Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Урок "Решение олимпиадных задач"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Урок "Решение олимпиадных задач"

библиотека
материалов

Математика


9 класс.


1. Целые числа a, b, c и d удовлетворяют равенству a2 + b2 + c2 = d2. Доказать, что число abc делится на 4. ( 6 баллов)

Решение. Квадрат четного числа делится на 4, а квадрат нечетного числа дает при делении на 4 остаток 1. Если числа a, b, c — нечетные, то d2 должен давать при делении на 4 остаток 3, что невозможно.Если среди чисел a, b, c два нечетных и одно четное, то d2 должен давать при делении на 4 остаток 2, что также невозможно.Значит, среди чисел a, b, c есть два четных числа, откуда произведение abc делится на 4.Такое возможно, например, 32 + 42 + 122 = 132.

2. Докажите, что в любой компании найдутся два человека, имеющие равное число знакомых в этой компании (если A знаком с B, то и B знаком с A). ( 6 баллов)


Решение. Пусть в компании k человек. Тогда каждый человек может иметь от нуля до (k – 1) знакомых.Предположим противное: количество знакомых у всех разное. Тогда найдется человек без знакомых, найдется человек с одним знакомым, и так далее, наконец, найдется человек, у которого (k – 1) знакомых. Но тогда этот последний знаком со всеми, в том числе и с первым. Но тогда у первого не может быть ноль знакомых. Получили противоречие.

3.Можно ли представить дробь 2/7 в виде суммы двух дробей, числители которых равны 1, а знаменатели — различные целые числа? ( 6 баллов)

Решение. Ответ: можно.

Например,

hello_html_m1d6e8692.png

4. Доказать, что для любых положительных чисел a и b выполняется неравенство

hello_html_e9b6c13.gif+ hello_html_m455884f1.gif hello_html_bfbbab0.gif. (6 баллов)

Р е ш е н и е. Сделаем замену x = b1/15, y = a1/10. Тогда доказываемое неравенство приобретает вид

2y5 + 3x5 5y2x3.

Деля на y5 и обозначая t = x/y, получаем 3t 5 – 5t 3 + 2 0. Разложим левую часть на множители. Последовательно получаем

f(t) = (3t 5 – 3t 3) – (2t 3 – 2) 0,

3t 3(t 2 – 1) – 2(t – 1)(t 2 + t + 1) 0,

(t – 1)(3t 3(t + 1) – 2(t 2 + t + 1)) 0,

(t – 1)(3t 4 + 3t 3 – 2t 2 – 2t – 2) 0,

(t – 1)((2t 4 – 2t 2) + (t 4t) + (t 3t) + (2t 3 – 2)) 0

(t – 1)(2t 2(t 2 – 1) + t(t 3 – 1) + t(t 2 – 1) + 2(t 3 – 1)) 0,

(t – 1)2(2t 2(t + 1) + t(t 2 + t + 1) + t(t + 1) + 2(t 2 + t + 1)) 0,

(t – 1)2(3t 3 + 6t 2 + 4t + 2) 0.

Для t > 0 выражение в первой скобке 0, во второй скобке > 0. В итоге, f(t) 0 для всех t > 0. Равенство нулю достигается лишь при t = 1, т.е. при x = y, т.е. при a3 = b2.

5. На основаниях AB и CD трапеции ABCD взяты точки K и L. Пусть E – точка пересечения отрезков AL и DK, F – точка пересечения BL и CK. Доказать, что сумма площадей треугольников ADE и BCF равна площади четырёхугольника EKFL. (6 баллов)

Р е ш е н и е.

hello_html_m70c59dd7.gif

Имеем SADK = SALK, так как они имеют общее основание AK и равные высоты, совпадающие с расстоянием между параллельными прямыми AB и DC. SADE = SADKSAEK = SALKSAEK = SKLE. Аналогично, SBCF = SKLF. Таким образом, сумма площадей треугольников ADE и BCF равна площади четырёхугольника EKFL.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 17.01.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров209
Номер материала ДВ-347509
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх