Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Урок по математике в 8 классе по теме "Решения квадратных уравнений"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Урок по математике в 8 классе по теме "Решения квадратных уравнений"

библиотека
материалов


Учитель: Андреева Ирина Валериановна

Тема: Решения квадратных уравнений.

Класс: 8

Цели урока:

  1. Познакомить учащихся с решением квадратных уравнений более рациональными способами (графический, свойства коэффициентов, способ «переброски»).

  2. Развивать умение пользоваться инструкционными картами, алгоритмами; умение логически мыслить.

  3. Показать красоту математических решений, дать толчок к поиску своих оригинальных способов решения квадратных уравнений.


Когда уравненье решаешь, дружок,

Ты должен найти у него корешок.

Значение буквы проверить несложно,

Поставь в уравненье его осторожно.

Коль верное равенство выйдет у вас,

То корнем зовите значенье тотчас.

О. Севастьянова.


Действие учителя

Ход урока

Действия учеников

Здравствуйте, ребята. Надеюсь, что сегодня каждый из вас узнает новые способы решения КВУР, продолжит развивать умение анализировать, логически мыслить, правильно себя оценивать.

  1. Организационный момент.


Говорят, что алгебра, как наука, берет свое начало в 9 веке, когда узбекский математик и астроном Мухамед ал -Хорезми написал тракт «Китаб аль – джебр валь-мукабала». Слово «аль - джебр» - восстановление и дало название новой науке алгебре. Говорят, что алгебра держится на 4 китах: уравнение, число, тождество, функция. Отделить одно от другого невозможно – они «плавают» вместе. Сегодня мы повнимательнее присмотримся к одному из китов, которого вы хорошо знаете, или думаете, что знаете, т.е. к уравнениям, а именно к квадратным уравнениям.

Откройте тетради. Запишите число, тему урока.

Чтобы вы успешно усвоили новую тему, выясним уровень ваших знаний по теме КВУР.

Предлагаются задания общие для всего класса.









Заполнить карточки. После обмена тетрадями проговаривают правильные ответы.

Прошу поднять руки тех, кто получил оценку: 5, 4, 3.

И у кого оценки совпали.

  1. Повторение.


  1. Укажите номера тех уравнений, которые являются квадратными. (Запишите номер уравнения в тетрадь).

  1. х2–5 = х(5-х);

  2. 3(х+4)=3 х2 – 12;

  3. (7х-4)2=14 х2;

  4. 25х2=(4-5х)2.



  1. Решить уравнения:

  1. 49х2-7х=0; 0;1/7

  2. х2-6х+9=0; 3

  3. 2-7х-2=0; -1/4; 2


Поставьте оценку в первой клетке.

«5» - все верно; «4» - одна ошибка;

«3» - две ошибки.

Решают с/р.

Заполняют карточки (фамилия, имя).

Выставляют самооценку за с/р.

Обмениваются тетрадями.

Проверяют работу соседа по парте.

Выставляют ему оценку.






Вывод: сейчас мы рассмотрели способы решения уравнений, предусмотренные школьной программой.




























Ребята, предлагаю графический способ решения КВУР рассмотреть самостоятельно.






Объяснение.

hello_html_438e1b6b.gif

  1. Объяснение нового материала.

Умение решать КВУР является фундаментом для успешного изучения алгебры, особенно в старших классах при решении тригонометрических, показательных, логарифмических уравнений и неравенств. Однако имеются и другие интересные способы решения КВУР, не предусмотренные школьной программой, которые позволяют очень быстро и рационально решать многие КВУР. Рассмотрим некоторые из них. Прочитайте, какие вам способы предлагаются. Известны ли вам какие-нибудь из них?

Видно, что первый способ вы уже сегодня применяли, пользуясь теоремой Виета. Сформулируйте, пожалуйста, эту теорему и обратную.


x2+px+q=0 ax2+bx+=0, a=0

x1+x2=-p x1+x2=-b/a

x1x2=q x1x2=c/a

Решить уравнения (устно):

  1. х2-2х-15=0; -5; 7

  2. х2-12х+35=0; 5; 7

  3. х2+5х+6=0; -2; -3

Оцените себя.

Решать графически уравнения:

1 ряд: х2+х-6=0;

2 ряд: х2-4х+4=0;

3 ряд: х2-2х+5=0;

Сколько точек пересечения у вас получилось? Что значит? Назовите абсциссы точек пересечения.


Оцените себя.


Т.к. абсциссы точек пересечения графиков функций не всегда можно определить точно, то графический способ чаще используют, чтобы определить количество корней уравнения. Кто-то скажет, что количество корней уравнения можно определить и с помощью дискриминанта. Посмотрите на следующее уравнение:

345х2 – 137х – 208 = 0.

Легко вычислить дискриминант без микрокалькулятора? Кто-нибудь заметил какую-то закономерность? Это уравнение, несмотря на его громоздкость, решается очень просто и красиво.

Оказывается, что если сумма коэффициентов уравнения равна 0, то х1 = 1, а

х2 = с/а. Значит уравнение имеет корни: х1 = 1, х2 = - 208 / 345.


Придумайте уравнения, чтобы сумма коэффициентов была равна 0 и найдите его корни.


Оценить практическую работу.

Объяснить метод «переброски» (или дать на самостоятельное рассмотрение).


























Выставляют самооценку.


Изучив инструкционную карту (приложение2) выполняют задания.






Самооценка.










Увидеть закономерность.








Смотрят инструкционную карту (приложение2).

Придумывают уравнения.


Самооценка.



  1. Закрепление.


Решить любым способом:

1). 5 х2 – 7 х + 2 = 0; 1 и 2/5

2). 4 х2 + 12 х – 16 = 0. 1 и -4.




Решение с/р любым способом.

Собрать с/р и оценочные листы. Выставить общую оценку за урок.

  1. Итог урока.

Надеюсь, что урок способствовал развитию логического мышления, развивал умение анализировать. Обогатил вас новыми способами решения КВУР. Может быть кто-то из вас найдёт свои способы решения КВУР (т.к. это ещё не все).


Сдают работы и оценочные листы (приложение1).




Андреева Ирина Валериановна

Автор
Дата добавления 12.10.2015
Раздел Математика
Подраздел Конспекты
Просмотров172
Номер материала ДВ-054289
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх