Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Урок - лабораторная работа "Лист Мёбиуса"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Математика

Урок - лабораторная работа "Лист Мёбиуса"

библиотека
материалов

Урок – лабораторная работа на тему « Лист Мёбиуса ».


Цели: 1) Развивать логическое мышление, пространственное представление, воображение учащихся.

2) Воспитывать навыки аккуратной работы с чертёжными принадлежностями.

3) Воспитывать дух коллективизма и взаимопомощи в работе.


Оборудование: ножницы, клей, лист белой бумаги, краски или фломастеры.


Ход урока: Сегодня мы познакомимся с удивительными вещами, которые можно сделать своими руками. Смотрите, я беру бумажную ленту АВСД, разделённую пополам пунктирной линией.



hello_html_756c51be.png




Прикладываю её концы АД и ВС и склеиваю. Но не как попало, а так, чтобы точка А совпала с точкой С , а точка В с Д. Для этого перед склейкой я перекрутил ленту один раз. Получилось знаменитое в математике бумажное кольцо. У него есть даже особое название- лист Мёбиуса. А теперь я режу ножницами склеенную ленту по середине вдоль пунктирной линии. Как вы думаете, что у меня получится? Конечно, если бы я не перекрутила ленту перед склейкой, всё было бы просто: из одного широкого кольца получилось бы два узких. А что сейчас? Получилось не два кольца, а одно, вдвое уже, но зато вдвое длиннее. К тому же перекручено оно не один раз, а два. А ну-ка, разрежем это кольцо ещё раз посредине. Получится два сцепленных друг с другом кольца, каждое из которых дважды перекручено. Вот какие неожиданные вещи происходят с простой бумажной полоской, если склеить из неё лист Мёбиуса. У этого листа масса удивительных свойств. Сейчас вы в этом убедитесь. Сколько сторон у листа Мёбиуса? У ленты, из которой сделан лист Мёбиуса, имеется две стороны. А у него самого, оказывается, есть только одна сторона! Возьмите лист Мёбиуса, обмакните кисть в зелёную краску и начинайте красить, кладя каждый новый мазок так, чтобы он прилегал к прежним. Только не переходите через край ленты! Если бы лента не была перекручена, то через некоторое время одна сторона кольца оказалась бы полностью зелёной, а другая осталась белой. А как с листом Мёбиуса? Вы закрасите его весь! « Если кто-нибудь вздумает раскрасить только одну сторону поверхности мёбиусовой ленты, пусть лучше сразу погрузит её всю в ведро с краской»,- пишут Рихард Курант и Герберт Роббинс в превосходной книге «Что такое математика?». Если на внутреннюю сторону обычного кольца посадить паука, а на наружнюю- муху и разрешить им ползать как угодно, запретив лишь перелезать через края кольца, то паук не сможет добраться до мухи, не так ли? А если их обоих посадить на лист Мёбиуса, то бедная муха будет съедена ( если, конечно, паук ползает быстрее мухи!)

СОЛДАТИК-ПЕРЕВЁРТЫШ. Я вырезала бумажного солдатика и отправила его вдоль пунктира, идущего посередине листа Мёбиуса.

И вот он вернулся к месту старта. Но в каком виде! В перевёрнутом! А что бы он вернулся к старту в нормальном положении, ему нужно совершить ещё одно «круглолистное» путешествие.

МЁБИУС И ТОПОЛОГИЯ. Таинственный и знаменитый лист Мёбиуса придумал в 1858 г. немецкий геометр Август Фердинанд Мёбиус (1790-1868),

ученик « короля математиков» Гаусса. Мёбиус был первоначально астрономом, как Гаусс и многие другие из тех, кому математика обязана своим развитием. В те времена занятия математикой не встречали поддержки, а астрономия давала достаточно денег, чтобы не думать о них, и оставляла время для собственных размышлений. И Мёбиус стал одним из крупнейших геометров 19 в.В возрасте 68 лет ему удалось сделать открытие поразительной красоты. Это открытие односторонних поверхностей. Одна из которых лист Мёбиуса. Лист Мёбиуса- один из объектов области математики под названием топология (т.е. «геометрия положения»). Удивительные свойства листа Мёбиуса – он имеет один край, одну сторону -не связаны с его положением в пространстве, с понятиями расстояния, угла и тем не менее имеют вполне геометрический характер .Изучением таких свойств занимается топология. Оказывается, свойства такого типа, несмотря на кажущуюся их непрерывность, связаны как раз с наиболее абстрактными математическими дисциплинами, именно с алгеброй и теорией функций.

В топологии изучаются свойства фигур и тел, которые не меняются при их неприрывных деформациях (как если бы они были сделаны из резины).С точки зрения топологии баранка и кружка – это одно и то же. Сжимая и растягивая кусок резины, можно перейти от одного из этих тел ко второму .А вот баранка и шар –разные объекты: чтобы сделать отверстие, надо разорвать резину.

ЭКСПЕРИМЕНТЫ ДЛЯ ВСЕХ. Возьмём ленту АВСД и разделим её по ширине на 3 одинаковые части двумя пунктирными линиями ( // сторонам АС и ВД ).Склеим, перекрутив один раз лист Мёбиуса. Будем резать по пунктирной линии. Если бы лента не была перекручена, то сначала мы бы отрезали одно кольцо, а потом другое. Всего 3 кольца, каждое той же длины, что и первоначальное, но втрое меньшей ширины. Но у нас лист Мёбиуса. И оказывается, мы «не отрывая» ножниц от бумаги, разрежем по всем пунктирным линиям сразу и получим два сцепленных кольца. Одно из них вдвое длиннее исходного и перекручено два раза. Второе- лист Мёбиуса, ширина которого втрое меньше, чем у исходного.

Теперь поэкспериментируйте самостоятельно. 1). Приготовьте 2 листа Мёбиуса, перед склейкой разделив ленту на 4 или 5 равных полос. Разрежьте по пунктирным линиям. Что получится? Можно ли высказать какое – нибудь утверждение о поведении листа Мёбиуса при отрезании от него полоски? 2). Что будет, если перед склейкой перекрутить ленту дважды, а потом разрезать посредине? 3). А если перед склейкой перекрутить ленту трижды?

Можно ставить ещё немало экспериментов по разрезанию лент. Придумайте и поставьте.





Учитель математики МБОУ СОШ №42 Уруймагова З.Ю.

г.Владикавказ

Краткое описание документа:

            Урок – лабораторная  работа  на тему « Лист Мёбиуса ».

 

Цели: 1) Развивать логическое мышление, пространственное представление, воображение учащихся.

             2) Воспитывать навыки аккуратной работы с чертёжными принадлежностями.

             3) Воспитывать дух коллективизма и взаимопомощи в работе.

 

Оборудование: ножницы, клей, лист белой бумаги, краски или фломастеры.

 

Ход урока: Сегодня мы познакомимся с удивительными вещами, которые можно сделать своими руками. Смотрите, я беру бумажную ленту АВСД, разделённую пополам пунктирной линией. Прикладываю её концы АД  и  ВС  и склеиваю. Но не как попало, а так, чтобы точка А совпала с точкой С , а точка В с Д.  Для этого перед склейкой я перекрутил ленту один раз. Получилось знаменитое в математике бумажное кольцо. У него есть даже особое название- лист Мёбиуса. А теперь я режу ножницами склеенную ленту по середине вдоль пунктирной линии. Как вы думаете, что у меня получится?

Автор
Дата добавления 09.02.2015
Раздел Математика
Подраздел Конспекты
Просмотров235
Номер материала 376783
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх