Урок "Решение олимпиадных задач"
1152011
столько раз учителя, ученики и родители
посетили официальный сайт проекта «Инфоурок»
за прошедшие 24 часа
Добавить материал и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Инфоурок Алгебра Другие методич. материалыУрок "Решение олимпиадных задач"

Урок "Решение олимпиадных задач"

библиотека
материалов

Математика


9 класс.


1. Целые числа a, b, c и d удовлетворяют равенству a2 + b2 + c2 = d2. Доказать, что число abc делится на 4. ( 6 баллов)

Решение. Квадрат четного числа делится на 4, а квадрат нечетного числа дает при делении на 4 остаток 1. Если числа a, b, c — нечетные, то d2 должен давать при делении на 4 остаток 3, что невозможно.Если среди чисел a, b, c два нечетных и одно четное, то d2 должен давать при делении на 4 остаток 2, что также невозможно.Значит, среди чисел a, b, c есть два четных числа, откуда произведение abc делится на 4.Такое возможно, например, 32 + 42 + 122 = 132.

2. Докажите, что в любой компании найдутся два человека, имеющие равное число знакомых в этой компании (если A знаком с B, то и B знаком с A). ( 6 баллов)


Решение. Пусть в компании k человек. Тогда каждый человек может иметь от нуля до (k – 1) знакомых.Предположим противное: количество знакомых у всех разное. Тогда найдется человек без знакомых, найдется человек с одним знакомым, и так далее, наконец, найдется человек, у которого (k – 1) знакомых. Но тогда этот последний знаком со всеми, в том числе и с первым. Но тогда у первого не может быть ноль знакомых. Получили противоречие.

3.Можно ли представить дробь 2/7 в виде суммы двух дробей, числители которых равны 1, а знаменатели — различные целые числа? ( 6 баллов)

Решение. Ответ: можно.

Например,

hello_html_m1d6e8692.png

4. Доказать, что для любых положительных чисел a и b выполняется неравенство

hello_html_e9b6c13.gif+ hello_html_m455884f1.gif hello_html_bfbbab0.gif. (6 баллов)

Р е ш е н и е. Сделаем замену x = b1/15, y = a1/10. Тогда доказываемое неравенство приобретает вид

2y5 + 3x5 5y2x3.

Деля на y5 и обозначая t = x/y, получаем 3t 5 – 5t 3 + 2 0. Разложим левую часть на множители. Последовательно получаем

f(t) = (3t 5 – 3t 3) – (2t 3 – 2) 0,

3t 3(t 2 – 1) – 2(t – 1)(t 2 + t + 1) 0,

(t – 1)(3t 3(t + 1) – 2(t 2 + t + 1)) 0,

(t – 1)(3t 4 + 3t 3 – 2t 2 – 2t – 2) 0,

(t – 1)((2t 4 – 2t 2) + (t 4t) + (t 3t) + (2t 3 – 2)) 0

(t – 1)(2t 2(t 2 – 1) + t(t 3 – 1) + t(t 2 – 1) + 2(t 3 – 1)) 0,

(t – 1)2(2t 2(t + 1) + t(t 2 + t + 1) + t(t + 1) + 2(t 2 + t + 1)) 0,

(t – 1)2(3t 3 + 6t 2 + 4t + 2) 0.

Для t > 0 выражение в первой скобке 0, во второй скобке > 0. В итоге, f(t) 0 для всех t > 0. Равенство нулю достигается лишь при t = 1, т.е. при x = y, т.е. при a3 = b2.

5. На основаниях AB и CD трапеции ABCD взяты точки K и L. Пусть E – точка пересечения отрезков AL и DK, F – точка пересечения BL и CK. Доказать, что сумма площадей треугольников ADE и BCF равна площади четырёхугольника EKFL. (6 баллов)

Р е ш е н и е.

hello_html_m70c59dd7.gif

Имеем SADK = SALK, так как они имеют общее основание AK и равные высоты, совпадающие с расстоянием между параллельными прямыми AB и DC. SADE = SADKSAEK = SALKSAEK = SKLE. Аналогично, SBCF = SKLF. Таким образом, сумма площадей треугольников ADE и BCF равна площади четырёхугольника EKFL.

Курс профессиональной переподготовки
Учитель математики
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:

Вам будут интересны эти курсы:

Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Методика написания учебной и научно-исследовательской работы в школе (доклад, реферат, эссе, статья) в процессе реализации метапредметных задач ФГОС ОО»
Курс повышения квалификации «Основы управления проектами в условиях реализации ФГОС»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Организация маркетинга в туризме»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс повышения квалификации «Психодинамический подход в консультировании»
Курс повышения квалификации «Методы и инструменты современного моделирования»
Курс профессиональной переподготовки «Организация деятельности помощника-референта руководителя со знанием иностранных языков»
Курс повышения квалификации «Международные валютно-кредитные отношения»
Курс профессиональной переподготовки «Теория и методика музейного дела и охраны исторических памятников»
Курс профессиональной переподготовки «Управление качеством»
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.