивать умение анализировать, логически мыслить, правильно себя оценивать.

  1. Организационный момент.


Говорят, что алгебра, как наука, берет свое начало в 9 веке, когда узбекский математик и астроном Мухамед ал -Хорезми написал тракт «Китаб аль – джебр валь-мукабала». Слово «аль - джебр» - восстановление и дало название новой науке алгебре. Говорят, что алгебра держится на 4 китах: уравнение, число, тождество, функция. Отделить одно от другого невозможно – они «плавают» вместе. Сегодня мы повнимательнее присмотримся к одному из китов, которого вы хорошо знаете, или думаете, что знаете, т.е. к уравнениям, а именно к квадратным уравнениям.

Откройте тетради. Запишите число, тему урока.

Чтобы вы успешно усвоили новую тему, выясним уровень ваших знаний по теме КВУР.

Предлагаются задания общие для всего класса.









Заполнить карточки. После обмена тетрадями проговаривают правильные ответы.

Прошу поднять руки тех, кто получил оценку: 5, 4, 3.

И у кого оценки совпали.

  1. Повторение.


  1. Укажите номера тех уравнений, которые являются квадратными. (Запишите номер уравнения в тетрадь).

  1. х2–5 = х(5-х);

  2. 3(х+4)=3 х2 – 12;

  3. (7х-4)2=14 х2;

  4. 25х2=(4-5х)2.



  1. Решить уравнения:

  1. 49х2-7х=0; 0;1/7

  2. х2-6х+9=0; 3

  3. 2-7х-2=0; -1/4; 2


Поставьте оценку в первой клетке.

«5» - все верно; «4» - одна ошибка;

«3» - две ошибки.

Решают с/р.

Заполняют карточки (фамилия, имя).

Выставляют самооценку за с/р.

Обмениваются тетрадями.

Проверяют работу соседа по парте.

Выставляют ему оценку.






Вывод: сейчас мы рассмотрели способы решения уравнений, предусмотренные школьной программой.




























Ребята, предлагаю графический способ решения КВУР рассмотреть самостоятельно.






Объяснение.

hello_html_438e1b6b.gif

  1. Объяснение нового материала.

Умение решать КВУР является фундаментом для успешного изучения алгебры, особенно в старших классах при решении тригонометрических, показательных, логарифмических уравнений и неравенств. Однако имеются и другие интересные способы решения КВУР, не предусмотренные школьной программой, которые позволяют очень быстро и рационально решать многие КВУР. Рассмотрим некоторые из них. Прочитайте, какие вам способы предлагаются. Известны ли вам какие-нибудь из них?

Видно, что первый способ вы уже сегодня применяли, пользуясь теоремой Виета. Сформулируйте, пожалуйста, эту теорему и обратную.


x2+px+q=0 ax2+bx+=0, a=0

x1+x2=-p x1+x2=-b/a

x1x2=q x1x2=c/a

Решить уравнения (устно):

  1. х2-2х-15=0; -5; 7

  2. х2-12х+35=0; 5; 7

  3. х2+5х+6=0; -2; -3

Оцените себя.

Решать графически уравнения:

1 ряд: х2+х-6=0;

2 ряд: х2-4х+4=0;

3 ряд: х2-2х+5=0;

Сколько точек пересечения у вас получилось? Что значит? Назовите абсциссы точек пересечения.


Оцените себя.


Т.к. абсциссы точек пересечения графиков функций не всегда можно определить точно, то графический способ чаще используют, чтобы определить количество корней уравнения. Кто-то скажет, что количество корней уравнения можно определить и с помощью дискриминанта. Посмотрите на следующее уравнение:

345х2 – 137х – 208 = 0.

Легко вычислить дискриминант без микрокалькулятора? Кто-нибудь заметил какую-то закономерность? Это уравнение, несмотря на его громоздкость, решается очень просто и красиво.

Оказывается, что если сумма коэффициентов уравнения равна 0, то х1 = 1, а

х2 = с/а. Значит уравнение имеет корни: х1 = 1, х2 = - 208 / 345.


Придумайте уравнения, чтобы сумма коэффициентов была равна 0 и найдите его корни.


Оценить практическую работу.

Объяснить метод «переброски» (или дать на самостоятельное рассмотрение).


























Выставляют самооценку.


Изучив инструкционную карту (приложение2) выполняют задания.






Самооценка.










Увидеть закономерность.








Смотрят инструкционную карту (приложение2).

Придумывают уравнения.


Самооценка.



  1. Закрепление.


Решить любым способом:

1). 5 х2 – 7 х + 2 = 0; 1 и 2/5

2). 4 х2 + 12 х – 16 = 0. 1 и -4.




Решение с/р любым способом.

Собрать с/р и оценочные листы. Выставить общую оценку за урок.

  1. Итог урока.

Надеюсь, что урок способствовал развитию логического мышления, развивал умение анализировать. Обогатил вас новыми способами решения КВУР. Может быть кто-то из вас найдёт свои способы решения КВУР (т.к. это ещё не все).


Сдают работы и оценочные листы (приложение1).




Андреева Ирина Валериановна

Общая информация

Номер материала: ДВ-054289

Похожие материалы