269568
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 6.900 руб.;
- курсы повышения квалификации от 1.500 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ 50%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаКонспектыУрок "Решение тригонометрических уравнений" 10 класс

Урок "Решение тригонометрических уравнений" 10 класс

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Скачать материал целиком можно бесплатно по ссылке внизу страницы.


Муниципальное бюджетное общеобразовательное учреждение –

средняя общеобразовательная школа №12





Открытый урок

по алгебре и началам анализа

в 10 классе


по теме: «Решение тригонометрических уравнений»



подготовила

учитель математики

МБОУ СОШ №12

ст. Новониколаевской

Панасенко Н.В.









Цели урока:

  1. Образовательные - повторение, обобщение, систематизация и углубление материала темы.

  2. Развивающие –формирование умений применять приемы сравнения, обобщения, выделения главного, логически излагать мысли, делать выводы, развивать речь, внимание и память.

  3. Воспитательные – воспитание ответственности, активности, настойчивости, мобильности, общей культуре.


Тип урока: урок обобщения и систематизации знаний.


Оборудование: интерактивная доска, компьютер, мультимедийный проектор.


План урока.

  1. Организационный момент.

  2. Проверка домашней работы. Устная работа.

  3. Работа в группах.

  4. Систематизация теоретического материала. Объяснение нового.

  5. Физкультминутка. Релаксация.

  6. Проверочный тест.

  7. Домашнее задание. Итог урока.

  8. Рефлексия.


Ход урока:

  1. Организационный момент

Сегодня заключительный урок по теме «Решение тригонометрических уравнений». Повторяем, обобщаем, приводим в систему изученные виды, типы, методы и приемы решения тригонометрических уравнений. Задания по решению тригонометрических уравнений встречаются в вариантах ЕГЭ. Перед вами стоит задача - показать свои знания и умения по решению тригонометрических уравнений.


  1. Проверка домашней работы

Необходимо сдать домашние работы по группам.

Домашняя работа состояла в то, что все учащиеся класса были разбиты по группы (3 уровня сложности: легкий уровень, средний уровень и усложненный уровень). Задания учащиеся получили заранее до урока и оцениваются самими учащимися по готовым решения на интерактивной доске.


Задания легкого уровня.

Решите уравнения:

  1. sin x =1

  2. cos 2x/2- sin2 x/2=-1/2

  3. cos 2x+3 sin x cos x=0

  4. (tg x -2) (tg x +2)=1


Задания среднего уровня.

Решите уравнения:

  1. cos (x/2-π/3)=1/2

  2. 2sin2 x-5sin x+2=0

  3. (2 tg x/2) / (1- tg 2x/2)=2 cos π/6

  4. cos 4x/4- sin4 x/4=-1

  5. Сколько корней имеет уравнение sin x+ sin 3x=0 на отрезке [0; π]


Задания усложненного уровня.

Решите уравнения:

  1. 3cos (x-π/3)=3/2

  2. cos (x+π/4)= cos (2x-π/3)

  3. Найдите наименьший по абсолютной величине корень уравнения 4cos 2x+3 sin x cos x-2sin2 x =2

  4. 2sin x+ 3cos x=3

  5. Сколько корней имеет уравнение sin x/8 * cos x/8* cos x/4 *cos x/2=1/16 на отрезке [π/6; 13π/6]

  6. Найдите ординаты общих точек графиков функций у= 2tg x и у= 1+сtg x


Устно (повторение изученного материала)

А) Ответьте на вопросы:

1) каково будет решение уравнения cos x=a при |a | > 1 ? [Нет решения]

2) чему равен sin П/6; cosП/2; arсcos ½; arcsin 1? Arctg 0,

2) при каком значении а уравнения sin x =a , cos x=a имеют решения? [Если |a | ≤ 1]

3) какой формулой выражаются решения уравнений sin x =a ,

cos x=a ? при условии |a | ≤ 1

4) назовите частные случаи решения уравнений sin x =a ,

cos x=a , если a = -1; 0; 1

5) чему равен arсcos(-a) ? [π- arсcos a]

6) в каком промежутке находится arctg a ? [-π/2; π/2], чему равен arcctg(- a) ? ( π- arcctg a)

7) какой формулой выражается решение уравнения tg x= a?

8) в каком промежутке находится arcсtg a ? (0;π)

9) какой формулой выражается решение уравнений ctg x =a ? (x= arcctg a +πn, n hello_html_d4de0ea.png Z)


Б) В каждом из приведенных примеров сделаны ошибки. Назовите верный ответ и подумайте о причине ошибки.


    1. arcsin 45= √2/2 (неопределенно)


    1. arcos (-1/2) = -π/3 (2π/3 )


    1. arcsin 3 = arcsin 1*3= π/4*3= 3π/4 (не существует)


    1. arctg 1= arctg π/4 /4)


    1. arctg (√3)= - π/6 ( /4)


    1. hello_html_d4de0ea.pnghello_html_d4de0ea.pngcos x=1/2 , х = ± π/6 + 2πк, к Z

Верно : cos x=1/2 , х = ± π/3 + 2πк, к Z

Ошибка в вычислении значений тригонометрической функции

hello_html_d4de0ea.pnghello_html_d4de0ea.png2) sin x =√ 3/2 , x = π/3 + πк, к Z

Верно : sin x =√ 3/2 , x = (-1)к π/3 + πк, к Z

Ошибка в формуле нахождения решения уравнения sin x =a

hello_html_d4de0ea.pnghello_html_d4de0ea.png3) cos x/3 =√ 2/2 , x/3 = ± π/4 + 2 πк ; x = ± 3π/4 + 2 πк/3, к Z

Верно : cos x/3 =√ 2/2 , x/3 = ± π/4 + 2 πк ; x = ± 3π/4 + 6 πк, к Z


Ошибка в выполнении деления



hello_html_d4de0ea.pnghello_html_d4de0ea.png4) sin 2x =1/3, x = (-1/2)narcsin1/3 + πn, n Z

Верно : sin 2x =1/3 , x = (-1)n/2 arcsin1/3 + πn/2, n Z

Вычислительная ошибка

hello_html_d4de0ea.pnghello_html_d4de0ea.pnghello_html_m70d9bffa.gif5) cos x = -1/2, x = ±(-π/3) + 2πm, m Z

Верно : cos x = -1/2, x = ±2π/3 + 2πm, m Z

По определению arcсos(-π/3) [0]

hello_html_d4de0ea.png6) cos x =√10/3, x = arcсos√10/3 + 2πn, n Z


x- не существует, так как √10/3 не удовлетворяет условию | cos x | ≤ 1

hello_html_d4de0ea.pnghello_html_d4de0ea.png7) tg x =-1, x =- π/4 + 2πn, n Z

Верно : tg x =-1, x = -π/4 + πn, n Z

В периоде

hello_html_d4de0ea.pnghello_html_d4de0ea.pnghello_html_m70d9bffa.gif8) ctg x =-√3/3, x= -π/3+πm, m Z

Верно : ctg x =-√3/3, x= 2π/3+πm, m Z


По определению arcсos(-π/3) [0]


  1. Работа в группах

А теперь выберите одно из предложенных уравнений и решите его.

На экране проецируется задание.

На оценку

1 вариант

2 вариант

hello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gif

«3»


«4»




«5»


2 cos2х + 5 sin х - 4=0


cos 2х + cos х =0



2 sin (x/2) + 1 = cos х

Ответы

(-1)k π/6 + πk, k Z


π + 2πk, k Z

± π/3 + 2 πn, n Z


2 πk, k Z

(-1)k π/2+2πn,n Z


3 sin x - 2 cos2x =0


cos 2x + sin x =0



2cos(x/2) + 1=cos x


Ответы

(-1)k π/6 + πk, k Z


π/2 + 2πk, k Z

(-1)k+1 π/6 + πn, n Z


π + 2πk, k Z

± π/2 + 4πn, n Z


Проверьте свое решение с ответами

На экране проецируются ответы


  1. Систематизация теоретического материала.

Классификация тригонометрических уравнений.


На доске написаны уравнения разных типов. Учащиеся должны определить тип и методы решения уравнений.

sin x/2 =1/2

cos (x +π/3)=1

sin 2x =-√3/2

Это простейшие тригонометрические уравнения типа sin f(x)=a, которые решаются сначала относительно f(x), а затем полученные уравнения решаются относительно х по известным формулам.

2sin2 x-7 cos x-5=0

2 cos 23x+ sin 3x-1=0

сtg x-√3tg x+1=√3

Эти уравнения приводятся к алгебраическим путем введения новой переменной и сведению его к квадратному уравнению.

sin2 x- sin x=0

cos 2x+ sin x cos x=1

5 sin x+3 sin2x=0

Данные уравнения решаются разложением на множители. При решении таких уравнений нужно пользоваться правилом: произведение нескольких множителей равно нулю, если хотя бы один из них равен нулю, а остальные при этом имеют смысл.

2sin x-3 cos x=0

4 sin2 x+2 sin x cos x=3


Однородные уравнения первой (второй) степени. Они решаются делением обеих частей уравнения на cos x (sin x), cos 2x (sin2 x)

sin x+ sin 3x=4cos 3x

cos 2x+ cos x=0

cos 3x*cos 2x= sin3 x *sin 2x

2sin2 x+ cos 4x=0

Данный тип уравнений решается с помощью формул сложения, понижения степеней и разложения произведения тригонометрических функций в сумму.


cos x- √3sin x=2

2 cos x+ 2sin x=√6

3 cos x+ sin x=2


Уравнения вида a cosx+ b sinx = c, где a;b; c 0. Решаются методом введения вспомогательного аргумента.

2 cos 3x+4 sin x/2=7

2 cos 3x+ cos x=-8

3 cos 3x+ cos x=4


Данные уравнения решаются оценкой левой и правой частей


  1. Физкультминутка

А сейчас давайте немного отдохнем. Для этого я предлагаю выполнить несколько упражнений.

Упражнение 1. Цель этого упражнения - устранение вредных эффектов от неподвижного сидения в течение длительного периода времени и профилактика грыжи межпозвоночных дисков поясничного отдела.

  • В положении стоя положите руки на бедра.

  • Медленно отклоняйтесь назад, глядя на небо или в потолок.

  • Вернитесь в исходное положение.

Повторите 10 раз.

Упражнение 2. Цель - укрепление мышц задней стороны шеи для улучшения осанки и предотвращения болей в области шеи.

Поза: сидя или стоя

Смотрите прямо перед собой, а не вверх и не вниз.

Надавите указательным пальцем на подбородок.

Сделайте движение шеей назад.

Совет: совершая это движение, продолжайте смотреть прямо перед собой, не смотрите вверх или вниз. Для этого представьте, что кто-то, стоящий позади вас, тянет за нить, проходящую через ваш подбородок. Оставайтесь в этом положении в течение 5 секунд.
Повторите 10 раз.


К однородным уравнениям после применения формул тригонометрии могут быть сведены различные тригонометрические уравнения, которые первоначально не были однородными.

Рассмотрим уравнение: А sin2 х + В sinх cos х + С cos2х = D, преобразуем данное уравнение А sin2 х + В sinх cos х + С cos2х =D (sin2 х + cos2х)

или (А –D) sin2 х + В sinх cos х + (С-D) cos2х =0.

Уравнение A sin x+ B cos x = С также не является однородным. Но после выполнения ряда преобразований данное уравнение становится однородным уравнение второго порядка:

A sin x+ B cos x = С

A sin 2 (x/2) + B cos 2(x/2) = С

2 A sin(x/2) cos(x/2) + В (cos2(x/2) - sin2(x/2) )= С (sin2(x/2) + cos2(x/2)). А теперь давайте решим следующее уравнение.


Решить уравнение 2 sin x+ cos x=2, используя нужные методы

sin x=2 sin x/2 cos x/2

cos x= cos2 x/2- sin2 x/2

2=2*1=2 *(sin2 x/2+ cos 2x/2)

4 sin x/2 cos x/2+ cos 2x/2- sin2 x/2=2 sin2 x/2+2 cos 2x/2

4 sin x/2 cos x/2+ cos 2x/2- sin2 x/2-2 sin2 x/2-2 cos 2x/2=0

4 sin x/2 cos x/2- cos 2x/2-3 sin2 x/2=0

Если cos x/2=0 , то должно выполняться равенство sin2 x/2=0, а синус и косинус одновременно быть равными нулю не могут. Поэтому можно обе части уравнения разделить на cos 2x/2 и получить уравнение, равносильное данному

3tg 2x/2-4 tg x/2+1=0

Пусть tg x/2=у, получим квадратное уравнение

3у2-4у+1=0

Д=16-12=4, Д>0, уравнение имеет два различных корня

у1=1; у2=1/3


Итак, tg x/2=1 или tg x/2=1/3

x/2= arctg1 +πn, nhello_html_d4de0ea.png Z x/2= arctg1/3 +πк, кhello_html_d4de0ea.png Z

x/2= π/4 +πn, nhello_html_d4de0ea.png Z x= 2arctg1/3 +2πк, кhello_html_d4de0ea.png Z

x= π/2 +2πn, nhello_html_d4de0ea.png Z

Ответ: x= π/2 +2πn, nhello_html_d4de0ea.png Z , x= 2arctg1/3 +2πк, кhello_html_d4de0ea.png Z


Вопрос: Какие методы были использованы при решении уравнения (тригонометрические тождества, однородное уравнение, введение новой переменной)


  1. Проверочный тест

На экране проецируется задание.

На оценку

1 вариант

2 вариант

«3»


«4»


«5»


3 sin x+ 5 cos x = 0

5 sin2 х - 3 sinх cos х - 2 cos2х =0

3 cos2х + 2 sin х cos х =0

5 sin2 х + 2 sinх cos х - cos2х =1

2 sin x - 5 cos x = 3

1- 4 sin 2x + 6 cos2х = 0

2 cos x+ 3 sin x = 0

6 sin2 х - 5 sinх cos х + cos2х =0

2 sin2 x – sin x cosx =0

4 sin2 х - 2sinх cos х - 4 cos2х =1

2 sin x - 3 cos x = 4

2 sin2 х - 2sin 2х +1 =0


Учитель: Ребята, проверьте свое решение с ответами.

На экране проецируются ответы


1 вариант

2 вариант

hello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gifhello_html_61997db6.gif«3»



«4»



«5»


- arctg 5/3+ πk, k Z.

π/4 + πk; - arctg 0,4 + πn, k, n Z.


π/2 + πk; - arctg 1,5 + πn, k, n Z.

π/4 + πk; - arctg 0,5 + πn, k, n Z.


arctg ( - 1 ± √5) + πk, k Z.

π/4 + πk; arctg 7 + πn, k, n Z.

- arctg 2/3+ πk, k Z.

arctg 1/3+ πk; arctg 0,5 + πn, k, n Z.


πk; arctg 0,5 + πn, k, n Z.

-π/4 + πk; - arctg 5/3 + πn, k, n Z.


arctg ( 2 ± √11) + πk, k Z.

π/4 + πk; arctg 1/3 + πn, k, n Z.


  1. Домашняя работа

Решить уравнения, выбирая наиболее рациональный способ решения.

  1. 3 cos 2 x+ sin 2x=2

  2. cos x/2- sin x/2=6/2

  3. 2 cos x+5 sin x+2=0

  4. 2 cos x+3 sin x=3


  1. Итог работы

Подведем итоги урока. Сегодня на уроке мы вспомнили числовые значения тригонометрических функций, обратных тригонометрических функций, вспомнили формулы решения простейших тригонометрических уравнений, рассмотрели общие подходы решения тригонометрических уравнений, закрепили навыки и проверили умения решать тригонометрические уравнения, познакомились с новыми способами решения некоторых известных тригонометрических уравнений.

Я думаю, что у вас сложилось более полное представление о тригонометрических уравнениях и разнообразии способов их решения. И у меня появилась уверенность, что с решением тригонометрических уравнений большинство из вас справится.

Фронтальным опросом вместе с учащимися подводятся итоги урока:

- Что нового узнали на уроке?

- Испытывали ли вы затруднения при выполнении самостоятельной работы?

- Какие из способов решения тригонометрических уравнений из рассмотренных оказались наиболее трудными?

- Какие проблемы у вас возникли по окончании урока?

Спасибо вам за работу на уроке. Я благодарю всех, кто принял активное участие в работе. Благодарю вас за помощь в проведении урока. Надеюсь на дальнейшее сотрудничество. Урок окончен.



8


Краткое описание документа:

Открытый урок

по алгебре и началам анализа

в 10 классе

по темеЦели урока:

  1. Образовательные - повторение, обобщение, систематизация и углубление материала темы.
  2. Развивающие –формирование умений применять приемы сравнения, обобщения, выделения главного, логически излагать мысли, делать выводы, развивать речь, внимание и память.
  3. Воспитательные – воспитание ответственности, активности, настойчивости, мобильности, общей культуре.

Тип урока: урок обобщения и систематизации знаний.

Оборудование: интерактивная доска, компьютер, мультимедийный проектор.

План урока.

I.Организационный момент.

II.Проверка домашней работы. Устная работа.

III. Работа в группах.

IV. Систематизация теоретического материала. Объяснение нового.

V. Физкультминутка. Релаксация.

VI. Проверочный тест.

VII.Домашнее задание. Итог урока.

VIII.Рефлексия.: «Решение тригонометрических уравнений»

Общая информация

Номер материала: 296518

Вам будут интересны эти курсы:

Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Благодарность за вклад в развитие крупнейшей онлайн-библиотеки методических разработок для учителей

Опубликуйте минимум 3 материала, чтобы БЕСПЛАТНО получить и скачать данную благодарность

Сертификат о создании сайта

Добавьте минимум пять материалов, чтобы получить сертификат о создании сайта

Грамота за использование ИКТ в работе педагога

Опубликуйте минимум 10 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Свидетельство о представлении обобщённого педагогического опыта на Всероссийском уровне

Опубликуйте минимум 15 материалов, чтобы БЕСПЛАТНО получить и скачать данное cвидетельство

Грамота за высокий профессионализм, проявленный в процессе создания и развития собственного учительского сайта в рамках проекта "Инфоурок"

Опубликуйте минимум 20 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Грамота за активное участие в работе над повышением качества образования совместно с проектом "Инфоурок"

Опубликуйте минимум 25 материалов, чтобы БЕСПЛАТНО получить и скачать данную грамоту

Почётная грамота за научно-просветительскую и образовательную деятельность в рамках проекта "Инфоурок"

Опубликуйте минимум 40 материалов, чтобы БЕСПЛАТНО получить и скачать данную почётную грамоту

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.