Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Информатика / Конспекты / Установка и конфигурирование периферийного оборудования - Лекция №7
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Информатика

Установка и конфигурирование периферийного оборудования - Лекция №7

библиотека
материалов

Курс: 3. Специальность: 09.02.01. Группа: КСК 13.1

Предмет: МДК 02.02 «УиКПО»

Лекция 7 - Режимы работы видео адаптера


План лекции.

  1. Режимы работы видеоадаптера.

  2. Основные типы видеоадаптеров.


Видеоадаптер (видеокарта) является компонентом видеосистемы ПК, выполняющим преобразование цифрового сигнала, циркулирующего внутри ПК, в аналоговые электрические сигналы, подаваемые на монитор. По существу, видеоадаптер выполняет роль интерфейса между компьютером и устройством отображения информации (монитором).

По мере развития ПК видеоадаптеры стали реализовывать аппаратное ускорение 2D- и SD-графики, обработку видеосигналов, прием телевизионных сигналов и многое другое. Современный видеоадаптер, называемый Super VGA (Super Video Graphics Adapter), или SVGA, представляет собой универсальное графическое устройство.

Видеоадаптер определяет следующие характеристики видеосистемы:

  • максимальное разрешение и максимальное количество отображаемых оттенков цветов;

  • скорости обработки и передачи видеоинформации, определяющие производительность видеосистемы и ПК в целом.

Кроме того, в функцию видеоадаптера включается формирование сигналов горизонтальной и вертикальной синхронизации, используемых при формировании растра на экране монитора.

Принцип действия видеоадаптера состоит в следующем.

Процессор формирует цифровое изображение в виде матрицы NxM n-разрядных чисел и записывает его в видеопамять. Участок видеопамяти, отведенный для хранения цифрового образа текущего изображения (кадра), называется кадровым буфером, или фрейм-буфером.

Видеоадаптер последовательно считывает (сканирует) содержимое ячеек кадрового буфера и формирует на выходе видеосигнал, уровень которого в каждый момент времени пропорционален значению, хранящемуся в отдельной ячейке. Сканирование видеопамяти осуществляется синхронно с перемещением электронного луча по экрану ЭЛТ. В результате яркость каждого пиксела на экране монитора пропорциональна содержимому соответствующей ячейки памяти видеоадаптера.

По окончании просмотра ячеек, соответствующих одной строке растра, видеоадаптер формирует импульсы строчной синхронизации, инициирующие обратный ход луча по горизонтали, а по окончании сканирования кадрового буфера формирует сигнал, вызывающий движение луча снизу вверх. Таким образом, частоты строчной и кадровой развертки монитора определяются скоростью сканирования содержимого видеопамяти, т.е. видеоадаптером.


1. Режимы работы видеоадаптера

Режимы работы видеоадаптера, или видеорежимы, представляют собой совокупность параметров, обеспечиваемых видеоадаптером: разрешение, цветовая палитра, частоты строчной и кадровой развертки, способ адресации участков экрана и др.

Все видеорежимы делятся на графические и текстовые. Причем в различных режимах видеоадаптера используются разные механизмы формирования видеосигнала, а монитор в обоих режимах работает одинаково.

Графический режим является основным режимом работы видеосистемы современного ПК, например под управлением Windows. В графическом режиме на экран монитора можно вывести текст, рисунок, фотографию, анимацию или видеосюжет. В графическом режиме в каждой ячейке кадрового буфера (матрицы NxM n-разрядных чисел) содержится код цвета соответствующего пиксела экрана. Разрешение экрана при этом также равно NxМ. Адресуемым элементом экрана является минимальный элемент изображения — пиксел. По этой причине графический режим называют также режимом АРА (All Point Addressableвсе точки адресуемы). Иногда число п называют глубиной цвета. При этом количество одновременно отображаемых цветов равно 2n, а размер кадрового буфера, необходимый для хранения цветного изображения с разрешением NxM и глубиной цвета п, составляет NxM бит.

В текстовом (символьном) режиме, как и в графическом, изображение на экране монитора представляет собой множество пикселов и характеризуется разрешением NxM. Однако все пикселы разбиты на группы, называемые знакоместами, или символьными позициями (Character boxes — символьные ячейки), размером р х q. В каждом из знакомест может быть отображен один из 256 символов. Таким образом, на экране умещается M/q= M, символьных строк по N/p = N, символов в каждой. Типичным текстовым режимом является режим 80x25 символов.

Изображение символа в пределах каждого знакоместа задается точечной матрицей (Dot Matrix). Размер матрицы зависит от типа видеоадаптера и текущего видеорежима. Чем больше точек используется для отображения символа, тем выше качество изображения и лучше читается текст. Точки матрицы, формирующие изображение символа, называются передним планом, остальные — задним планом, или фоном. На рис.1 показана символьная матрица 8x8 пикселов. Допустив, что темной клетке соответствует логическая единица, а светлой — логический ноль, каждую строку символьной матрицы представим в виде двоичного числа. Следовательно, графическое изображение символа можно хранить в виде набора двоичных чисел. Для этой цели используется специальное ПЗУ, размещенное на плате видеоадаптера. Такое ПЗУ называют аппаратным знакогенератором.


hello_html_108e31a.jpg

Рис. 1. Схема представления символа «А» в текстовом режиме в матрице 8x8 и ячейке знакогенератора


Совокупность изображений 256 символов называется шрифтом. Аппаратный знакогенератор хранит шрифт, который автоматически используется видеоадаптером сразу же после включения компьютера (обычно это буквы английского алфавита и набор специальных символов). Адресом ячейки знакогенератора является порядковый номер символа.

Для кодирования изображения символа на экране используются два байта: один — для задания номера символа, второй — для указания атрибутов символа (цвета символа и фона, подчеркивания, мигания, отображения курсора). Если на экране имеется NxM знакомест, то объем видеопамяти, необходимый для хранения изображения, составит Nt х Мt х 2 байт. Эту область видеопамяти называют видеостраницей. Видеостраница является аналогом кадрового буфера в графическом режиме, но имеет значительно меньший объем. В наиболее распространенном текстовом режиме (80х25 символов) размер видеостраницы составляет 4000 байт, в режиме 40х25 — 2000 байт. На практике для удобства адресации под видеостраницу отводят 4 Кбайт = 4096 байт и 2 Кбайт = 2048 байт соответственно, при этом «лишние» байты (96 и 48) не используются.

Главная особенность текстового режима в том, что адресуемым элементом экрана является не пиксел, а знакоместо. Иными словами, в текстовом режиме нельзя сформировать произвольное изображение в любом месте экрана — можно лишь отобразить символы из заданного набора, причем только в отведенных символьных позициях.

Другим существенным ограничением текстового режима является узкая цветовая палитра — в данном режиме может быть отображено не более 16 цветов.

Таким образом, в текстовом режиме предоставляется значительно меньше возможностей для отображения информации, чем в графическом. Однако важное преимущество текстового режима — значительно меньшие затраты ресурсов ПК на его реализацию.

Переход к более высокому разрешению и большей глубине цвета привел к увеличению загрузки центрального процессора и шины ввода/вывода. В целях разгрузки центрального процессора решение отдельных задач построения изображения было возложено на специализированный набор микросхем (Chipset) видеоадаптера, называемый графическим ускорителем, или акселератором. Акселератор аппаратным путем выполняет ряд действий, направленных на построение изображения.


2. Основные типы видеоадаптеров.

С момента появления и до наших дней сменилось несколько типов видеосистем. К базовым классам видеосистем можно отнести следующие.


1. Адаптер MDA.

Первые модели IBM PC были оснащены монохромным дисплеем с люминофором зеленого свечения. Для связи этого дисплея с компьютером использовался видеоадаптер типа MDA (Monochrome Display Adapter Адаптер монохромного дисплея). Он работал только в текстовом режиме 80x25 символов. Символьная матрица (знакоместо) была размером 9x14 пикселов, поэтому разрешение, поддерживаемое монитором MDA, составляло 720x350 пикселов, а размер самого символа -- 7x9 пикселов. Емкость видеопамяти видеоадаптера MDA была минимальной, достаточной для размещения только одной видеостраницы размером 4 Кбайт. Основу видеоадаптера MDA составляла микросхема МС6845 фирмы Motorola.


2. Адаптер CGA.

Видеосистема CGA включала в себя цветной TTL-монитор и видеоадаптер CGA (Color Graphics AdapterЦветной графический адаптер). Главные отличия этой видеосистемы от MDA отражены в ее названии, т. е. она обеспечивала: цветное изображение (от 4 до 16 цветов); несколько графических режимов работы видеоадаптера.

Максимальное разрешение монитора CGA составляло 640x200. Такое разрешение использовалось либо в текстовом 80x25 (при размере знакоместа 8x8), либо в монохромном графическом режиме. В последнем случае для хранения цифрового образа экрана требовался кадровый буфер размером 640x480x1 = 128 000 бит = 15,625 Кбайт. Поэтому объем видеопамяти видеоадаптера CGA составлял 16 Кбайт. При работе в графическом режиме с более низким разрешением (например 320x200) для кодирования цвета каждого пиксела использовалось 2 бита, благодаря чему обеспечивалось одновременное отображение 4-х цветов, а при разрешении 200x160 — 16-и цветов. В текстовом режиме были доступны все 16 цветов. Видеоадаптер CGA также выполнен на основе микросхемы МС6845.

Меньшая детальность прорисовки символа и малое межсимвольное расстояние, использованные в CGA, настолько ухудшили различимость текста по сравнению с MDA, что длительная работа в текстовом режиме стала крайне утомительна для глаз. Для совмещения главных достоинств CGA (графического режима и цветного изображения) с возможностью продуктивно работать в текстовых режимах, в PC могли быть установлены обе видеосистемы одновременно. Чтобы исключить конфликты, были разнесены адреса видеопамяти и управляющих регистров на видеоадаптерах CGA и MDA.

Интересная особенность видеоадаптера CGA — он может использовать обычный телевизор в качестве устройства отображения. Для этого видеоадаптер CGA был оснащен специальным кодирующим устройством, которое из четырех двоичных сигналов I, R, G, В и сигналов синхронизации формирует композитный (совмещенный) полный цветной телевизионный сигнал (ПЦТС).


3. Адаптер HGC.

Стандарт HGC (Hercules Graphics Card), разработанный фирмой Hercules в 1982 г., явился логичным решением, позволившим объединить в одном изделии возможности MDA, обеспечивающие высококачественное отображение текста, с поддержкой графического режима CGA. Часто видеоадаптеры этого стандарта называют картами Hercules). Поскольку в качестве устройства отображения для данного видеоадаптера использовался стандартный монохромный монитор видеосистемы MDA, видеоадаптеры HGC быстро завоевали популярность и де-факто стали единственным стандартом в, области видеосистем для PC, разработанных за пределами фирмы IBM.

По своему разрешению (720x348) видеоадаптер HGC подобен карте MDA. Соответственно, одинаковы у них и размеры символьной матрицы для текстового режима — 9x14 пикселов. В качестве видеоконтроллера в HGC используется уже известная микросхема МС6845.

Длина первых карт Hercules равнялась примерно 30 см; на их платах размещалось около 100 отдельных корпусов микросхем. Карты, производимые позднее, объединяли все элементы в одном чипе, таком как, например, микросхема контроллера TD3088. Обычно на такой карте находится еще и параллельный порт для подключения принтера.

Однако, несмотря на все перечисленные выше достоинства, видеоадаптеры данного типа имели существенный недостаток — монохромность изображения. По этой причине их широкое использование практически прекратилось с появлением новых видеоадаптеров фирмы IBMEGA и VGA.


4. Адаптер EGA.

Новый видеоадаптер EGA (Enhanced Graphics AdapterУлучшенный графический адаптер) обеспечивал более высокое разрешение по вертикали, большее количество отображаемых цветов и обладал более высоким быстродействием. Максимальное разрешение, обеспечиваемое видеосистемой EGA, составило 640x350, что позволило значительно повысить качество изображения в текстовом и графическом режимах работы по сравнению с CGA. Благодаря увеличению размера знакоместа до 8x14 (размер символа составил 7x9) значительно повысилась четкость отображения текста.

По сравнению с CGA в видеоадаптере EGA была усовершенствована схема кодирования цвета пиксела: вместо четырех двоичных сигналов использовалось шесть, что увеличило размер палитры до 64 оттенков. Однако количество одновременно отображаемых цветов по-прежнему было ограничено шестнадцатью.

Применение 16-цветной палитры при разрешении 640x350 потребовало резко увеличить объем видеопамяти: в первых моделях видеоадаптера EGA было установлено 64 Кбайт видеопамяти, в дальнейшем размер видеопамяти был увеличен до 128 Кбайт.

Видеоадаптер EGA имел еще одну важную особенность, существенную для неанглоязычных пользователей PC: наряду с аппаратным знакогенератором он позволял использовать и программный, т. е. загружаемые шрифты. Это значительно облегчило поддержку национальных языков. Для видеоадаптера EGA характерно наличие DIP-переключателей на задней панели блока, при помощи которых производится настройка видеоадаптера на конкретный режим работы: выбор цветного или монохромного режима, количества текстовых столбцов (40 или 80), выбор разрешения по вертикали, а также ряд других настроек. Необходимость такой настройки диктовалась возможностью использования различных мониторов совместно с видеоадаптером EGA. Поскольку выходной 9-штырьковый разъем видеоадаптера EGA по конструкции и назначению контактов аналогичен разъемам CGA и MDA, вместе с EGA могли использоваться три типа мониторов: монохромный монитор MDA; цветной монитор CGA; Цветной монитор EGA(Enhanced Color Display, ECU)

При подключении к видеоадаптеру EGA улучшенного цветного дисплея использовались более высокие частоты строчной и кадровой развертки, снижающие мерцание экрана монитора.

Многие модели видеоадаптеров EGA унаследовали от CGA возможность вывода композитного видеосигнала на обычный телевизор или композитный монитор. Такие модели имеют на задней панели разъем типа RCA. Хотя видеосистема EGA была намного лучше, чем CGA, качество формируемого ею изображения по-прежнему нельзя было считать удовлетворительным по причине ограниченного количества одновременно отображавших цветов (16). Поэтому судьба видеосистемы EGA была предрешена. Ее не спасло даже появление расширения стандарта EGA — видеосистемы EGA-плюс, которая обеспечивала более высокое разрешение 800x600 и отображение 16-и цветов. Эта новинка просто не успела получить широкого распространения, т. к. вскоре появилась принципиально новая видеосистема VGA, позволившая радикально улучшить качество изображения на экране монитора PC.


5. Адаптеры VGA.

Размер цветовой палитры в видеосистемах CGA и EGA ограничивался не столько видеоадаптером (объемом видеопамяти), сколько цифровыми мониторами, не позволявшими использовать более шести двоичных сигналов для кодирования цвета. Понимая это, специалисты фирмы IBM приняли гениальное и простое решение — вернуться к аналоговому видеосигналу, используемому в обычном телевизоре. В итоге вместо многоразрядного цифрового сигнала видеоадаптер стал формировать трехкомпонентный аналоговый RGB-сигнал, который после усиления подавался на модуляторы электронных пушек ЭЛТ. Так появилась видеосистема VGA, включающая новый аналоговый цветной монитор и встроенный в материнскую плату видеоадаптер VGA. Впервые она была использована в компьютере IBM PS/2 (Personal System). В дальнейшем видеоадаптеры VGA стали выпускать в виде отдельных плат, устанавливаемых в 16-разрядный слот шины ISA.

Существует несколько вариантов расшифровки аббревиатуры VGA. Первоначально она обозначала название сверхбольшой интегральной схемы (СБИС), в которой были реализованы основные узлы видеоадаптера (Video Gate Array — Вентильная матрица для формирования видеосигнала). Однако потом нюансы внутреннего устройства таких адаптеров отошли на второй план, а расшифровка этих аббревиатур стала отражать их функциональные особенности. Была также учтена созвучность данных аббревиатур с названиями предыдущих видеоадаптеров (CGA, EGA), в которых сочетание GA (Graphics Adapter) означало графический адаптер. В итоге, VGA стали расшифровывать как Video Graphics Adapterграфический адаптер, формирующий видеосигнал (т. е. аналоговый сигнал).

Основным конструктивным отличием видеоадаптера VGA от своего предшественника (EGA) стало наличие специальной микросхемы — RAMDAC (Random Access Memory Digital-to-Analog ConverterЦифро-аналоговый преобразователь данных, хранимых в ОЗУ). RAMDAC представлял собой быстродействующий трехканальный ЦАП, оснащенный 256-ю регистрами цвета, образующими его собственное маленькое ОЗУ — RAM (этим и объясняется название данного элемента — RAMDAC, а не просто DAC). RAMDAC предназначен для преобразования двоичных чисел, содержащихся в ячейках видеопамяти, в три непрерывных RGB-сигнала, уровень которых пропорционален яркости каждого из трех основных цветов.

Видеоадаптер VGA имел 256 Кбайт видеопамяти. Это обеспечило поддержку графических режимов 640x480 при 16-и цветах (640x480/16) и 320x200/256. В последнем случае используется 8-битная кодировка цвета пиксела, благодаря чему размер текущей палитры равен 256 цветовым оттенкам (именно столько регистров цвета имеет RAMDAC). Благодаря использованию видеорежима 320x200/256 впервые стало возможно получить изображение, хоть и немного размытое, но весьма реалистичное по цветовой гамме.

В соответствии с традициями IBM видеоадаптер VGA обеспечивал совместимость со всеми видеорежимами предыдущих видеоадаптеров. Дополнительно он поддерживал три новых видеорежима:

  • высококачественный текстовый режим 80x25 символов при 16 цветах, разрешение экрана 720x400, размер знакоместа 9x16, частота кадров 70 Гц;

  • графический режим 640x480/16;

  • графический режим 3200x200/256.


6. Адаптер Super VGA.

Первоначально совершенствование видеоадаптера VGA шло в основном за счет увеличения объема его видеопамяти: сначала до 512 Кбайт, а затем и до 1 Мбайт. Появились видеоадаптеры, поддерживающие режимы 800x600, 1024x768 при одновременном отображении 256-и оттенков цветов. Для работы с такими видеоадаптерами использовались модернизированные мониторы, имеющие уменьшенное зерно люминофора экрана, повышенные частоты синхронизации и более широкую полосу пропускания видеотракта. Возникло понятие видеосистемы Super VGA, под которым поначалу понималось любое расширение возможностей стандарта VGA. Первой фирмой, изготовившей видеоадаптер, поддерживающий режим 800x600/256, была фирма NEC, а пионером среди видеоадаптеров, поддерживающих разрешение 1024x768, стал видеоадаптер 8514/А фирмы IBM.

Появление многочисленных моделей видеоадаптеров SVGA, изготовленных разными фирмами, породило проблему их совместимости с программным обеспечением. Причина ее возникновения заключалась в том, что расширенные режимы работы видеоадаптера не поддерживали стандартные способы инициализации: каждая из фирм-производителей использовала свои номера видеорежимов, расширенных относительно VGA, и свои команды инициализации. Например, режим 800x600/256 у видеоадаптеров фирмы Trident Microsystems имеет номер 5Eh, у видеоадаптеров фирмы Realtek -27h, а у видеоадаптеров фирмы Tseng Labs — 30h. Следовательно, для установки режима 800x600/256 центральный процессор должен послать каждому из этих видеоадаптеров различные команды, что затрудняет создание универсальной программы.

Долгое время нельзя было говорить о Super VGA как о стандарте еще и потому, что не был четко определен смысл самого термина SVGA. Часто обычный видеоадаптер VGA преподносился продавцами как SVGA только на том основании, что поддерживал видеорежим 800x600/16. Однако для реализации такого режима необходимо менее 256 Кбайт видеопамяти, поэтому практически любой видеоадаптер VGA, имеющий стандартный объем памяти (256 Кбайт), может поддерживать данный режим.

Стремясь исправить это ненормальное положение, Ассоциация стандартов по видеоэлектронике (Video Electronics Standard Association, VESA) предложила свой стандарт на нумерацию и способ инициализации видеорежимов, расширенных относительно VGA. Было предложено считать SVGA-режимами только такие, которые требуют для своей реализации не менее 512 Кбайт видеопамяти. Это позволило создавать универсальные программы, предназначенные для работы в режимах с повышенным разрешением, а также решать вопрос принадлежности видеоадаптера к семейству SVGA. He случайно в течение длительного времени объем видеопамяти был главным критерием качества видеоадаптера SVGA.

Стандарт VESA имел несколько версий, появление которых отражало эволюцию возможностей видеосистемы. Кроме того, в адаптерах SVGA начали использоваться 24-разрядные RAMDAC и прямая кодировка цвета пиксела, благодаря чему появились такие режимы, как High Color (16 бит на пиксел, или 65 536 цветов) и True Color (24 бит на пиксел, или 16 777 216 цветов).

Программы, дополняющие Video BIOS видеоадаптера SVGA для обеспечения поддержки спецификации VESA, получили название VВЕ (VESA BIOS Extension). Первоначально они использовались в виде драйверов и резидентных программ, загружаемых в память по мере необходимости. В настоящее время все современные видеоадаптеры содержат VBE в ROM Video BIOS, благодаря чему совместимость со спецификацией VESA обеспечивается автоматически.

С переходом к более высокому разрешению и большей глубине цвета резко увеличилась загрузка центрального процессора PC и шины ввода/вывода. Чтобы разгрузить центральный процессор, решение ряда задач построения изображения (заполнения кадрового буфера) решили возложить на специализированный набор микросхем (Chipset) видеоадаптера, получивший название графического ускорителя (акселератора).

Другим способом повышения производительности видеосистемы и PC в целом стало применение видеоадаптеров с более быстрым интерфейсом, чем ISA. Первоначально для нужд видеосистемы использовалась 32-разрядная локальная шина VLB (VESA Local Bus), которая в дальнейшем была вытеснена более быстрой и совершенной шиной PCI (Peripheral Component Interconnect — Соединение периферийных устройств). В настоящее время большинство видеоадаптеров, оснащенных функциями ускорения 2D- и 3D-гpaфики, имеют интерфейс AGP. Последним достижением стал новый графический интерфейс PCI Express.


6


Автор
Дата добавления 16.03.2016
Раздел Информатика
Подраздел Конспекты
Просмотров460
Номер материала ДВ-531026
Получить свидетельство о публикации

"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх