Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Урок по теме : производная сложной функции
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Урок по теме : производная сложной функции

библиотека
материалов

Тема урока: производная сложной функции


Цели: 1) образовательная – сформировать понятие сложной функции, изучить алгоритм вычисления производной сложной функции, показать его применение при вычислении производных.

2) развивающая – продолжить развитие умений логически и аргументировано рассуждать, используя обобщения, анализ, сравнение при изучении производной сложной функции.

3) воспитательная – воспитывать наблюдательность в ходе отыскания математических зависимостей, продолжить формирование самооценки при осуществлении дифференцированного обучения, повышать интерес к математике.

Оборудование: таблица производных, презентация к уроку.

Схема урока:

I. АЗ.

1. Мобилизующее начало (постановка цели работы на уроке).

2. Устная работа с целью актуализации опорных знаний.

3. Проверка домашнего задания с целью мотивации изучения нового материала.

4. Подведение итогов I этапа и постановка задач следующего.

II. ФНЗ и СД.

  1. Эвристическая беседа с целью введения понятия сложной функции.

  2. Устная фронтальная работа с целью закрепления определения сложной функции.

  3. Сообщение учителем алгоритма вычисления производной сложной функции.

  4. Первичное закрепление алгоритма вычисления производной сложной функции фронтально.

  5. Подведение итогов II этапа и постановка задач на следующий.

III. ФУН.

1. Решение задачи с опорой на алгоритм вычисления производной сложной функции фронтально у доски учеником.

2. Дифференцированная работа по решению задач с последующей проверкой фронтально у доски.

3. Подведение итогов урока

4. Выдача домашнего задания.

Ход урока.

I АЗ

1. Выдающий русский математик и кораблестроитель академик Алексей Николаевич Крылов (1863-1945) однажды заметил, человек обращается к математике «не затем, чтобы любоваться неисчислимыми сокровищами. Ему прежде всего нужно ознакомиться со столетиями испытанными инструментами и научиться ими правильно и искусно владеть». С одним из таких инструментов мы с вами познакомились – это производная. Сегодня на уроке мы продолжаем изучать тему «Производная» и наша задача рассмотреть новый вопрос «Производная сложной функции», т.е. мы выясним, что такое сложное функция и как вычисляется её производная.

2. Теперь давайте вспомним, как вычисляется производная различных функций. Для этого вы должны выполнить 7 заданий. К каждому заданию предложены варианты ответов, зашифрованные буквами. Правильное решение каждого задания позволяет открыть нужную букву фамилии ученого, который ввел обозначение y', f '(x).


Найти производную функции.


1) y = 5 y' = 0 Л

y' = 5x Н

y' = 1 Б


2) y = -x y' = 1 В

y' = -1 А

y' = x2 И


3) y = 2x+3 y' = 3 У

y' = x И

y' = 2 Г


4) y =hello_html_3f5f7b5f.gif- 12 y' =hello_html_m302eb8d6.gifР

y' = 1 Т

y' = -12 Г



5) y=x4 y' =hello_html_26ee0049.gif П

y' = 4x3 А

y' = x3 С



6) y=-5x3 y' = -15x2 Н

y' = -5x2 О

y' = 5x2 Р



7) y=x-x3y' = 1-x2 Д

y' = 1-3x2 Ж

y' = x-3x2 А

(Задания на слайдах 2 – 3).

Итак, фамилия ученого Лагранж, а мы тем самым повторили вычисление производных различных функций.

3. Один из учащихся заполняет таблицу: (слайд 4).

f(x)

f(1)

f ' (x)

f ' (1)

1) 4-x

3

-1

-1

2) 2x5

2

10x4

10

3)hello_html_321b9fd8.gif

1

hello_html_38848e48.gif

hello_html_m6f29c123.gif

4) hello_html_9d56bee.gif

hello_html_m5910e950.gif

?

?

5) (4-x)5

35

?

?











Какие есть вопросы? В результате беседы приходим к выводу, что не знаем, как вычислить (hello_html_9d56bee.gif)'; ((4-x)3)'


4. Как называется функция 1), 2), 3), 4).

1) – линейная, 2) степенная, 3) степенная, 4) -?, 5) -?

Сейчас мы выясним, как называются такие функции, как вычисляются их производные.


II. ФНЗ и СД.

1. Для того, чтобы это сделать рассмотрим функцию Z = f(x) =hello_html_m21b359a1.gif

- Какова последовательность вычисления значений функции?

а) g = 4-x

б) h = hello_html_m37bc4f7e.gif

- Как называется зависимость между g и h ?

- Функцией

- Значит g и h могут быть представлены в виде:

g = g(x) = 4-x

h = h(g) =hello_html_68a43f07.gif

- В результате последовательного выполнения функций g и h по заданному значению x будет вычислено значение какой функции?

- f(x)

- Z = f(x) = h(g) = h(g(x))

- Таким образом, f(x) = h(g(x)).

Говорят, что f есть сложная функция, составленная из g и h. Функция

g – внутренняя, h – внешняя.

В нашем примере 4-x внутренняя функция, а √ - внешняя.

g(x) = 4-x

h(g) =hello_html_5b4def6b.gif

2. Какие из следующих функций являются сложными? В случае сложной функции назовите внутреннюю и внешнюю (на слайде 8 написаны следующие функции:

а) f(x) = 5x+1; б) f(x) = (3-5x)5; в) f(x) = cos3x.

3. Итак, мы выяснили, что такое сложная функция. Как же считать её производную?

Алгоритм вычисления производной сложной функции f(x) = h(g(x)).

    1. определить внутреннюю функцию g(x).

    2. найти производную внутренней функции g'(x)

    3. определить внешнюю функцию h(g)

    4. найти производную внешней функции h'(g)

    5. найти произведение производной внутренней на производную внешней функции g'(x) ∙ h'(g)

Каждому дается памятника с алгоритмом.

4. Учитель у доски: f(x) = (3-5x)5

    1. g(x) = 3-5x

    2. g'(x) = -5

    3. h(g) = g5

    4. h'(g)=5g4

    5. f '(x) = g'(x) ∙ h'(g) = -5 ∙ 5g4 = -5 ∙ 5(3-5x)4 = -25(3-5x)4

5. Итак, мы выяснили, что такое сложная функция и как вычисляется её производная.

III. ФУН.

1. Теперь давайте поучимся находить производные различных сложных функций. Выполняется учащимся с продвинутым уровнем обучения.

Найти производную функции f(x) = hello_html_9d56bee.gif

1) g(x) = 4-x

2) g'(x) = -1

3) h(g) =hello_html_68a43f07.gif

4) h'(g) =hello_html_145a9989.gif

5) f '(x) = g'(x) ∙ h'(g) = -1 ∙ hello_html_m36bfa0e6.gif = - hello_html_f26d085.gif

2. Найти производную функции:

«3» f(x) = (1 – 2x)4

«4» f(x) = (x2 – 6x + 5)7

«5» f(x) = hello_html_m3a8e90ac.gif - (1 – x)3

3. Подведение итогов.

4. Д/З: выучить алгоритм. Найти производную.

«3» - f(x) = (2+4x)9

«4» - f(x) = hello_html_m61102f0c.gif

«5» - f(x) = hello_html_m6f91474.gif










Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 13.03.2016
Раздел Математика
Подраздел Конспекты
Просмотров248
Номер материала ДВ-523644
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх