Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Начальные классы / Другие методич. материалы / Уровни моделирования содержания текстовых задач на движение при изучении курса математики начальной школы
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Начальные классы

Уровни моделирования содержания текстовых задач на движение при изучении курса математики начальной школы

библиотека
материалов







Уровни моделирования содержания текстовых задач на движение при изучении курса математики начальной школы



Вильдангирова М.Р. – учитель начальных классов



Несмотря на актуальность изучаемой проблемы «Уровни моделирования содержания текстовых задач на движение при изучении курса математики начальной школы», в школе работа по применению моделирования при обучении решению задач на движение организуется не так, как хотелось бы.

Цель моей деятельности создать условия для того, чтобы сделать обучающихся активными участниками образовательного процесса, развитие интеллектуальных и творческих способностей, привитие интереса к предмету; формирование навыков решения текстовых задач на движение.

Моделирование текстовых задач как метод активизации мыслительной деятельности обучающихся на уроках математики была взята мной 4 года назад, так как за последние годы начальное образование претерпело ряд изменений, которые связаны, прежде всего, с изменением целей начального образования, что потребовало обновления содержания и методов обучения.

Для развития личности в современном мире большое значение имеет способность логически стройно и верно излагать свои мысли, решать математические задачи.

Известный отечественный психолог А.Н. Леонтьев писал.: «Актуально сознаётся только то содержание, которое является предметом целенаправленной активности субъекта.» Поэтому, чтобы структура задачи стала предметом анализа и изучения, необходимо отделить её от всего несущественного и представить в таком виде, который обеспечивал бы необходимые действия. Делать это необходимо с помощью особых знаково-символических средств - моделей, однозначно отображающих структуру задачи и достаточно простых для восприятия младшим школьникам.

Для решения многих научных и практических задач широко используется метод моделирования. Реальные объекты или процессы иногда бывают настолько сложны и многогранны, что их изучение невозможно без построения и исследования модели, отображающей лишь какую-то сторону этого процесса или объекта и поэтому более простую, чем эта реальность.

Модель в самом широком смысле - это любой мысленный или знаковый образ моделируемого объекта (оригинала). В качестве модели могут выступать изображения, описания, схемы, чертежи, графики, уравнения, планы, карты, копии оригинала (уменьшенные или увеличенные), компьютерные программы и тому подобное. При этом следует помнить, что модель всегда является лишь отображением оригинала, и этот представитель в каком-либо отношении должен быть не только удобен для изучения свойств исследуемого объекта, но и позволяет перенести полученные при этом знания на исходный объект.

Исходя из выше изложенного, я считаю, что в моем опыте успешно решаются следующие противоречия:

  • В программу по математике включены различные виды задач и в достаточно большом количестве, однако, практика показывает, что решение текстовых задач на движение представляет большие трудности для обучающихся. Так как дети плохо ориентируются в тексте задачи, в ее условии и требовании.

  • Чтобы сделать курс математики интересным для детей, нередко педагоги включают в уроки много занимательных заданий, сказочных героев, игровые ситуации. Но богатые возможности для развития интереса к математике, логического мышления младших школьников открывает система работы над текстовыми задачами на движение методом моделирования.

Все модели принято делить на схематизированные и знаковые. В свою очередь, схематизированные модели бывают вещественными (они обеспечивают физическое действие с предметами - палочками, пуговицами, полосками бумаги), к этому виду моделей относят и мысленное воссоздание реальной ситуации, описанной в задаче и графическими (они обеспечивают графическое действие). К графическим моделям относят: рисунок, условный рисунок, чертёж, схематический чертёж (схему).

Пример 1 Лида проехала на велосипеде 5 км, а Валя на 4 км больше. Сколько км проехала Валя?

Графическая модель может быть выполнена:

а) в виде рисунка:

1 км 1 км 1км 1 км 1 км

1км 1 км 1км 1 км 1км 1 км 1 км 1 км 1 км

б) в виде условного рисунка:

ооооо □□□□□□□□□

в) в виде чертежа:

5 км

hello_html_1a9e13c0.jpg

г) в виде схематизированного чертежа (схемы):

5 км

hello_html_36b22fa.jpg

Чертёж представляет собой условное изображение предметов, взаимосвязей между ними и взаимоотношения величин с помощью отрезков и с соблюдением определённого масштаба.

Чертёж, на котором взаимосвязи и взаимоотношения передаются приблизительно, без точного соблюдения масштаба, называется схематическим чертежам, или схемой.

Схематический чертёж прост для восприятия, так как:

- наглядно отображает каждый элемент отношения, что позволяет ему оставаться простым и при любых преобразованиях данного отношения;

  • обеспечивает целостность восприятия задачи;

  • позволяет увидеть сущность объекта в «чистом» виде, без отвлечения на частные конкретные характеристики (числовые значения величин, яркие изображения и др.), что трудно сделать, используя другие графические модели;

Таблица - это модель задачи, но более абстрактная, чем схематический рисунок или чертёж. Она предполагает уже хорошее знание учащимися взаимозависимостей пропорциональных величин, так как сама таблица этих взаимозависимостей не показывает.

Пример 2. «Теплоход за 6 часов прошёл 120 километров. Сколько километров он пройдёт за 3 часа, если будет идти с той же скоростью?»

Запись задачи в форме таблицы помогает поиску пути решения.


Скорость

Время

Расстояние

I

? одинаковая

6 ч.

120 км.

II

?

З ч.

?


Не любая краткая запись, рисунок или чертёж, выполненные для данной задачи, являются её моделями. Вспомогательные модели текстовых задач должны отражать все её объекты, все отношения между ними, указывать требования. Эти модели строятся в ходе разбора содержания и анализа задачи, вместе с тем построение таких моделей организует и направляет детальный и глубокий анализ задачи.

Пример 3. Два велосипедиста едут навстречу друг другу. Скорость одного 12 км/ч, а скорость другого 14 км/ч. Они встретились через 3 часа. Какое расстояние было между ними первоначально?

hello_html_m78a4b4e6.png

1) 12х3=36 (км) – расстояние 1.


2) 14х3=42 (км) – расстояние 2.


3) 36+42=78 (км)


Ответ: 78 км было между ними первоначально.

Выводы и результаты работы по моделированию задач на уроках математики.

Освоение моделей – это трудная работа для обучающихся. Причем трудности связаны не с абстрактным характером модели, а с тем, что моделируя, обучающиеся отображают сущность рассматриваемых в задаче объектов и отношений между ними. Поэтому обучение моделированию веду целенаправленно, соблюдая ряд условий.

  1. Начинаю работу с подготовительных упражнений по моделированию.

  2. Применяю метод моделирования при изучении математических понятий.

  3. Веду работу по усвоению знаково-схематического языка, на котором строится модель.

  4. Систематически провожу работу по освоению моделей тех отношений, которые рассматриваются в задаче.

Чтобы решать задачи самостоятельно младший школьник должен освоить различные виды моделей, для этого обучаю способам выбора нужной модели, переходу от одной модели к другой.

Вывод: в целом полученные результаты дают основание предположить, что опыт моей работы по моделированию текстовых задач на уроках математики имеет практическую значимость для повышения качества образовательного процесса и является актуальной.

Литература:

  1. Давыдов В.В., Варданян А.У.Учебная деятельность и моделирование.-Ереван: Луйне, 1981. – с.25-29

  2. Моделирование при решении учебных текстовых задач /на материале курса математики в начальной школе/.- М.,42 с. - Рукопись деп. в РАО.

  3. Мокрушина О.А. Поурочные разработки по математике к учебному комплекту М.И. Моро, М.А. Бантовой и др. –М.: ВАКО, 2005.-432 с.





Автофигура 1

8


Краткое описание документа:

Несмотря на актуальность изучаемой проблемы «Уровни моделирования содержания текстовых задач на движение при изучении курса математики начальной школы», в школе работа по применению моделирования при обучении решению задач на движение организуется не так, как хотелось бы.

Цель моей деятельности создать условия для того, чтобы сделать обучающихся активными участниками образовательного процесса, развитие интеллектуальных и творческих способностей, привитие интереса к предмету; формирование навыков решения текстовых задач на движение.

Моделирование текстовых задач как метод активизации мыслительной деятельности обучающихся на уроках математики была взята мной 4 года назад, так как за последние годы начальное образование претерпело ряд изменений, которые связаны, прежде всего, с изменением целей начального образования, что потребовало обновления содержания и методов обучения.

Для развития личности в современном мире большое значение имеет способность логически стройно и верно излагать свои мысли, решать математические задачи.

Автор
Дата добавления 27.01.2015
Раздел Начальные классы
Подраздел Другие методич. материалы
Просмотров663
Номер материала 344282
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх