Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Урок по теме "Решение уравнений методом замены переменных" (9 класс)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Урок по теме "Решение уравнений методом замены переменных" (9 класс)

Выбранный для просмотра документ Алгоритм решения возвратных уравнений.doc

библиотека
материалов

Алгоритм решения симметрических уравнений



Симметрические уравнения 4-ой степени

hello_html_7c1384e0.gif



1.Разделить обе части уравнения на х2 .

2.Сгруппировать слагаемые (первый с последним, второй с четвёртым).

Привести уравнение к виду аhello_html_31e09067.png + с = 0

3. Ввести новую переменную t = hello_html_56bd656d.png, тогда выполнено t2 = hello_html_33efd80b.png , т.е. hello_html_m5eb42592.png = t2 – 2.

4. Выполнить подстановку и решить квадратное уравнение.

5.Вернуться к замене и решить получившиеся уравнения.

6.Записать ответ.



Алгоритм решения симметрических уравнений



Симметрические уравнения 4-ой степени

hello_html_7c1384e0.gif

1.Разделить обе части уравнения на х2 .

2.Сгруппировать слагаемые (первый с последним, второй с четвёртым).

Привести уравнение к виду аhello_html_31e09067.png + с = 0

3. Ввести новую переменную t = hello_html_56bd656d.png, тогда выполнено t2 = hello_html_33efd80b.png , т.е. hello_html_m5eb42592.png = t2 – 2.

4. Выполнить подстановку и решить квадратное уравнение.

5.Вернуться к замене и решить получившиеся уравнения.

6.Записать ответ.





Выбранный для просмотра документ КОНСПЕКТ.doc

библиотека
материалов

Решение уравнений методом замены переменных




Большинство жизненных задач

решаются как алгебраические уравнения:

приведением их к самому простому виду.


Л.Н.Толстой.



Цель урока: организовать учебную деятельность учащихся по освоению ими способов решения целых уравнений высших степеней методом замены переменной; познакомить учащихся с понятиями, приёмами решения возвратных и симметрических уравнений.



Задачи: образовательная: продолжать развивать умение применять метод замены

переменной при решении уравнений; формирование умения видеть один и тот же метод решения уравнений в различных ситуациях; сформировать представление о методах и способах решения нестандартных задач и алгебраических уравнений на уровне, превышающем уровень государственных образовательных стандартов;

развивающая: развитие мышления учащихся; развитие памяти; развитие

логического мышления, способности четко формулировать свои мысли; развитие воображения учащихся; развитие устной речи.

воспитательная: воспитание наблюдательности; воспитание аккуратности

при выполнении записей на доске и в тетради; воспитание самостоятельности при выполнении практических работ.



Ход урока

  1. Организационный момент.

  2. Актуализация и систематизация знаний.


Задание №1. Разгадайте кроссворд. Ответы записывайте только в именительном падеже.












3















4








5




6



























7













8























































































9










10







































11




















































По горизонтали:

4.Чем является выражение hello_html_m744d9912.gif для квадратного уравнения? (дискриминант)

6.Значение переменной, при которой уравнение обращается в верное равенство. (корень)

8.Уравнение вида hello_html_61910efd.gif, где hello_html_33459955.gif. (биквадратное)

9.Французский математик, имеющий отношение к квадратным уравнениям. (Виет)

10.Уравнение, в котором левая и правая части являются целыми выражениями. (целое)

11. Уравнения с одной переменной, имеющие одинаковое множество корней. (равносильные)

По вертикали:

1.Множество корней уравнения. (решение)

2.Решение уравнения hello_html_40305748.gif. (ноль)

3.Равенство, содержащее переменную. (уравнение)

5.Квадратное уравнение, в котором один из коэффициентов b или с равен 0. (неполное)

7. Квадратное уравнение, в котором первый коэффициент равен единице. (приведенное)

Чему мы сегодня посвятим наше занятие? (Решению уравнений)

Задание №2. Каким способом вы решали бы уравнения каждой из групп?

hello_html_35eaf3bb.gif

ОТВЕТЫ: Примеры группы 1) лучше решать разложением на множители с помощью вынесения общего множителя за скобки или с помощью формул сокращенного умножения.

Примеры группы 2) лучше решать способом группировки и разложения на множители.

Примеры группы 3) лучше решать введением новой переменной и переходом к квадратному уравнению.

1 Какой множитель вы вынесли бы за скобки в примерах группы 1 ?

ОТВЕТЫ: hello_html_4964d14.gif

Как вы сгруппировали бы слагаемые в примерах группы 2 ?

ОТВЕТЫ: hello_html_37fc32a7.gif

Что бы вы обозначили через новую переменную в примерах группы 3?

ОТВЕТЫ: hello_html_m6a2eb8a7.gif

Как можно разложить на множители многочлен hello_html_m1f88494c.gif?

ОТВЕТЫ: hello_html_75b6a55a.gif.

Сегодня на уроке вы покажете свои знания по теме «Решение уравнений методом замены переменной»

Запишите в тетрадях тему урока.


Сегодня на занятии мы рассмотрим один из способов решения уравнений высших степеней - метод замены переменной; познакомимся с понятиями, приёмами решения возвратных и симметрических уравнений.

Искусство производить замену переменных заключается в том, чтобы увидеть, какая замена будет более рациональна и быстрее приведет к успеху.

Задание №3.

Решите уравнение. (задание у доски одновременно решают 2 ученика.)

а) hello_html_1f6feec.gif(Первый ученик решает у доски с объяснением.)

б) hello_html_m28dfe409.gif(Второй учащийся решает уравнение молча, затем объясняет решение, класс слушает и задает вопросы, если что-то непонятно.)



1 ученик hello_html_1f6feec.gif Замена: hello_html_7e92e9c0.gif.

2 ученик hello_html_m28dfe409.gif Замена: hello_html_mdea3841.gif.



(Дополнительно для тех, кто раньше справился с предыдущими уравнениями).

hello_html_m711feb2b.gif. .hello_html_50b63f80.gif

3 ученик

(Ход решения учащимися комментируется с места.)

РЕШЕНИЕ: Вынесем общий множитель: hello_html_m6ab5e5af.gif,

откуда hello_html_m5e6c109b.gif или hello_html_5d8b3a35.gif, т.е. hello_html_m4e6f3f8f.gifhello_html_3ebb396a.gif

hello_html_622b0d6d.gifhello_html_m55a9cae0.gif

Ответ : hello_html_27d879cb.gif

  1. Углубление и расширение знаний

Продолжаем работу. Вы видите на слайде уравнение: х4-5х3+6х2-5х+1=0.

Каким способом вы предложите его решить? Как нам быть?

Возможно ли решить его в рамках школьных программ по математике? Можно ответить нет. Ведь стандартные методы решения уравнений в школе предусматривают решение уравнений не выше второй степени. Но можно вспомнить, что отдельные уравнения более высоких степеней в школе все-таки решались. Правда, способы их решения суть творческое применение известных способов, сведения их к решению одного или нескольких уравнений степени не выше второй.



Посмотрите очень внимательно на это уравнение? Что вы заметили?( в этом уравнении коэффициенты равноудалённые от концов равны)

Ребята, уравнение такого вида, когда коэффициенты, равноудалённые от концов совпадают, называются возвратными. Это уравнение сводится к квадратному с помощью подстановки.

Предлагаю вам следующий алгоритм их решения :

Алгоритм решения возвратных уравнений.

1.Разделить обе части уравнения на х2 .

2.Сгруппировать слагаемые (первый с последним, второй с четвёртым).

Привести уравнение к виду аhello_html_31e09067.png + с = 0



3. Ввести новую переменную t = hello_html_56bd656d.png,тогда выполнено t2 =hello_html_33efd80b.png , т.е.hello_html_m5eb42592.png= t2 – 2.

4. Выполнить подстановку и решить квадратное уравнение.

5.Вернуться к замене и решить получившиеся уравнения.

6.Записать ответ.

Ребята изучают алгоритм.

Ученик у доски по алгоритму и с помощью учителя решает уравнение, остальные пишут в тетрадях.

4 – 5х3 – 38x2 – 5х + 6 = 0.

Решение.

2 – 5х – 38 – 5/х + 6/х2 = 0.

6(х2 + 1/х2) – 5(х + 1/х) – 38 = 0.

Вводим t: подстановка (x + 1/x) = t. Замена: (x2 + 1/x2) = t2 – 2, имеем:

6t2 – 5t – 50 = 0.

t = -5/2 или t = 10/3.

Вернемся к переменной х. После обратной замены решим два полученных уравнения:

1) x + 1/x = -5/2;

х2 + 5/2 х +1 = 0;

х = -2 или х = -1/2.

2) x + 1/x = 10/3;

х2 – 10/3 х + 1 = 0;

х = 3 или х = 1/3.

Ответ: -2; -1/2; 1/3; 3.



В проблему уравнений 3-й и 4-й степеней большой вклад внесли итальянские математики 16 века Н.Тарталья, А.Фиоре, Д.Кардано и др. В 1535 г. между А.Фиоре и Н.Тартальей состоялся научный поединок, на котором последний одержал победу. Он за 2 часа решил 30 задач, предложенных Фиоре, а сам Фиоре не смог решить ни одной, заданной ему Тартальей.

Ребята, и ещё одно уравнение я хочу вам сегодня предложить, я его взяла из сборника задач для подготовки к ОГЭ.

hello_html_m485ccf49.gif.

Если бы вы встретили такое уравнение, то как бы вы начали его решать?

Уравнения вида (х + а)(х + b)(x + c)(x + d) = А, где а + d = c + b называются симметрическими.

Методика решения подобных уравнений заключается в частичном раскрытии скобок, а затем введении новой переменной.



РЕШЕНИЕ: Сначала сгруппируем множители:

hello_html_m420b13ea.gifЗамена: hello_html_m5d72ac8c.gif

(Далее уравнение решается самостоятельно с дальнейшей устной проверкой.)

hello_html_m4699e0e3.gif

Значит, hello_html_751c7d1f.gif или hello_html_b2585a0.gif (Второе уравнение корней не имеет, т.к. дискриминант меньше нуля)

hello_html_3f8d6fc4.gif

ОТВЕТ: -7; 2.

Решите самостоятельно следующее уравнение.

(х + 1)(х + 2)(x + 3)(x + 4) = 24.

Решение.

Вычисляем: 1 + 4 = 2 + 3. Группируем скобки по парам:

((х + 1)(x + 4))((х + 2)(x + 3)) = 24,

2 + 5х + 4)(х2 + 5х + 6) = 24.

Сделав замену х2 + 5х + 4 = t, имеем уравнение

t(t + 2) = 24, оно является квадратным:

t2 + 2t – 24 = 0.

t = -6 или t = 4.

После выполнения обратной замены, легко находим корни исходного уравнения.

Ответ: -5; 0.


  1. Творческий перенос знаний и навыков в новые условия.

В начале урока говорили о том, что если в уравнении есть повторяющиеся элементы, то можно применять метод замены переменной. Мы еще не умеем решать тригонометрические и иррациональные уравнения. Давайте посмотрим, сможем ли мы применять к ним этот метод, если будем знать, как решать простейшие тригонометрические и иррациональные уравнения.

Задание 1: Назвать замену переменной в следующих уравнениях.

  1. hello_html_m4db9a965.gif

  2. os2x – 4cos x + 5 = 0

  3. hello_html_mcf586d4.gif

  4. hello_html_4d24d588.gif.

Задание 2: Составить несколько уравнений, в основе решения которых лежит метод замены переменной.

  1. Подведение итогов.

Итак, ребята, наш урок подошёл к концу. Давайте подведём итоги нашего урока.

Какие цели мы ставили в начале урока?

Наши цели достигнуты?

Что нового мы узнали на уроке?

  1. Домашнее задание.



4 – 8х+ 3х– 8х + 4 = 0

(х+1)(х+2)(х+4)(х+5) = 40

hello_html_65a129dc.gif. (уравнение итальянских математиков)



А закончить урок мне хочется словами великого учёного Эйнштейна А. :

« Мне приходиться делить своё время между политикой и уравнениями. Однако уравнение, по – моему, гораздо важнее, потому что политика существует только для данного момента, а уравнение будет существовать вечно».

Спасибо за урок! До свидания!



Выбранный для просмотра документ ПРЕЗЕНТАЦИЯ.ppt

библиотека
материалов
Решение уравнений методом замены переменных 9 класс Артемьева Г.В. учитель ма...
  			1		2													 											3							 							4								5			 6...
ОТВЕТЫ на КРОССВОРД По горизонтали: 4 дискриминант 6 корень 8 биквадратное 9...
Решение уравнений методом замены 2015
Решить уравнения :
Решить уравнение
Найдите ошибку: Решите уравнение: 2 – 3*(2х + 2) = 5 – 4х 2 – 6х – 6 = 5 – 4х...
Правильно ли решено уравнение? Х2 + 2х – 15 = 0 а = 1; b = 2; с = - 15 D = 22...
Проверьте правильность решения уравнения = * (х – 3), где х ≠ 3 х2 – 6 = х х2...
Рассмотрите уравнения: а)Что у этих уравнений общего? б)На какие две группы и...
г)Уравнения такого вида называются симметрическими. Как ты думаешь, почему? ☻...
Уравнения вида а0хn + a1xn-1 + … + akxk + … + a1x + a0 = 0, где коэффициенты...
х4-5х3+6х2-5х+1=0
6х4 – 5х3 – 38x2 – 5х + 6 = 0
Математический турнир между итальянскими учеными А.-М. Фиоре и Н.Тартальей
 (х + 1)(х + 2)(x + 3)(x + 4) = 24
Уравнение ( x + a)( x + b) ( x + c)( x + d) = m, где m - число, выполняется...
 (х + 1)(х + 2)(x + 3)(x + 4) = 24
ДОМАШНЕЕ ЗАДАНИЕ 1) Решите уравнения: 2) Найдите и решите 2-3 уравнения, пред...
« Мне приходиться делить своё время между политикой и уравнениями. Однако ура...
23 1

"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Описание презентации по отдельным слайдам:

№ слайда 1 Решение уравнений методом замены переменных 9 класс Артемьева Г.В. учитель ма
Описание слайда:

Решение уравнений методом замены переменных 9 класс Артемьева Г.В. учитель математики Моршанск 2015 Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №3»

№ слайда 2   			1		2													 											3							 							4								5			 6
Описание слайда:

  1 2 3 4 5 6 7 8 9 10 11

№ слайда 3 ОТВЕТЫ на КРОССВОРД По горизонтали: 4 дискриминант 6 корень 8 биквадратное 9
Описание слайда:

ОТВЕТЫ на КРОССВОРД По горизонтали: 4 дискриминант 6 корень 8 биквадратное 9 Виет 10 целое 11 равносильные По вертикали: 1 решение 2 ноль 3 уравнение 5 неполное 7 приведенное

№ слайда 4
Описание слайда:

№ слайда 5 Решение уравнений методом замены 2015
Описание слайда:

Решение уравнений методом замены 2015

№ слайда 6 Решить уравнения :
Описание слайда:

Решить уравнения :

№ слайда 7 Решить уравнение
Описание слайда:

Решить уравнение

№ слайда 8 Найдите ошибку: Решите уравнение: 2 – 3*(2х + 2) = 5 – 4х 2 – 6х – 6 = 5 – 4х
Описание слайда:

Найдите ошибку: Решите уравнение: 2 – 3*(2х + 2) = 5 – 4х 2 – 6х – 6 = 5 – 4х -6х + 4х =5 – 6 + 2 2х = 1 х = 1 : (-2) х= - 0,5 Ответ: 5 , 0 -

№ слайда 9 Правильно ли решено уравнение? Х2 + 2х – 15 = 0 а = 1; b = 2; с = - 15 D = 22
Описание слайда:

Правильно ли решено уравнение? Х2 + 2х – 15 = 0 а = 1; b = 2; с = - 15 D = 22 – 4*1*(-15) = 64, D>0, 2 корня х1= = - 3 х2 = = 5 Ответ: 3 ; 5 -

№ слайда 10 Проверьте правильность решения уравнения = * (х – 3), где х ≠ 3 х2 – 6 = х х2
Описание слайда:

Проверьте правильность решения уравнения = * (х – 3), где х ≠ 3 х2 – 6 = х х2 – х – 6 = 0 по теореме, обратной теореме Виета х1 + х2 = 1; х1 * х2 = - 6; значит х1 = - 2 и х2 = 3. Ответ: 2 - ; 3

№ слайда 11 Рассмотрите уравнения: а)Что у этих уравнений общего? б)На какие две группы и
Описание слайда:

Рассмотрите уравнения: а)Что у этих уравнений общего? б)На какие две группы их можно разделить? в) Если затрудняешься, сравни между собой коэффициенты каждого уравнения

№ слайда 12 г)Уравнения такого вида называются симметрическими. Как ты думаешь, почему? ☻
Описание слайда:

г)Уравнения такого вида называются симметрическими. Как ты думаешь, почему? ☻ д)Попробуй записать общий вид симметрического уравнения четвертой степени. Используй для обозначения коэффициентов буквы a,b,c, а для переменной х. е)Сравни свой результат с уравнением:

№ слайда 13 Уравнения вида а0хn + a1xn-1 + … + akxk + … + a1x + a0 = 0, где коэффициенты
Описание слайда:

Уравнения вида а0хn + a1xn-1 + … + akxk + … + a1x + a0 = 0, где коэффициенты членов, равноотстоящих от концов, равны между собой, называют симметрическими уравнениями. Симметрические уравнения обладают следующими свойствами: Симметрическое уравнение нечетной степени имеет корень х = -1, в чем можно убедиться непосредственной подстановкой; Уравнение четной степени 2n решаются с помощью подстановки V = x + 1/х сводится к уравнению степени n.

№ слайда 14 х4-5х3+6х2-5х+1=0
Описание слайда:

х4-5х3+6х2-5х+1=0

№ слайда 15
Описание слайда:

№ слайда 16 6х4 – 5х3 – 38x2 – 5х + 6 = 0
Описание слайда:

6х4 – 5х3 – 38x2 – 5х + 6 = 0

№ слайда 17 Математический турнир между итальянскими учеными А.-М. Фиоре и Н.Тартальей
Описание слайда:

Математический турнир между итальянскими учеными А.-М. Фиоре и Н.Тартальей

№ слайда 18  (х + 1)(х + 2)(x + 3)(x + 4) = 24
Описание слайда:

(х + 1)(х + 2)(x + 3)(x + 4) = 24

№ слайда 19 Уравнение ( x + a)( x + b) ( x + c)( x + d) = m, где m - число, выполняется
Описание слайда:

Уравнение ( x + a)( x + b) ( x + c)( x + d) = m, где m - число, выполняется условие : a + b = c + d или a + c = b + d или a + d = b + с, получаем равенство сумм других пар чисел. Если выполняется это равенство, то можно использовать метод замены переменной.

№ слайда 20  (х + 1)(х + 2)(x + 3)(x + 4) = 24
Описание слайда:

(х + 1)(х + 2)(x + 3)(x + 4) = 24

№ слайда 21
Описание слайда:

№ слайда 22 ДОМАШНЕЕ ЗАДАНИЕ 1) Решите уравнения: 2) Найдите и решите 2-3 уравнения, пред
Описание слайда:

ДОМАШНЕЕ ЗАДАНИЕ 1) Решите уравнения: 2) Найдите и решите 2-3 уравнения, предложенные А.Фиоре и Н.Тартальей. 4х4 – 8х3 + 3х2 – 8х + 4 = 0 (х+1)(х+2)(х+4)(х+5) = 40

№ слайда 23 « Мне приходиться делить своё время между политикой и уравнениями. Однако ура
Описание слайда:

« Мне приходиться делить своё время между политикой и уравнениями. Однако уравнение, по – моему, гораздо важнее, потому что политика существует только для данного момента, а уравнение будет существовать вечно». Эйнштейн

Выбранный для просмотра документ Сообщение.docx

библиотека
материалов

В Европе в XVI в. было положено начало оригинального развития математики и перехода от старого к новому этапу ее жизни. Важнейшими математическими достижениями XVI в. были алгебраическое решение уравнений 3-й и 4-ой степени и создание алгебраической символики. Новый этап развития алгебры зародился в Италии. В начале XVI в. профессор математики Болонского университета Сципион дель-Ферро (1465—1526) впервые нашел алгебраическое решение уравнения третьей степени вида x^3+px=q,где p и q положительные числа.

Это решение профессор держал в строгом секрете, о нем узнали только два ученика ученого, в том числе некий Фиоре. Утаивание научных открытий в то время имело особое значение для жизни и карьеры их авторов. В Италии широко практиковались тогда математические поединки-диспуты: на многолюдных собраниях оба противника предлагали один другому задании для решения их на месте или в определенный срок. Побеждал тот, кто решал большое количество задач. Победитель награждался при этом не только славой и назначенным денежным призом, но и возможностью занять университетскую кафедру или другую должность. А человек, потерпевший на диспуте поражении , часто терял занимаемое им место.

В математических диспутах XVI в. Первое место занимала алгебра, названная «великим искусством», в отличие от арифметики, которую называли «малым искусством». Диспуты проходили в городе Болонья, который славился своим университетом. В этом высшем учебном заведении работали многие ученые с мировым именем, в том числе Лука Пачоли, Николай Коперник, а позже Галилео Галилей и др.

Для участников алгебраических диспутов было исключительно важно обладать неизвестной еще для других формулой решения того или иного типа уравнений, алгоритмом. Вот почему после внезапной смерти дель Ферро его ученик Фиоре, который сам не был глубоким математиком, решил воспользоваться сообщенным ему секретом и вызвать на публичный диспут одного из виднейших математиков того времени Николо Тарталья (ок. 1499—1557).

Настоящая фамилия ученого была не Тарталья, а Фонтана. В 1512году его родной город Брешия был оккупирован французскими войсками. В то время озверевшие солдаты беспощадно грабили и даже убивали мирных жителей. Маленький Николо тоже был тяжело ранен: у него был рассечен язык. Матери удалось спасти жизнь сына, но говорить свободно Николо уже никогда не мог, речь его была крайне невнятной. Он получил прозвище Тартатья (заика). Несмотря на тяжелые материальные условия, одаренный мальчик упорно овладевал математикой. Нередко, когда не было денег на покупку бумаги, он писал свои математические вычисления на заборах и камнях.

Ко времени вызова на поединок со стороны Фиоре (1535) Тарталья уже занимал кафедру математики в Вероне и славился как первоклассный ученый. Одной из самых актуальных и жгучих проблем того времени было алгебраическое решение «решение в радикалах» кубических уравнений, т.е. нахождение общей формулы, выражающей корни любого уравнения третьей степени в зависимости от коэффициентов при помощи конечного числа алгебраических операций — сложения, вычитания, умножения, деления, возведения в степень и извлечении корней. Такая формула была давно известна для уравнения второй степени, а поэтому было естественно ее искать и для третьей, тем более, что ученые мира до этого времени такой формулы найти не могли.

Получив вызов на диспут, Тарталья понял, что Фиоре обладает формулой для решения кубического уравнения и при подготовке к диспуту все свои внимание сосредоточил на поисках своей формулы. Он работал днем и ночью над этой проблемой и его труды не пропали даром. Вот как позже он писал об этом: «Я приложил все свое рвение, усердие и математическое умение, чтобы найти этот алгоритм., и , благодаря благосклонной судьбе, мне удалось это сделать за 8 дней до срока».

Диспут состоялся 20 февраля 1535г. Тарталья в течение двух часов решил 30 задач, предложенных ему противникам. Фиоре, который не смог решить ни одной из 30 предложенных ему задач, выбранных Тартальей из различных областей математики, признал себя побежденным. После диспута Тарталья стал знаменитым во всей Италии, однако он продолжал держать в секрете найденную им формулу, та как намеревался опубликовать ее в своем труде по алгебре.

Другой видный итальянский ученый, Джероламо Кардано (1501—1576), который долго искал, но никак не мог найти алгоритма решения кубического уравнения, обратился в 1539г. К Тарталье с просьбой сообщить ему соответствующую формулу. После того, как Кардано дал «священную клятву» в том, что он никому не раскроет тайну, Таталья согласился открыть ему секрет. Однако в своем общении в стихах Тарталья сделал это лишь частично и сознательно замаскировал полное решение кубического уравнения.

Между тем, в 1542 году Кардано познакомился в Болонье с рукописями покойного профессора дель-Ферро и получил полную ясность в этом вопросе. В 1545 г. Кардано опубликовал свой знаменитый труд «О великом искусстве, ил об алгебраических вещах в одной книге» В нем он впервые опубликовал само решение уравнения x^3 + px + q = 0 и показал формулы корней.


В книге Кардано содержится также алгебраическое решение уравнений четвертой степени — важнейшее открытие, сделанное одним из его учеников — Луиджи Феррари (1522—1565).

Выбранный для просмотра документ кроссворд.doc

библиотека
материалов

Кроссворд




1


2

























3















4








5




6



























7













8























































































9










10







































11





















































По горизонтали:

4.Чем является выражение hello_html_m744d9912.gif для квадратного уравнения?

6.Значение переменной, при которой уравнение обращается в верное равенство.

8.Уравнение вида hello_html_61910efd.gif, где hello_html_33459955.gif.

9.Французский математик, имеющий отношение к квадратным уравнениям.

10.Уравнение, в котором левая и правая части являются целыми выражениями.

11. Уравнения с одной переменной, имеющие одинаковое множество корней.

По вертикали:

1.Множество корней уравнения.

2.Решение уравнения hello_html_40305748.gif.

3.Равенство, содержащее переменную.

5.Квадратное уравнение, в котором один из коэффициентов b или с равен 0.

7. Квадратное уравнение, в котором первый коэффициент равен единице.

Кроссворд




1


2

























3















4








5




6



























7













8























































































9










10







































11























































1


2

























3















4








5




6



























7













8























































































9










10







































11
























































1


2

























3















4








5




6



























7













8























































































9










10







































11




















































По горизонтали:

4.Чем является выражение hello_html_m744d9912.gif для квадратного уравнения?

6.Значение переменной, при которой уравнение обращается в верное равенство.

8.Уравнение вида hello_html_61910efd.gif, где hello_html_33459955.gif.

9.Французский математик, имеющий отношение к квадратным уравнениям.

10.Уравнение, в котором левая и правая части являются целыми выражениями.

11. Уравнения с одной переменной, имеющие одинаковое множество корней.

По вертикали:

1.Множество корней уравнения.

2.Решение уравнения hello_html_40305748.gif.

3.Равенство, содержащее переменную.

5.Квадратное уравнение, в котором один из коэффициентов b или с равен 0.

7. Квадратное уравнение, в котором первый коэффициент равен единице.





Автор
Дата добавления 27.11.2015
Раздел Математика
Подраздел Конспекты
Просмотров1939
Номер материала ДВ-202746
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх