Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация по математике на тему"Прямоугольный треугольник"

Презентация по математике на тему"Прямоугольный треугольник"

  • Математика
Прямоугольный треугольник Учитель математики МБОУ «
Из истории математики Прямоугольный треугольник занимает почётное место в вав...
Определения Если один из углов треугольника прямой, то треугольник называется...
Некоторые свойства прямоугольных треугольников 1. Сумма двух острых углов пря...
Признаки равенства прямоугольных треугольников Если катеты одного прямоугольн...
Задачи по готовым чертежам А С В D ? В А С 370 ? ? А В С 700 ? А В С 300 15 с...
Контрольный тест 1. Прямоугольным называется треугольник, у которого а) все у...
2. В прямоугольном треугольнике всегда а) два угла острых и один прямой; б) о...
3. Стороны прямоугольного треугольника, образующие прямой угол, называются а)...
4. Сторона прямоугольного треугольника, противолежащая прямому углу, называет...
Контрольный тест
Вы верно ответили на все вопросы !
Папирус Ахмеса Математический папирус Ахмеса — древнеегипетское учебное руков...
Е В К Л И Д Евклид (Eνκλειδηζ), древнегреческий математик, автор первого из д...
Это интересно Треугольник – это многоугольник с тремя сторонами (или тремя уг...
Желаю удачи в изучении геометрии !
1 из 16

Описание презентации по отдельным слайдам:

№ слайда 1 Прямоугольный треугольник Учитель математики МБОУ «
Описание слайда:

Прямоугольный треугольник Учитель математики МБОУ «<Буныревская СОШ №14 7» Кочеткова Е.А.

№ слайда 2 Из истории математики Прямоугольный треугольник занимает почётное место в вав
Описание слайда:

Из истории математики Прямоугольный треугольник занимает почётное место в вавилонской геометрии, упоминание о нём часто встречается в папирусе Ахмеса. Термин гипотенуза происходит от греческого hypoteinsa, означающего тянущаяся под чем либо , стягивающая. Слово берёт начало от образа древнеегипетских арф, на которых струны натягивались на концы двух взаимно перпендикулярных подставок. Термин катет происходит от греческого слова «катетос », которое означало отвес , перпендикуляр. В средние века словом катет означали высоту прямоугольного треугольника, в то время, как другие его стороны называли гипотенузой, соответственно основанием. В XVII веке слово катет начинает применяться в современном смысле и широко распространяется, начиная с XVIII века. Евклид употребляет выражения: «стороны, заключающие прямой угол», - для катетов; «сторона, стягивающая прямой угол», - для гипотенузы.

№ слайда 3 Определения Если один из углов треугольника прямой, то треугольник называется
Описание слайда:

Определения Если один из углов треугольника прямой, то треугольник называется прямоугольным. А В С Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой, а две другие – катетами. Треугольник – это геометрическая фигура, состоящая из трёх точек, не лежащих на одной прямой, и трёх отрезков, соединяющих эти точки.

№ слайда 4 Некоторые свойства прямоугольных треугольников 1. Сумма двух острых углов пря
Описание слайда:

Некоторые свойства прямоугольных треугольников 1. Сумма двух острых углов прямоугольного треугольника равна 900. 2. Катет прямоугольного треугольника, лежащий против угла в 300, равен половине гипотенузы. 3. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 300.

№ слайда 5 Признаки равенства прямоугольных треугольников Если катеты одного прямоугольн
Описание слайда:

Признаки равенства прямоугольных треугольников Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны. 2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны. 3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. 4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

№ слайда 6 Задачи по готовым чертежам А С В D ? В А С 370 ? ? А В С 700 ? А В С 300 15 с
Описание слайда:

Задачи по готовым чертежам А С В D ? В А С 370 ? ? А В С 700 ? А В С 300 15 см ? 1200 4 см D С А В ? 4,2 см 8,4 см

№ слайда 7 Контрольный тест 1. Прямоугольным называется треугольник, у которого а) все у
Описание слайда:

Контрольный тест 1. Прямоугольным называется треугольник, у которого а) все углы прямые; б) два угла прямые; в) один прямой угол.

№ слайда 8 2. В прямоугольном треугольнике всегда а) два угла острых и один прямой; б) о
Описание слайда:

2. В прямоугольном треугольнике всегда а) два угла острых и один прямой; б) один острый угол, один прямой и один тупой угол; в) все углы прямые. Контрольный тест

№ слайда 9 3. Стороны прямоугольного треугольника, образующие прямой угол, называются а)
Описание слайда:

3. Стороны прямоугольного треугольника, образующие прямой угол, называются а) сторонами треугольника; б) катетами треугольника; в) гипотенузами треугольника. Контрольный тест

№ слайда 10 4. Сторона прямоугольного треугольника, противолежащая прямому углу, называет
Описание слайда:

4. Сторона прямоугольного треугольника, противолежащая прямому углу, называется а) стороной треугольника; б) катетом треугольника; в) гипотенузой треугольника. Контрольный тест

№ слайда 11 Контрольный тест
Описание слайда:

Контрольный тест

№ слайда 12 Вы верно ответили на все вопросы !
Описание слайда:

Вы верно ответили на все вопросы !

№ слайда 13 Папирус Ахмеса Математический папирус Ахмеса — древнеегипетское учебное руков
Описание слайда:

Папирус Ахмеса Математический папирус Ахмеса — древнеегипетское учебное руководство по арифметике и геометрии периода Среднего царства, переписанное около 1650 до н. э. писцом по имени Ахмес на свиток папируса длиной 5,25 м. и шириной 33 см. Папирус Ахмеса был обнаружен в 1858 шотландским египтологом Генри Риндом и часто называется папирусом Райнда по имени его первого владельца. В 1870 папирус был расшифрован, переведён и издан. Ныне большая часть рукописи находится в Британском музеев Лондоне, а вторая часть — в Нью - Йорке. Этот документ остается основным источником информации по математике древнего Египта. Он содержит чертежи треугольников с указаниями углов и формулами нахождения площадей. Во вступительной части папируса Райнда объясняется, что он посвящён «совершенному и основательному исследованию всех вещей, пониманию их сущности, познанию их тайн». Все задачи, приведённые в тексте, имеют в той или другой степени практический характер и могли быть применены в строительстве, размежевании земельных наделов и других сферах жизни и производства. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами, пропорциональное деление, нахождение отношений.

№ слайда 14 Е В К Л И Д Евклид (Eνκλειδηζ), древнегреческий математик, автор первого из д
Описание слайда:

Е В К Л И Д Евклид (Eνκλειδηζ), древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Сведения об Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III веке до н. э. Евклид – первый математик александрийской школы. Его главная работа «Начала» (в латинизированной форме – «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвел итог предшествующему развитию греческой математики и создал фундамент дальнейшего развития математики. Из других сочинений по математике надо отметить работу «О делении фигур», сохранившуюся в арабском переводе, четыре книги «Конические сечения», материал которых вошел в произведение того же названия Аполлония Пергского, а также «Поризмы», представление о которых можно получить из «Математического собрания» Паппа Александрийского. Евклид – автор работ по астрономии, оптике, музыке и др. Дошедшие до нас произведения Евклида собраны в издании «Euclidis opera omnia», ed. J. L. Heibert et Н. Menge, v. 1–9, 1883–1916, дающем их греческие подлинники, латинские переводы и комментарии позднейших авторов.

№ слайда 15 Это интересно Треугольник – это многоугольник с тремя сторонами (или тремя уг
Описание слайда:

Это интересно Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины. В любом треугольнике:    1.  Против большей стороны лежит больший угол, и наоборот. 2.  Против равных сторон лежат равные углы, и наоборот. 3.  Сумма углов треугольника равна 180 º 4.  Продолжая одну из сторон треугольника, получаем внешний угол. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним. 5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c,  a > b – c;  b < a + c,  b > a – c;  c < a + b,  c > a – b ).

№ слайда 16 Желаю удачи в изучении геометрии !
Описание слайда:

Желаю удачи в изучении геометрии !

Автор
Дата добавления 21.10.2015
Раздел Математика
Подраздел Презентации
Просмотров188
Номер материала ДВ-083802
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх