Инфоурок Математика КонспектыВеликие математики. ( Для внеклассных мероприятий)

Великие математики. ( Для внеклассных мероприятий)

Скачать материал

Выберите документ из архива для просмотра:

Выбранный для просмотра документ Евклид.docx

                              Евклид

Евклид

О жизни этого ученого почти ничего не известно. До нас дошли только отдельные легенды о нем. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу, «этот ученый муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата, известный под именем «Геометра», ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира».

Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», — ответил ему ученый. Так в виде легенды дошло до нас это ставшее крылатым выражение.

Царь Птолемей I, чтобы возвеличить свое государство, привлекал в страну ученых и поэтов, создав для них храм муз — Мусейон. Здесь были залы для занятий, ботанический и зоологический сады, астрономический кабинет, астрономическая башня, комнаты для уединенной работы и главное — великолепная библиотека. В числе приглашенных ученых оказался и Евклид, который основал в Александрии — столице Египта — математическую школу и написал для ее учеников свой фундаментальный труд.

Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенный под общим названием «Начала» — главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры.

Предшественники Евклида — Фалес, Пифагор, Аристотель и другие много сделали для развития геометрии. Но все это были отдельные фрагменты, а не единая логическая схема.

Как современников, так и последователей Евклида привлекала систематичность и логичность изложенных сведений. «Начала» состоят из тринадцати книг, построенных по единой логической схеме. Каждая из тринадцати книг начинается определением понятий (точка, линия, плоскость, фигура и т. д.), которые в ней используются, а затем на основе небольшого числа основных положений (5 аксиом и 5 постулатов), принимаемых без доказательства, строится вся система геометрии.

В то время развитие науки и не предполагало наличия методов практической математики. Книги I—IV охватывали геометрию, их содержание восходило к трудам пифагорейской школы. В книге V разрабатывалось учение о пропорциях, которое примыкало к Евдоксу Книдскому. В книгах VII—IX содержалось учение о числах, представляющее разработки пифагорейских первоисточников. В книгах Х—ХІІ содержатся определения площадей в плоскости и пространстве (стереометрия), теория иррациональности (особенно в Х книге); в XIII книге помещены исследования правильных тел, восходящие к Теэтету.

«Начала» Евклида представляют собой изложение той геометрии, которая известна и поныне под названием евклидовой геометрии. Она описывает метрические свойства пространства, которое современная наука называет евклидовым пространством. Евклидово пространство является ареной физических явлений классической физики, основы которой были заложены Галилеем и Ньютоном. Это пространство пустое, безграничное, изотропное, имеющее три измерения. Евклид придал математическую определенность атомистической идее пустого пространства, в котором движутся атомы. Простейшим геометрическим объектом у Евклида является точка, которую он определяет как то, что не имеет частей. Другими словами, точка — это неделимый атом пространства.

Бесконечность пространства характеризуется тремя постулатами:

«От всякой точки до всякой точки можно провести прямую линию».
«Ограниченную прямую можно непрерывно продолжить по прямой».
«Из всякого центра и всяким раствором может быть описан круг».

Учение о параллельных и знаменитый пятый постулат («Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых») определяют свойства евклидова пространства и его геометрию, отличную от неевклидовых геометрий.

Обычно о «Началах» говорят, что после Библии это самый популярный написанный памятник древности. Книга имеет свою, весьма примечательную историю. В течение двух тысяч лет она являлась настольной книгой школьников, использовалась как начальный курс геометрии. «Начала» пользовались исключительной популярностью, и с них было снято множество копий трудолюбивыми писцами в разных городах и странах. Позднее «Начала» с папируса перешли на пергамент, а затем на бумагу. На протяжении четырех столетий «Начала» публиковались 2500 раз: в среднем выходило ежегодно 6—7 изданий. До XX века книга считалась основным учебником по геометрии не только для школ, но и для университетов.

«Начала» Евклида были основательно изучены арабами, а позднее европейскими учеными. Они были переведены на основные мировые языки. Первые подлинники были напечатаны в 1533 году в Базеле Любопытно, что первый перевод на английский язык, относящийся к 1570 году, был сделан Генри Биллингвеем, лондонским купцом

Евклиду принадлежат частично сохранившиеся, частично реконструированные в дальнейшем математические сочинения. Именно он ввел алгоритм для получения наибольшего общего делителя двух произвольно взятых натуральных чисел и алгоритм, названный «счетом Эратосфена», — для нахождения простых чисел от данного числа.

Евклид заложил основы геометрической оптики, изложенные им в сочинениях «Оптика» и «Катоптрика». Основное понятие геометрической оптики — прямолинейный световой луч. Евклид утверждал, что световой луч исходит из глаза (теория зрительных лучей), что для геометрических построений не имеет существенного значения. Он знает закон отражения и фокусирующее действие вогнутого сферического зеркала, хотя точного положения фокуса определить еще не может. Во всяком случае в истории физики имя Евклида как основателя геометрической оптики заняло надлежащее место.

У Евклида мы встречаем также описание монохорда — однострунного прибора для определения высоты тона струны и ее частей. Полагают, что монохорд придумал Пифагор, а Евклид только описал его («Деление канона», III век до нашей эры).

Евклид со свойственной ему страстью занялся числительной системой интервальных соотношений. Изобретение монохорда имело значение для развития музыки. Постепенно вместо одной струны стали использоваться две или три. Так было положено начало созданию клавишных инструментов, сначала клавесина, потом пианино, А первопричиной появления этих музыкальных инструментов стала математика.

Конечно, все особенности евклидова пространства были открыты не сразу, а в результате многовековой работы научной мысли, но отправным пунктом этой работы послужили «Начала» Евклида. Знание основ евклидовой геометрии является ныне необходимым элементом общего образования во всем мире.

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Великие математики. ( Для внеклассных мероприятий)"

Методические разработки к Вашему уроку:

Получите новую специальность за 2 месяца

Шеф-повар

Получите профессию

Менеджер по туризму

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Выбранный для просмотра документ Лобачевский.docx

http://free-math.ru/history/biogr/lobachevsky.jpgЛобачевский Николай Иванович

Николай Иванович Лобачевский (20 ноября (1 декабря) 1792(17921201), Нижний Новгород — 12 (24) февраля 1856, Казань), русский математик, создатель геометрии Лобачевского, деятель университетского образования и народного просвещения. Известный английский математик Уильям Клиффорд назвал Лобачевского «Коперником геометрии».

Н. И. Лобачевский родился в Ардатовском районе Нижегородской губернии. Его родителями были Иван Максимович Лобачевский (чиновник в геодезическом департаменте) и Прасковья Александровна Лобачевская. В 1800 году после смерти отца мать вместе с семьёй переехала в Казань. Там Лобачевский окончил гимназию (1802—1807), а затем (1807—1811) и только что основанный Казанский Императорский университет, которому отдал 40 лет жизни.

Большое влияние во время обучения в университете на Лобачевского оказал Мартин Фёдорович Бартельс — друг и учитель великого немецкого математика Карла Фридриха Гаусса. Он взял шефство над бедным, но одарённым студентом. На старшем курсе в характеристику Лобачевского включили «мечтательное о себе самомнение, упорство, неповиновение», а также «возмутительные поступки» и даже «признаки безбожия». Над ним нависла угроза отчисления, но заступничество Бартельса и других преподавателей помогло отвести опасность.

По окончании университета Лобачевский получил степень магистра по физике и математике с отличием (1811) и был оставлен при университете. В 1814 году стал адъюнктом, спустя 2 года — экстраординарным, и в 1822 году — ординарным профессором. Студенты высоко ценили лекции Лобачевского.

Круг его обязанностей был обширен — чтение лекций по математике, астрономии и физике, комплектация и приведение в порядок библиотеки и музея и т. д. Среди его служебных обязанностей есть даже «наблюдение за благонадёжностью» всех учащихся Казани.

В 1819 году в Казань приехал ревизор (М. Л. Магницкий), который дал крайне отрицательное заключение о состоянии дел в университете. Магницкого назначили попечителем; он уволил 9 профессоров, вводит строгую цензуру лекций и казарменный режим. Бартельс уехал в Тарту, а Лобачевского назначили деканом физико-математического факультета.

В эти годы он пишет учебники по геометрии и алгебре; первый из них был осуждён за использование метрической системы мер, а второй вообще не был напечатан.
Казанский университет в 1830-е годы

В 1826 г. Магницкий был смещён с должности попечителя за злоупотребления. Назначается новый попечитель (М. Н. Мусин-Пушкин). Лобачевский избирается ректором университета. Он с головой погружается в хозяйственные дела — реорганизация штата, строительство механических мастерских, лабораторий и обсерватории, поддержание библиотеки и минералогической коллекции, участвует в издании «Казанского Вестника» и т. п. Многое он делает собственными руками. Читает научно-популярные лекции по физике для населения. И одновременно он неустанно развивает и шлифует дело своей жизни — неевклидову геометрию.

В 1832 году Лобачевский женился на Варваре Алексеевне Моисеевой. У них родилось семеро детей.

1834: вместо «Казанского вестника» начинается издание «Учёных записок Казанского университета».

Лобачевский был ректором Казанского университета в период с 1827 по 1846 годы, пережив эпидемию холеры (1830) и сильнейший пожар (1842), уничтоживший половину Казани. Благодаря энергии и умелым действиям ректора жертвы и потери в обоих случаях были минимальны. Усилиями Лобачевского Казанский университет становится первоклассным, авторитетным и хорошо оснащённым учебным заведением, одним из лучших в России.

20 ноября 1845 года Лобачевский был в шестой раз утвержден в должности ректора на новое четырёхлетие. Несмотря на это, в 1846 году Министерство грубо отстраняет Лобачевского от должности ректора и профессорской кафедры (официально — по причине ухудшения здоровья). Формально он получил даже повышение — был назначен помощником попечителя, однако жалованья ему за эту работу не назначили.

Вскоре Лобачевский разорён, имение его жены было продано за долги. В 1852 году умирает старший сын Лобачевского. Здоровье его самого подорвано, слабеет зрение. Главный труд учёного, «Пангеометрия» записывают под диктовку ученики слепого учёного в 1855 году.

Похоронен на Арском кладбище в Казани.

Память
Памятник Николаю Лобачевскому в Казани

В 1892 году в России и в других странах широко отметили 100-летний юбилей Лобачевского. Была учреждена международная премия (Медаль Лобачевского, 1895), в Казани открыт памятник учёному (1896).

200-летие Лобачевского отмечалось в 1992 году. Банком России была выпущена памятная монета в серии «Выдающиеся личности России».

В честь Лобачевского назван кратер на Луне. Его имя носят также улицы в Москве и Казани, научная библиотека Казанского университета. 20 марта 1956 г. вышел указ президиума Верховного Совета СССР о присвоении Горьковскому (Нижегородскому) университету имени Н. И. Лобачевского.

Геометрия Лобачевского

Основная статья: Геометрия Лобачевского

Сохранились студенческие записи лекций Лобачевского (от 1817 года), где им делалась попытка доказать пятый постулат Евклида, но в рукописи учебника «Геометрия» (1823) он уже отказался от этой попытки. В «Обозрениях преподавания чистой математики» за 1822/23 и 1824/25 Лобачевский указал на «до сих пор непобедимую» трудность проблемы параллелизма и на необходимость принимать в геометрии в качестве исходных понятия, непосредственно приобретаемые из природы.

7 февраля 1826 года Лобачевский представил для напечатания в Записках физико-математического отделения сочинение: «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных» (на французском языке). Но издание не осуществилось. Рукопись и отзывы не сохранились, однако само сочинение было включено Лобачевским в его труд «О началах геометрии» (1829—1830), напечатанный в журнале «Казанский вестник». Это сочинение стало первой в мировой литературе серьёзной публикацией по неевклидовой геометрии, или геометрии Лобачевского.

Лобачевский считает аксиому параллельности Евклида произвольным ограничением. С его точки зрения, это требование слишком жёсткое, ограничивающее возможности теории, описывающей свойства пространства. В качестве альтернативы предлагает другую аксиому: на плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную. Разработанная Лобачевским новая геометрия не включает в себя евклидову геометрию, однако евклидова геометрия может быть из неё получена предельным переходом (при стремлении кривизны пространства к нулю). В самой геометрии Лобачевского кривизна отрицательна.

Однако научные идеи Лобачевского не были поняты современниками. Его труд «О началах геометрии», представленный в 1832 году советом университета в Академию наук, получил у М. В. Остроградского отрицательную оценку. Среди коллег его почти никто не поддерживает, растут непонимание и невежественные насмешки.

Венцом травли стал издевательский анонимный пасквиль, появившийся в журнале Ф.Булгарина «Сын отечества» в 1834 году:

Как можно подумать, чтобы г. Лобачевский, ординарный профессор математики, написал с какой-нибудь серьёзной целью книгу, которая немного бы принесла чести и последнему школьному учителю! Если не ученость, то по крайней мере здравый смысл должен иметь каждый учитель, а в новой геометрии нередко недостает и сего последнего.

Титульный лист книги Лобачевского

Но Лобачевский не сдаётся. В 1835—1838 он публикует в «Учёных записках» статьи о «воображаемой геометрии», а затем выходит наиболее полная из его работ «Новые начала геометрии с полной теорией параллельных».

Не найдя понимания на родине, он пытается найти единомышленников за рубежом. В 1840 году Лобачевский печатает на немецком языке «Геометрические исследования по теории параллельных», где содержится чёткое изложение его основных идей. Один экземпляр получает Гаусс, «король математиков» той поры.

Как много позже выяснилось, Гаусс и сам тайком развивал неевклидову геометрию, однако так и не решился опубликовать что-либо на эту тему. Ознакомившись с результатами Лобачевского, он выразил свою симпатию к идеям русского учёного косвенно: рекомендовал избрать Лобачевского иностранным членом-корреспондентом Гёттингенского королевского общества. Восторженные отзывы о Лобачевском Гаусс доверил только своим дневникам и самым близким друзьям.

Это избрание состоялось в 1842 году. Однако положения Лобачевского оно не укрепило. Ему осталось работать в родном университете ещё четыре года.

Лобачевский не был единственным исследователем в этой новой области математики. Венгерский математик Янош Бойяи независимо от Лобачевского в 1832 году опубликовал своё описание неевклидовой геометрии. Но и его работы остались неоценёнными современниками.

Лобачевский умер непризнанным. Спустя несколько десятилетий ситуация в науке коренным образом изменилась. Большую роль в признании трудов Лобачевского сыграли исследования Э. Бельтрами (1868), Ф. Клейна (1871), А. Пуанкаре (1883) и др. Появление модели Клейна доказало, что геометрия Лобачевского так же непротиворечива, как и евклидова. Осознание того, что у евклидовой геометрии имеется полноценная альтернатива, произвёл огромное впечатление на научный мир и придал импульс другим новаторским идеям в математике и физике.

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Великие математики. ( Для внеклассных мероприятий)"

Получите профессию

Копирайтер

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Выбранный для просмотра документ Пифагор.docx

                         Пифагор

(ок. 570-ок. 500 гг. до н.э.)

http://komkova.su/images/_Content/Eto_interesno/Velikie_matematiki/pifagor.jpg

 

Пифагор Самосский (ок. 580 — ок. 500 до н. э.) — древнегреческий философ, религиозный и политический деятель, основатель пифагореизма, математик. Пифагору приписывается изучение свойств целых чисел и пропорций, доказательство теоремы Пифагора и др.

В VI веке до нашей эры средоточием греческой науки и искусства стала Иония — группа островов Эгейского моря, расположенных у берегов Малой Азии. Там в семье золотых дел мастера, резчика печатей и гравера Мнесарха родился сын. По преданию, в Дельфах, куда приехали Мнесарх с женой Парфенисой, — то ли по делам, то ли в свадебное путешествие — оракул предрек им рождение сына, который прославится в веках своей мудростью, делами и красотой. Бог Аполлон, устами оракула, советует им плыть в Сирию. Пророчество чудесным образом сбывается — в Сидоне Парфениса родила мальчика. И тогда по древней традиции Парфениса принимает имя Пифиада, в честь Аполлона Пифийского, а сына нарекает Пифагором, то есть предсказанным пифией.

В легенде ничего не говорится о годе рождения Пифагора, исторические исследования датируют его появление на свет приблизительно 580 годом до нашей эры. Вернувшись из путешествия, счастливый отец воздвигает алтарь Аполлону и окружает юного Пифагора заботами, которые могли бы способствовать исполнению божественного пророчества.

Возможности дать сыну хорошее воспитание и образование у Мнесарха были. Как всякий отец, Мнесарх мечтал, что сын будет продолжать его дело — ремесло золотых дел мастера. Жизнь рассудила иначе. Будущий великий математик и философ уже в детстве обнаружил большие способности к наукам. У своего первого учителя Гермодамаса Пифагор получает знания основ музыки и живописи. Для упражнения памяти Гермодамас заставлял его учить песни из «Одиссеи» и «Илиады». Первый учитель прививал юному Пифагору любовь к природе и ее тайнам. «Есть еще другая Школа, — говорил Гермодамас, — твои чувствования происходят от Природы, да будет она первым и главным предметом твоего учения».

Прошло несколько лет, и по совету своего учителя Пифагор решает продолжить образование в Египте, у жрецов. Попасть в Египет в то время было трудно, потому что страну фактически закрыли для греков. Да и властитель Самоса тиран Поликрат тоже не поощрял подобные поездки. При помощи учителя Пифагору удается покинуть остров Самое. Но пока до Египта далеко. Он живет на острове Лесбос у своего родственника Зоила. Там происходит знакомство Пифагора с философом Ферекидом — другом Фалеса Милетского. У Ферекида Пифагор учится астрологии, предсказанию затмений, тайнам чисел, медицине и другим обязательным для того времени наукам. Пифагор прожил на Лесбосе несколько лет. Оттуда путь Пифагора лежит в Милет — к знаменитому Фалесу, основателю первой в истории философской школы. От него принято вести историю греческой философии.

Пифагор внимательно слушает в Милете лекции Фалеса, тогда уже восьмидесятилетнего старца, и его более молодого коллегу и ученика Анаксимандра, выдающегося географа и астронома. Много важных знаний приобрел Пифагор за время своего пребывания в Милетской школе. Но Фалес тоже советует ему поехать в Египет, чтобы продолжить образование. И Пифагор отправляется в путь.

Перед Египтом Пифагор на некоторое время останавливается в Финикии, где, по преданию, учится у знаменитых сидонских жрецов. Пока он живет в Финикии, его друзья добиваются того, что Поликрат — властитель Самоса, не только прощает беглеца, но даже посылает ему рекомендательное письмо для Амазиса — фараона Египта. В Египте благодаря покровительству Амазиса Пифагор знакомится с мемфисскими жрецами. Ему удается проникнуть в «святая святых» — египетские храмы, куда чужестранцы не допускались. Чтобы приобщиться к тайнам египетских храмов, Пифагор, следуя традиции, принимает посвящение в сан жреца.

Учеба Пифагора в Египте способствует тому, что он сделался одним из самых образованных людей своего времени. К этому периоду относится событие, изменившее его дальнейшую жизнь Скончался фараон Амазис, а его преемник по трону не выплатил ежегодную дань Камбизу, персидскому Царю, что послужило достаточным поводом для войны. Персы не пощадили даже священные храмы. Подверглись гонениям и жрецы, их убивали или брали в плен. Так попал в персидский плен и Пифагор.

Согласно старинным легендам, в плену в Вавилоне Пифагор встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили Пифагора со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой. Эти науки у халдеев в значительной степени опирались на представления о магических и сверхъестественных силах, они придали определенное мистическое звучаний философии и математике Пифагора...

Двенадцать лет пробыл в вавилонском плену Пифагор, пока его не освободил персидский царь Дарий Гистасп, прослышавший о знаменитом греке. Пифагору уже шестьдесят, он решает вернуться на родину, чтобы приобщить к накопленным знаниям свой народ.

С тех пор как Пифагор покинул Грецию, там произошли большие изменения. Лучшие умы, спасаясь от персидского ига, перебрались в Южную Италию, которую тогда называли Великой Грецией, и основали там города-колонии Сиракузы, Агригент, Кротон. Здесь и задумывает Пифагор создать собственную философскую школу.

Довольно быстро он завоевывает большую популярность среди жителей. Энтузиазм населения так велик, что даже девушки и женщины нарушали закон, запрещавший им присутствовать на собраниях. Одна из таких нарушительниц, девушка по имени Теано, становится вскоре женой Пифагора.

В это время в Кротоне и других городах Великой Греции растет общественное неравенство, вошедшая в легенды роскошь сибаритов (жителей города Сибариса) бок о бок соседствует с бедностью, усиливается социальная угнетенность, заметно падает нравственность. Вот в такой обстановке Пифагор выступает с развернутой проповедью нравственного совершенствования и познания. Жители Кротона единодушно избирают мудрого старца цензором нравов, своеобразным духовным отцом города. Пифагор умело использует знания, полученные в странствиях по свету. Он объединяет лучшее из разных религий и верований, создает свою собственную систему, определяющим тезисом которой стало убеждение в нерасторжимой взаимосвязи всего сущего (природы, человека, космоса) и в равенстве всех людей перед лицом вечности и природы.

В совершенстве владея методами египетских жрецов, Пифагор «очищал души своих слушателей, изгонял пороки из сердца и наполнял умы светлой истиной». В Золотых стихах Пифагор выразил те нравственные правила, строгое исполнение которых приводит души заблудших к совершенству. Вот некоторые из них: не делай никогда того, чего ты не знаешь, но научись всему, что следует знать, и тогда ты будешь вести спокойную жизнь; переноси кротко свой жребий, каков он есть, и не ропщи на него; приучайся жить без роскоши.

Со временем Пифагор прекращает выступления в храмах и на улицах, а учит уже в своем доме. Система обучения была сложной, многолетней. Желающие приобщиться к знанию должны пройти испытательный срок от трех до пяти лет. Все это время ученики обязаны хранить молчание и только слушать Учителя, не задавая никаких вопросов. В этот период проверялись их терпение, скромность.

Пифагор учил медицине, принципам политической деятельности, астрономии, математике, музыке, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Это был не только учитель, но и исследователь. Исследователями становились и его ученики. Пифагор развил теорию музыки и акустики, создав знаменитую «пифагорейскую гамму» и проведя основополагающие эксперименты по изучению музыкальных тонов: найденные соотношения он выразил на языке математики. В Школе Пифагора впервые высказана догадка о шарообразности Земли. Мысль о том, что движение небесных тел подчиняется определенным математическим соотношениям, идеи «гармонии мира» и «музыки сфер», впоследствии приведшие к революции в астрономии, впервые появились именно в Школе Пифагора.

Многое сделал ученый и в геометрии. Доказанная Пифагором знаменитая теорема носит его имя. Достаточно глубоко исследовал Пифагор и математические отношения, закладывая тем самым основы теории пропорций. Особенное внимание он уделял числам и их свойствам, стремясь познать смысл и природу вещей. Посредством чисел он пытался даже осмыслить такие вечные категории бытия, как справедливость, смерть, постоянство, мужчина, женщина и прочее.

Пифагорейцы полагали, что все тела состоят из мельчайших частиц — «единиц бытия», которые в различных сочетаниях соответствуют различным геометрическим фигурам. Число для Пифагора было и материей, и формой Вселенной. Из этого представления вытекал и основной тезис пифагорейцев: «Все вещи — суть числа». Но поскольку числа выражали «сущность» всего, то и объяснять явления природы следовало только с их помощью. Пифагор и его последователи своими работами заложили основу очень важной области математики — теории чисел.

Все числа пифагорейцы разделяли на две категории — четные и нечетные, что характерно и для некоторых других древних цивилизаций. Позднее выяснилось, что пифагорейские «четное — нечетное», «правое — левое» имеют глубокие и интересные следствия в кристаллах кварца, в структуре вирусов и ДНК, в знаменитых опытах Пастера с поляризацией винной кислоты, в нарушении четности элементарных частиц и других теориях.

Не чужда была пифагорейцам и геометрическая интерпретация чисел. Они считали, что точка имеет одно измерение, линия — два, плоскость — три, объем — четыре измерения.

Десятка может быть выражена суммой первых четырех чисел (1+2+3+4=10), где единица — выражение точки, двойка — линии и одномерного образа, тройка — плоскости и двумерного образа, четверка — пирамиды, то есть трехмерного образа. Ну чем не четырехмерная Вселенная Эйнштейна?

При суммировании всех плоских геометрических фигур — точки, линии и плоскости — пифагорейцы получали совершенную, божественную шестерку.

Справедливость и равенство пифагорейцы видели в квадрате числа. Символом постоянства у них было число девять, поскольку все кратные девяти числа имеют сумму цифр опять-таки девять. Число восемь у пифагорейцев символизировало смерть, так как кратные восьми имеют уменьшающуюся сумму цифр.

Пифагорейцы считали четные числа женскими, а нечетные мужскими Нечетное число — оплодотворяющее и, если его сочетать с четным, оно возобладает; кроме того, если разлагать четное и нечетное надвое, то четное, как женщина, оставляет в промежутке пустое место, между двумя частями. Поэтому и считают, что одно число свойственно женщине, а другое мужчине. Символ брака у пифагорейцев состоял из суммы мужского, нечетного числа три и женского, четного числа два. Брак — это пятерка, равная трем плюс два. По той же причине прямоугольный треугольник со сторонами три, четыре, пять был назван ими «фигура невесты».

Четыре числа, составляющие тетраду — один, два, три, четыре —имеют прямое отношение к музыке: они задают все известные консонантные интервалы — октаву (1:2), квинту (2:3) и кварту (3:4). Иными словами, декада воплощает не только геометрически-пространственную, но и музыкально-гармоническую полноту космоса. Среди свойств десятки отметим еще и то, что в нее входит равное количество простых и составных чисел, а также столько же четных, сколько и нечетных.

Сумма чисел, входящих в тетраду, равна десяти, именно поэтому десятка считалась у пифагорейцев идеальным числом и символизировала Вселенную. Поскольку число десять — идеальное, рассуждали они, на небе должно быть ровно десять планет. Надо заметить, что тогда были известны лишь Солнце, Земля и пять планет.

Знаменитая тетрада, состоящая из четырех чисел, повлияла через пифагорейцев на Платона, который придавал особое значение четырем материальным элементам: земле, воздуху, огню и воде. Пифагорейцы знали также совершенные и дружественные числа. Совершенным называлось число, равное сумме своих делителей Дружественные — числа, каждое из которых — сумма собственных делителей другого числа. В древности числа такого рода символизировали дружбу, отсюда и название.

Кроме чисел, вызывавших восхищение и преклонение, у пифагорейцев были и так называемые нехорошие числа. Это числа, которые не обладали никакими достоинствами, а еще хуже, если такое число было окружено «хорошими» числами. Примером тому может служить знаменитое число тринадцать — чертова дюжина или число семнадцать, вызывавшее особое отвращение у пифагорейцев.

Попытку Пифагора и его школы связать реальный мир с числовыми отношениями нельзя считать неудачной, поскольку в процессе изучения природы пифагорейцы наряду с робкими, наивными и порой фантастическими представлениями выдвинули и рациональные способы познания тайн Вселенной. Сведение астрономии и музыки к числу дало возможность более поздним поколениям ученых понять мир еще глубже.

После смерти ученого в Метапонте (Южная Италия), куда Пифагор бежал по окончании восстания в Кротоне, его ученики обосновались в разных городах Великой Греции и организовали там пифагорейские общества.

В новое время, особенно благодаря бурному развитию естествознания, астрономии и математики, идеи Пифагора о мировой гармонии приобретают новых поклонников. Великие Николай Коперник и Иоганн Кеплер, знаменитый художник и геометр Дюрер, гениальный Леонардо да Винчи, английский астроном Эддингтон, экспериментально подтвердивший в 1919 году теорию относительности, и многие другие ученые и философы продолжают находить в научно-философском наследии Пифагора необходимое основание для установления закономерностей нашего мира.

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Великие математики. ( Для внеклассных мероприятий)"

Получите профессию

Экскурсовод (гид)

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Выбранный для просмотра документ С.Ковалевская.doc

 

СОФЬЯ ВАСИЛЬЕВНА КОВАЛЕВСКАЯ (1850-1891)

 

Когда 15 января 1850 года в семье командира Московского артиллерийского гарнизона родилась дочь Соня, вряд ли кто мог предположить, что она станет ученой. Её отец — генерал Корвин-Круковский, начальник московского арсенала, по семейному преданию вёл свой род от венгерского короля Матвея Корвина.

В метрической книге Московской духовной консистории Никитского сорока, Знаменской церкви за Петровскими воротами, за 1850 г. имеется запись: "3 генваря родилась, 17 ~ крещена София; родители ее ~ Артиллерии полковник Василий Васильевич сын Круковской и законная жена его Елизавета Федоровна; муж православного исповедания, а жена лютеранского. Восприемники: отставной Артиллерии подпоручик Семен Васильевич сын Круковской и провиантмейстера Василия Семеновича сына Круковского дочь девица Анна Васильевна.

Ее мать, Елизавета Шуберт, была талантливой пианисткой и просто обаятельной светской женщиной, говорившей на четырёх европейских языках. С материнской стороны в роду у Софьи были два немца - академика Петербургской академии наук.

Елизавета Федоровна, была внучкой петербургского академика, астронома Федора Ивановича Шуберта и дочерью почетного академика, геодезиста Федора Федоровича Шуберта.Он был крупным ученым и военным деятелем, известным своими работами по геодезии и изданием географических карт России.

По словам шведской писательницы Эллен Кей, Софья Васильевна в беседе со стокгольмскими друзьями так говорила о своих связях с предками, определившими ее духовное и умственное развитие: "Я получила в наследство страсть к науке от предка, венгерского короля Матвея Корвина; любовь к математике, музыке и поэзии — от деда матери с отцовской стороны, астронома Шуберта; личную любовь к свободе — от Польши; от цыганки прабабки — любовь к бродяжничеству и неуменье подчиняться принятым обычаям; остальное — от России".

В газете "Калужские губернские ведомости" за 1858 г. напечатано, что 21 апреля генерал-майору Василию Васильевичу Корвин-Круковскому, а также Михаилу Семеновичу и Федору Васильевичу Корвин-Круковским присуждены свидетельства о дворянстве.

Отец Софьи Васильевны, Василий Васильевич, был на двадцать лет старше (жены) Елизаветы Федоровны. Он относился к жене, как к ребенку, и этот характер отношений сохранился до конца их совместной жизни. Василий Васильевич Корвин-Круковский в силу должностных обязанностей много ездил по стране. Так, что дети, а их в семье было двое - старшая Анна и младшая Сонечка росли без пристального родительского присмотра дерзкими, независимыми, эмоциональными.

Когда Соне было шесть лет, отец вышел в отставку и поселился в своем родовом имении Полибино, в Витебской губернии.

Вообще дочери у генерала Корвин - Круковского уродились замечательные. Старшая, Анна к 15 - ти годам перечитала всю отцовскую библиотеку и сама, взявшись за перо, сочиняла недурные рассказы. Соня, на пять лет младше сестры, от корки до корки проштудировала толстый алгебраический задачник. Она ходила по дому, все время что - то складывая, вычитая, умножая. Отец только качал головой и сетовал на то, что ребенок сушит мозги совсем ненужной наукой. Он надеялся, что, превратившись в очаровательных барышень, дочери выбросят все эти глупости из головы,

К сожалению, родители отдавали тепло своих сердец старшей сестре-красавице Анюте и младшему брату Феде, единственному сыну Круковских. Стремясь заслужить родительскую любовь, Соня старательно училась. За восемь лет она прошла с домашним учителем Иосифом Малевичем практически весь курс мужской гимназии. Девушка зачитывалась балладами Жуковского, с детства писала стихи. Именно литературные способности отметил в Соне Малевич. Но она неожиданно страстно увлеклась математикой.

Профессор физики Морской академии Николай Никанорович Тыртов подарил отцу Сони написанный им учебник. Соня, которой было в то время лет четырнадцать, заинтересовалась этим учебником и самостоятельно начала читать его.

Тыртов был изумлен, когда при новом посещении Круковских убедился в том, что Соня воссоздала простейшие теоремы тригонометрии.

Он горячо расхвалил ее отцу, назвав девочку "новым Паскалем", и советовал генералу дать дочери возможность заниматься высшей математикой. Тыртов порекомендовал генералу Корвин-Круковскому в качестве учителя для его дочери слушателя Морской академии лейтенанта флота Александра Николаевича Страннолюбского.

В одном из писем к (сестре) Анюте Соня говорит: "Страннолюбский просидел у нас весь вечер. Он вовсе не озлился, когда я сказала ему, что собираюсь, кроме математики, заниматься еще физиологией, анатомией, физикой и химией; напротив, он сам согласился, что одна математика слишком мертва, и советовал не посвящать себя исключительно науке и заняться даже практической деятельностью".

Похвалы только укрепили решимость Софьи поступить в университет. Однако на пути к высшему образованию стояли как минимум две преграды. Первой был... пол. В то время вход в отечественные вузы для девушек был заказан. У них существовал только один выход - уехать учиться за границу. Второй преградой было сильное предубеждение отца против "ученых женщин". По старинке Василий Васильевич собирался подобрать для дочерей состоятельных женихов, которые бы их надежно обеспечили.

Её идейная вдохновительница, старшая сестра Анна, тоже мечтала вырваться из отцовского дома. Она чувствовала себя состоявшейся писательницей (а в глазах отца это было даже хуже, чем слыть "учёной женщиной"), её первые повести были опубликованы Достоевским. После визита Анны в журнал к Достоевскому Федор Михайлович стал частым гостем в их доме. Оказывая Анне знаки внимания, известный писатель не замечал, какие красноречивые взгляды в его сторону бросает Соня. Достоевский делает предложение руки и сердца Анне (как Соня мечтала оказаться на ее месте). Но сестра, видевшая в Достоевском только друга, отказала ему. Обе сестры были охвачены верой в освободительные идеи, в то, что в жизни им уготована особая миссия.

Единственным выходом могла стать поездка за границу, для которой нужен был "вид на жительство". Этот документ выдавался только девушкам, выезжавшим с родителями, или замужним дамам. Сестры, поняв, что их ни за что не отпустят учиться, решили обратиться к знакомым "прогрессивным" мужчинам с предложением заключить с одной из них фиктивный брак. Замысел, как ни странно, удался. Через некоторое время начинающий ученый Владимир Онуфриевич Ковалевский согласился жениться на Соне. 17-летняя Соня, польщённая таким выбором, писала Анюте: "Обидно, что "брат" Владимир Онуфриевич не магометанин: он женился бы тогда на всех "сестрах" по духу и освободил бы их!" Тот между тем по-настоящему влюбляется в свою идейную невесту и даже строит план побега с ней в случае противодействия отца. Но Соня уговаривает родителя дать согласие. В сентябре 1868 года она выходит замуж, и в тот же день новобрачные уезжают в Петербург. Так перед сестрами открылась блестящая перспектива. В столице Соня добивается права посещения лекций в Медико-хирургической академии, но вскоре понимает, что медицина не для неё. В апреле 1869 года она с мужем и сестрой уезжает за границу. Ковалевская решила попытать счастья в Гейдельберге. После всевозможных проволочек комиссия университета допустила Софью к слушанию лекций по математике и физике. Вскоре русская студентка становится знаменитостью в Гейдельберге.

Владимир Онуфриевич в глубине души надеялся, что его "воробушек" не долго будет фиктивной женой, что Сонечка перегорит и оставит науку. Сам же Ковалевский представлял некую смесь энергичного, бурлящего, но, как говорят "без царя в голове" человека. Его сентиментальная жалостливость мешала коммерции, непостоянство не давало достичь успехов в науке, необязательность приводила к тому, что он терял очень важные должности и знакомства. Рядом с сильной и талантливой женой он выглядел несостоятельным и малоинтересным. Жили они с В.О. Ковалевским по - прежнему как брат и сестра, Софья решительно пресекла все робкие попытки Владимира наладить супружескую жизнь. Осознавая, что муж провоцирует ее на более интимные отношения, не предпринимая никаких объяснений при этом, Соня начала ощущать сильнейший душевный дискомфорт. А однажды она решила, что их отношения похожи на дешевый фарс, и устроила сцену Владимиру, обвиняя во всем его. Владимир уехал, и только тогда Соня поняла, как сильно ей не хватает мужа. Теперь никто не провожал ее в университет, не встречал после занятий, никто не интересовался, как ей живется. Родители, чувствуя неладное, пытались сблизить молодых. К этому времени сестра Анна, заскучав в Гейдельберге, уехала во Францию, и там вышла замуж. Но уже не фиктивно, а по большой любви. Софья осталась совершенно одна в чужой Германии.

3 октября 1870 года Ковалевская отправилась к Вейерштрассу в Берлин. Ковалевская написала первую самостоятельную работу - "О приведении некоторого класса абелевых интегралов третьего ранга к интегралам эллиптическим",

Зиму 1873 и весну 1874 года Ковалевская посвятила исследованию "К теории дифференциальных уравнений в частных производных". Она хотела представить его как докторскую диссертацию. Позднее, установили, что аналогичное сочинение, но более частного характера, еще раньше Ковалевской написал знаменитый ученый Франции Огюстен Коши. Задачу стали называть "теорема Коши - Ковалевской", и она вошла во все основные курсы анализа. Большой интерес представлял приведенный в ней разбор простейшего уравнения (уравнения теплопроводности), в котором Софья Васильевна обнаружила существование особых случаев, сделав тем самым значительное открытие. В июле 1874 года совет университета заочно, без формальной защиты присуждает Ковалевской степень доктора философии по математике и магистра изящных искусств "с наивысшей похвалой". Трёх отличных работ хватило, чтобы Геттингенский университет простил, по словам Вейерштрасса, "принадлежность Сони к слабому полу". Окрыленная успехом, Ковалевская стремится на родину, чтобы преподавать математику в университете.

Двадцатичетырехлетняя Софья возвращалась в Россию. Здесь ее ждет разочарование. Всем ослушницам, вкусившим плод заграничной науки, царское правительство приготовило "перспективную" работу в начальных классах женских гимназий. Для Софьи Васильевны это означало переквалифицироваться из передового ученого в рядовую учительницу арифметики. "К сожалению, я не слишком тверда в таблице умножения", - с грустью шутила она.

На вокзале ее встретил В.О.Ковалевский. Увидев мужа, она вдруг почувствовала необъяснимый прилив нежности к этому человеку. Супруги сняли небольшую квартирку и начали заново узнавать друг друга. У них была только одна проблема - отсутствие денег. Несмотря на очевидные достижения, ни он, ни она не могли найти работу в университете. От Софьиного наследства остались гроши, долгов было множество. В семейном финансовом крахе Софья целиком винила мужа. К тому же она была беременна и у нее началась затяжная депрессия. Она ненавидела свой живот, приступы тошноты, но больше всего она ненавидела мужа. Романтические чувства исчезли, словно их и не было.В 1878 году в семье Ковалевских рождается дочь, и Владимир Онуфриевич вынужден серьезно задуматься об обеспечении семьи. Вместо дальнейшей борьбы за кафедру и прочное место в научном мире он решается на опасный путь быстрого обогащения. Владимир решил попытать счастья в предпринимательстве и прогорел.

Софья собрала вещи и уехала в Москву к родственникам. А после рождения дочери, оставив ее тетушкам, она укатила в Париж. Ее не покидали мысли, что она оставила мужа в беде, бросила ребенка, и Софья решила их заглушить, окунувшись с головой в омут светской жизни. Рауты, ужины, балы, любовник... И вдруг страшная весть из России: Владимир Ковалевский, которого объявили банкротом, покончил жизнь самоубийством... Несмотря на удивительную энергию и работоспособность (ради диссертации он объездил всю Европу), Владимир Онуфриевич оказался не способен к бизнесу. Не умея рассчитывать свои силы и средства, он часто впадал в прожектёрство. Его не насторожил провал затеянного им издания труда Брема "Жизнь животных", поглотившего приданое жены. В 1879 году терпит полный крах затея Ковалевского по строительству и продаже домов. Всё имущество супругов переходит к кредиторам.

В конце 1880 года Ковалевского избирают штатным доцентом Московского университета. Казалось, открыт прямой путь к главной цели его жизни. Но он втягивается в новое коммерческое предприятие, и вскоре партнер клеветнически обвиняет Ковалевского в махинациях с паями, угрожая судом. Доведённый до отчаяния, в 1883 году Владимир Онуфриевич сводит счёты с жизнью.

Газета "Московские ведомости" сообщала: "Утром 16 апреля 1883 г. прислуга меблированных комнат "Ноблесс" по заведенному порядку стала стучать в дверь одного из номеров, занимаемого с прошлого года доцентом Московского университета титулярным советником В. О. Ковалевским, но, несмотря на усиленный стук, отзыва не было получено. Тотчас же об этом было дано знать полиции, по прибытии которой дверь было взломана. Оказалось, что Ковалевский лежал на диване одетый, без признаков жизни; на голове у него был одет гуттаперчевый мешок, стянутый под подбородком тесемкой, закрывающей всю переднюю часть лица". Ковалевский покончил жизнь самоубийством, вдыхая хлороформ. Перед смертью Ковалевский писал в неотправленном письме к брату: "Напиши Софье, что моя всегдашняя мысль была о ней и о том, как я много виноват перед нею и как я испортил ей жизнь..."

Получив в Париже известие о самоубийстве мужа, Софья Васильевна четыре дня не могла принимать пищи и на пятый лишилась сознания. Всю оставшуюся жизнь её не оставляла скорбь о погибшем муже. Главное, что ей удалось сделать, - это восстановить его честное имя.

30 января 1884 года Ковалевская прочитала первую лекцию в Стокгольмском университете.

24 июня 1884 года Ковалевская узнала, что "назначена профессором сроком на пять лет", декабря 1888 года Парижская академия известила Ковалевскую о том, что ей присуждена премия Бордена. Ковалевская поселилась близ Парижа. Здесь она решила продолжить дополнительное исследование о вращении твердых тел для конкурса на премию Шведской академии наук.

За французской премией последовала шведская, из временного профессора Стокгольмского университета она стала пожизненным. Ей была присуждена премия короля Оскара II в тысячу пятьсот крон. Друзья называли её "профессор Соня" (шведам нравилось русское имя).

7 ноября 1889 года Ковалевскую избрали членом-корреспондентом на физико-математическом отделении Российской академии наук.

В апреле 1890 года Ковалевская уехала в Россию в надежде, что ее изберут в члены академии на место умершего математика Буняковского. Когда она пожелала, как член-корреспондент, присутствовать на заседании Академии, ей ответили, что пребывание женщин на таких заседаниях "не в обычаях Академии".

Большей обиды, большего оскорбления не могли нанести ей в России.

Ничего не изменилось на родине после присвоения С. Ковалевской академического звания. В сентябре она вернулась в Стокгольм. В Швеции с новой силой вспыхнуло былое увлечение Софьи литературой. Она ощущала почти физическую необходимость занести на бумагу всё, что было пережито за прошедшие годы, разобраться в своей судьбе. Литературное творчество давало ей возможность душой вернуться на родину. Повести "Нигилистка" и "Нигилист", драма «Борьба за счастье», мемуары "Воспоминания детства", с восторгом встреченные русской публикой и критиками принесли ей всероссийскую известность.

В 1887 году произошла встреча Софьи с Максимом Максимовичем Ковалевский, Со времени защиты магистерской диссертации Максим Ковалевский преподавал в Московском университете и был в центре духовной жизни московской интеллигенции. Артистичный, страстный, энциклопедически образован - на его лекциях зал всегда был переполнен. Но в 1887 году за политическую деятельность он был

отстранен от преподавания, Мотивировка: "за отрицательное отношение к русскому государственному строю", за критику состояния правовых отношений в России. В том же году Ковалевский уехал из России и в последующие годы жил и работал за границей. Читал лекции во многих европейских столичных вузах: в Англии, Франции, Швеции, на Балканах. Они были почти ровесники, и им обоим было уже под сорок. Годом раньше С. Ковалевская решила принять участие в конкурсе, который был объявлен в Париже на присуждение премии физика Шарля Бордо и математика Пьера Лорана "за дальнейшее усовершенствование задачи о вращении в каком-нибудь существенном пункте", Но из-за переутомления она не успевала закончить работу к назначенному сроку - 1 июня 1887 года. А работа действительно представляла несомненный интерес. И все же она успела и победила! Достигнутые результаты были достойно оценены, получено высокое признание. Ей вручили премию, которую ради этого случая увеличили с 3 до 5 тысяч франков. В декабре 1888 года состоялось торжественное заседание Парижской Академии наук. На этом торжестве рядом с нею в ложе находился Максим Ковалевский.

Фонд Лорана в Швеции пригласил профессора Ковалевского для чтения лекций студентам, и в начале 1888 года он прибыл в Стокгольм. На первую лекцию пришло более 200 слушателей, и завершилась она овацией. Он сразу понравился Софье Васильевне, И не мудрено: богатырская фигура, высокий лоб, окладистая борода, добрые глаза: Ей все нравилось в нем. После его лекций, которые она посещала, они подробно разбирали сказанное. Эти споры, по заверениям самого Максима Максимовича, были очень полезными для него. По ее словам, в течение месяца его пребывания в Стокгольме она очень мало занималась своей математической работой, т.к. в его присутствии не могла думать ни о чем другом, кроме него. Его натура была многогранна и интересна. Они посещали театры, брали с собой и дочь Ковалевской Фуфу.

По воспоминаниям шведской писательницы Элен Кэй, близко знавшей Ковалевскую, на концерте, где исполнялась 9-я симфония Бетховена, Софья сидела рядом с Максимом Максимовичем, светлое спокойствие отражалось на ее обычно нервных чертах. На ней было элегантное шелковое платье с кружевом. Она преобразилась. Выглядевшая значительно моложе своих лет, она была стройной миниатюрной женщиной, предпочитала одежду светлых тонов и носила короткую стрижку в завитках. Ковалевский, несомненно, был очарован. Позже свою книгу, изданную в 1890 году, он посвятит Софье,

Ей на роду было написано войти в историю как знаменитый математик Ковалевская. В юности она сама спутала карты своей судьбы, вступив в фиктивный брак с Владимиром Ковалевским, а по жизни ей предназначался совсем другой Ковалевский. Но встретилась она с ним слишком поздно. Любовь с первого взгляда, говорят в таких случаях. Они сразу узнали друг в друге суженого. Наконец-то! Максим Ковалевский оказал влияние на Софью Васильевну в направлении развития ее литературного таланта. Он советовал и настаивал на том, чтобы она записала свои рассказы - воспоминания о детстве. Так и случилось: она издала книгу воспоминаний.

Но главное, что их объединяло, - это чувство любви к своей неустроенной Родине и боль за нее. Их силы и талант не находили там применения. И она, и он гонимы - вынужденная эмиграция и шумный успех за границей. Знания, высокий поток энергии этих людей нашел признание в Европе, во всем мире и только потом в России. Эти прекрасные выдающиеся люди были признаны самой историей. И тем не менее в союзе двух звезд сразу появились неразрешимые противоречия. Софья не могла дать обещание, что навсегда оставит науку и кафедру и станет только женой. И хотя огромное чувство любви и счастья наполняло ее, она была в отчаянном положении. Ссоры и ожесточенность сменялись приступами невероятной нежности. Но обстоятельства были против них.

Она страдала, не находя выхода. У нее стали сдавать нервы, приступы ревности были ужасными, разрушающими и любовь, и здоровье. Она ревновала Максима Максимовича к его работе, к его успехам. В ней говорили не просто чувства женщины, но конкурента по успеху, по месту в науке. Она хотела быть первой во всем. Ей были необходимы преклонение и восхищение. Ее не устраивала роль опекаемой жены, не она при муже, а он всегда рядом, всегда при ней. Она боялась потерять себя, свое "я", свой интерес к науке и к работе. Все это трудно было понять Максиму Максимовичу, ведь ему была нужна жена, преданная женщина, хозяйка дома, а ему предлагали "богиню математики" на троне.

Ковалевские решили взять Угле ои1 - на время расстаться и успокоиться. Но письма с упреками и обвинениями в непонимании отнимали время и силы. Тоска не проходила.

Перед поездкой к Максиму в Ниццу С. Ковалевская свои сомнения выразила в письме к подруге, написав, что уезжает, "но на радость или на горе - не знаю сама, вернее на последнее:".

В конце 1890 года она выехала на юг Франции. Максим Максимович жил на своей вилле в Ницце. Эти дни были "ковалевским раем". Они наслаждались жизнью, душевным теплом, разумно избегая нерешенных вопросов. Свадьба была назначена на лето будущего года. Новый год встречали вместе в Генуе...

Но счастье их было недолгим. Преждевременная смерть оборвала жизнь Софьи Ковалевской. Она простудилась по дороге из Италии в Швецию. Тяжелое воспаление легких, болезнь усиливалась. О смерти говорила постоянно, была сторонницей индусской традиции - кремации тела, боялась быть похороненной заживо, полагала самым важным благодеянием, которое должна дать наука, - умирать скоро и легко. Но умирать не хотелось, она задумала новую научную работу, а для этого понадобилось бы никак не меньше пяти лет жизни. Кроме того, начала сочинять философскую повесть - "Когда не будет больше смерти".

Агония началась внезапно. Ее последние слова: "Слишком много счастья". Она скончалась 10 февраля 1891 года. С тех пор прошло более ста лет, но мы помним эту гениально одаренную русскую женщину и словно бы слышим посвященные ей строки:

Душа из пламени и дум,

Пристал ли твой корабль воздушный

К стране, куда парил твой ум,

Призыву истинно послушный?

В тот звездный мир так часто ты

На крыльях мысли улетала,

Когда, уйдя в свои мечты,

О мирозданье размышляла.


 

Картинка 1 из 867Картинка 6 из 867  Картинка 13 из 867

 

Картинка 21 из 867 Картинка 26 из 867  

 

Картинка 33 из 867 Картинка 42 из 867

 

 

 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Великие математики. ( Для внеклассных мероприятий)"

Получите профессию

HR-менеджер

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Выбранный для просмотра документ Эйлер.docx

                  Леонард Эйлер

 

Леонард Эйлер

За время существования Академии наук в России, видимо, одним из самых знаменитых ее членов был математик Леонард Эйлер (1707—1783).

Он стал первым, кто в своих работах начал возводить последовательное здание анализа бесконечно малых. Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой — одним из самых глубоких научных достижений человечества.

Леонард Эйлер родился в швейцарском городе Базеле 15 апреля 1707 года. Отец его, Павел Эйлер, был пастором в Рихене (близ Базеля) и имел некоторые познания в математике. Отец предназначал своего сына к духовной карьере, но сам, интересуясь математикой, преподавал ее и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базель для слушания философии.

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его все больше влекло к математике. Эйлер стал бывать в доме свое учителя, и между ним и сыновьями Иоганна Бернулли — Николаем
Даниилом — возникла дружба, сыгравшая очень большую роль в жизни Эйлера.

В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук, недавно основанной императрицей Екатериной I. Уезжая, Бернулли обещали Леонарду известить его, если найдется и для него подходящее занятие в России. На следующий год они сообщили, что для Эйлера есть место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Леонард немедленно записался в студенты медицины Базельского университета. Прилежно и успешно изучая
науки медицинского факультета, Эйлер находит время и для математических занятий. За это время он написал напечатанную потом, в 1727 году, в Базеле диссертацию о распространении звука и исследование по вопросу размещении мачт на корабле.

В Петербурге имелись самые благоприятные условия для расцвета гения Эйлера: материальная обеспеченность, возможность заниматься любимым делом, наличие ежегодного журнала для публикации трудов. Здесь же работала самая большая тогда в мире группа специалистов в области математических наук, в которую входили Даниил Бернулли (его брат Николай скончался в 1726 году), разносторонний X. Гольдбах, с которым Эйлера связывали общие интересы к теории чисел и другим вопросам, автор работ по тригонометрии Ф.Х. Майера, астроном и географ Ж.Н. Делиль, математик и физик Г. В. Крафт и другие. С этого времени Петербургская Академия стала одним из главных центров математики в мире.

Открытия Эйлера, которые благодаря его оживленной переписке нередко становились известными задолго до издания, делают его имя все более широко известным. Улучшается его положение в Академии наук: в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т. е. действительным членом Академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д. Бернулли, возвратившийся в том же году в Базель. Рост авторитета Эйлера нашел своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «ученейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году — к «знаменитейшему и остроумнейшему математику», а в 1745 году — к «несравненному Леонарду Эйлеру — главе математиков».

В 1735 году академии потребовалось выполнить весьма сложную работу по расчету траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году — новая теория музыки. Затем в 1840 году Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии Французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.

В конце 1740 года власть в России попала в руки регентши Анны Леопольдовны и ее окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное еще Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно
неуверенным», приглашение принял.

В Берлине Эйлер поначалу собрал около себя небольшое ученое общество, а затем был приглашен в состав вновь восстановленной Королевской академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нем указывается на способ интегрирования рациональных дробей путем разложения их на
частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая занимала в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа — вариационное исчисление. Это его начинание вскоре подхватил Лагранж и таким образом сложилась новая наука.

В 1744 году Эйлер напечатал в Берлине три сочинения о движении светил: первое — теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений; второе и третье — о движении комет.

Семьдесят пять работ Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввел так называемые углы Эйлера, позволяющие изучать повороты
тела вокруг точки.

В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашел соотношение между числом вершин, ребер и граней многогранника: сумма числа вершин и граней равна числу ребер плюс два. Такое соотношение предполагал еще Декарт, но Эйлер доказал его в своих мемуарах Это в некотором смысле первая в истории математики крупная теорема топологии — самой глубокой части геометрии.

Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Эйлера, построил первые ахроматические объективы.

В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твердого тела, которые носят название Эйлеровых уравнений вращения твердого тела.

Много написал ученый сочинений об изгибе и колебании упругих стержней. Вопросы эти интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал ученому поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелом и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную: он был назначен почетным членом, и ему была определена крупная ежегодная пенсия, а он, со своей стороны, взял на себя обязательства в отношении дальнейшего сотрудничества. Он закупал для нашей Академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных
спорах между петербургскими учеными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях и т. д. В доме Эйлера в Берлине жили студенты из России: М. Софронов, С Котельников, С. Румовский, последние позднее стали академиками.

Из Берлина Эйлер, в частности, вел переписку с Ломоносовым, в творчестве которого он высоко ценил счастливое сочетание теории с экспериментом. В 1747 году он дал блестящий отзыв о присланных ему на заключение статьях Ломоносова по физике и химии, чем немало разочаровал влиятельного академического чиновника Шумахера, крайне враждебно относившегося к Ломоносову.

В переписке Эйлера с его другом академиком Петербургской академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха»: доказать, что всякое нечетное натуральное число есть сумма трех простых чисел, а всякое четное — двух. Первое из этих утверждений было при помощи весьма замечательного метода доказано уже в наше время (1937) академиком И. М. Виноградовым, а второе не доказано до сих пор.

Эйлера тянуло назад в Россию. В 1766 году он получил через посла в Берлине, князя Долгорукова, приглашение императрицы Екатерины II вернуться в Академию наук на любых условиях. Несмотря на уговоры остаться, он принял приглашение и в июне прибыл в Петербург.

Императрица предоставила Эйлеру средства на покупку дома. Старший из его сыновей Иоганн Альбрехт стал академиком в области физики, Карл занял высокую должность в медицинском ведомстве, Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного
завода.

Еще в 1738 году Эйлер ослеп на один глаз, а в 1771-м после операции почти совсем потерял зрение и мог писать только мелом на черной доске, но благодаря ученикам и помощникам. И.А Эйлеру, А И. Локселю, В.Л. Крафту, С.К. Котельникову, М.Е. Головину, а главное Н И Фуссу, прибывшему из Базеля, продолжал работать не менее интенсивно, чем раньше.

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 год Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развернута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить лишь изгибая плоскость, но не растягивая ее и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развертывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного,
должны были казаться прямо-таки трансцендентными А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

Неутомимость и настойчивость в научных исследованиях Эйлера были таковы, что в 1773 году, когда сгорел его дом и погибло почти все имущество его семейства, он и после этого несчастья продолжал диктовать свои исследования. Вскоре после пожара искусный окулист, барон Вентцель, произвел операцию снятия катаракты, но Эйлер не выдержал надлежащего времени без чтения и ослеп окончательно.

В том же 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с ее сестрой, Саломеей Гзелль Завидное здоровье и счастливый характер помогали Эйлеру «противостоять ударам судьбы, которые выпали на его долю. Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь
же приятным, сколь и желанным...» Он мог иногда вспылить, но «был не
способен долго питать против кого-либо злобу.. » — вспоминал Н И Фусс.

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребенок, а на шее лежала кошка. Он сам занимался с детьми математикой. И все это не мешало ему работать.

18 сентября 1783 года Эйлер скончался от апоплексического удара в присутствии своих помощников профессоров Крафта и Лекселя. Он был похоронен на Смоленском лютеранском кладбище Академия заказала известному скульптору Ж.Д. Рашетту, хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал.

До конца XVIII века конференц-секретарем Академии оставался И.А. Эйлер, которого сменил Н.И. Фусс, женившийся на дочери последнего, а в 1826 году — сын Фусса Павел Николаевич, так что организационной стороной жизни Академии около ста лет ведали потомки Леонарда Эйлера. Эйлеровские традиции оказали сильное влияние и на учеников
Чебышева: A.M. Ляпунова, А.Н. Коркина, Е.И. Золотарева, А.А. Маркова и других, определив основные черты петербургской математической школы.

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

Эйлер нашел доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трех» и «четырех». Он также доказал, что всякое простое число вида 4п+1 всегда разлагается на сумму квадратов других двух чисел.

Эйлер начал последовательно строить элементарную теорию чисел. Начав с теории степенных вычетов, он затем занялся квадратичными вычетами. Это так называемый квадратичный закон взаимности. Эйлер также много лет занимался решением неопределенных уравнений второй степени с двумя неизвестными.

Во всех этих трех фундаментальных вопросах, которые больше двух столетий после Эйлера и составляли основной объем элементарной теории чисел, ученый ушел очень далеко, однако во всех трех его постигла неудача. Полное доказательство получили Гаусс и Лагранж.

Эйлеру принадлежит инициатива создания и второй части теории чисел — аналитической теории чисел, в которой глубочайшие тайны целых чисел, например распределение простых чисел в ряду всех натуральных чисел, получаются из рассмотрения свойств некоторых аналитических функций.

Созданная Эйлером аналитическая теория чисел продолжает развиваться и в наши дни.
 

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Великие математики. ( Для внеклассных мероприятий)"

Получите профессию

Менеджер по туризму

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Выбранный для просмотра документ Архимед.doc

http://www.greatmath.net/images/portret/005.jpgАРХИМЕД (ок. 287-212 гг. до н.э.)

Об Архимеде - великом математике и механике - известно больше, чем о других ученых древности. Прежде всего достоверен год его смерти - год падения Сиракуз, когда ученый погиб от руки римского солдата. Впрочем, историки древности Полибий, Ливии, Плутарх мало рассказывали о его математических заслугах, от них до наших времен дошли сведения о чудесных изобретениях ученого, сделанных во время службы у царя Гие-рона II. Известна история о золотом венце царя. Чистоту его состава Архимед проверил при помощи найденного им закона выталкивающей силы, и его возгласе «Эврика!», т.е. «Нашел!». Другая легенда рассказывает, что Архимед соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль «Сирахоеия», Крылатыми стали произнесенные тогда слова Архимеда: «Дайте мне точку опоры, и я поверну Землю».

Инженерный гений Архимеда с особой силой проявился при осаде Сиракуз, богатого торгового города на острове Сицилия.

Воины римского консула Марцелла были надолго задержаны у стен города невиданными машинами: мощные катапульты прицельно стреляли каменными глыбами, в бойницах были установлены метательные машины, выбрасывающие грады ядер, береговые краны поворачивались за пределы стен и забрасывали корабли противника каменными и свинцовыми глыбами, крючья подхватывали корабли и бросали их вниз с большой высоты, системы вогнутых зеркал (в некоторых рассказах -щитов) поджигали корабли. В «Истории Марцелла» Плутарх описывает ужас, царивший в рядах римских воинов: «Как только они замечали, что из-за крепостной стены показывается веревка или бревно, они обращались в бегство с криком, что вот Архимед еще выдумал новую машину на их погибель».

Огромен вклад Архимеда и в развитие математики. Спираль Архимеда (см. Спирали), описываемая точкой, двигающейся по вращающемуся кругу, стояла особняком среди многочисленных кривых, известных его современникам. Следующая кинематически определенная кривая-циклоида-появилась только в XVII в. Архимед научился находить касательную к своей спирали (а его предшественники умели проводить касательные только к коническим сечениям), нашел площадь ее витка, а также площадь эллипса, поверхности конуса и шара, объемы шара и сферического сегмента. Особенно он гордился открытым им соотношением объема шара и описанного вокруг него цилиндра, которое равно 2:3 (см. Вписанные и описанные фигуры). Архимед много занимался и проблемой квадратуры круга (см. Знаменитые задачи древности). Ученый вычислил отношение длины окружности к диаметру (число П) и нашел, что оно заключено между 3 10/71 и 3 1/7.

Созданный им метод вычисления длины окружности и площади фигуры был существенным шагом к созданию дифференциального и интегрального исчислений, появившихся лишь 2000 лет спустя.

Архимед нашел также сумму бесконечной геометрической прогрессии со знаменателем 1/4. В математике это был первый пример бесконечного ряда.

Большую роль в развитии математики сыграло его сочинение «Псаммит»-«О числе песчинок», в котором он показывает, как с помощью существовавшей системы счисления можно выражать сколь угодно большие числа. В качестве повода для своих рассуждений он использует задачу о подсчете количества песчинок внутри видимой Вселенной. Тем самым было опровергнуто существовавшее тогда мнение о наличии таинственных «самых больших чисел».

 

 

Картинка 1 из 15196Картинка 7 из 15196 

 

http://www.popmech.ru/images/upload/article/8759_1234963292_full.jpg  Картинка 9 из 15196

 

Картинка 11 из 15196

 

 

http://www.abc-people.com/data/archimed/pic-4.jpg

 

Картинка 21 из 15196Картинка 30 из 15196

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Великие математики. ( Для внеклассных мероприятий)"

Получите профессию

Копирайтер

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Выбранный для просмотра документ ‚¨¥â.docx

                  Франсуа Виет

Франсуа Виет

Франсуа Виет (1540—1603) — замечательный французский математик, положивший начало алгебре как науке о преобразовании выражений, о решении уравнений в общем виде, создатель буквенного исчисления.

Виет первым стал обозначать буквами не только неизвестные, но и данные величины. Тем самым ему удалось внедрить в науку великую мысль о возможности выполнять алгебраические преобразования над символами, т. е. ввести понятие математической формулы. Этим он внес решающий вклад в создание буквенной алгебры, чем завершил развитие математики эпохи Возрождения и подготовил почву для появления результатов Ферма, Декарта, Ньютона.

Франсуа Виет родился в 1540 году на юге Франции в небольшом городке Фантене-ле-Конт, что находится в 60 км от Ла Рошели, бывшей в то время оплотом французских протестантов-гугенотов. Большую часть жизни он прожил рядом с виднейшими руководителями этого движения, хотя сам оставался католиком. По-видимому, религиозные разногласия ученого не волновали.

Отец Виета был прокурором. По традиции, сын выбрал профессию отца и стал юристом, окончив университет в Пуату. В 1560 году двадцатилетний адвокат начал свою карьеру в родном городе, но через три года перешел на службу в знатную гугенотскую семью де Партене. Он стал секретарем хозяина дома и учителем его дочери двенадцатилетней Екатерины. Именно преподавание пробудило в молодом юристе интерес к математике.

Когда ученица выросла и вышла замуж, Виет не расстался с ее семьей и переехал с нею в Париж, где ему было легче узнать о достижениях ведущих математиков Европы. С некоторыми учеными Виет познакомился лично. Так, он общался с видным профессором Сорбонны Рамусом, с крупнейшим математиком Италии Рафаэлем Бомбелли вел дружескую переписку.

В 1671 году Виет перешел на государственную службу, став советником парламента, а затем советником короля Франции Генриха III.

В ночь на 24 августа 1672 года в Париже произошла массовая резня гугенотов католиками, так называемая Варфоломеевская ночь. В ту ночь вместе со многими гугенотами погибли муж Екатерины де Партене и математик Рамус. Во Франции началась гражданская война. Через несколько лет Екатерина де Партене снова вышла замуж. На сей раз ее избранником стал один из видных руководителей гугенотов — принц де Роган. По его ходатайству в 1580 году Генрих III назначил Виета на важный государственный пост рекетмейстера, который давал право контролировать от имени короля выполнение распоряжений в стране и приостанавливать приказы крупных феодалов.

Находясь на государственной службе, Виет оставался ученым. Он прославился тем, что сумел расшифровать код перехваченной переписки короля Испании с его представителями в Нидерландах, благодаря чему король Франции был полностью в курсе действий своих противников. Код был сложным, содержал до 600 различных знаков, которые периодически менялись. Испанцы не могли поверить, что его расшифровали, и обвинили французского короля в связях с нечистой силой.

К этому времени относятся свидетельства современников Виета о его огромной трудоспособности. Будучи чем-то увлечен, ученый мог работать по трое суток без сна.

В 1584 году по настоянию Гизов Виета отстранили от должности и выслали из Парижа. Именно на этот период приходится пик его творчества. Обретя неожиданный покой и отдых, ученый поставил своей целью создание всеобъемлющей математики, позволяющей решать любые задачи. У него сложилось убеждение в том, «что должна существовать общая, неизвестная еще наука, обнимающая и остроумные измышления новейших алгебраистов, и глубокие геометрические изыскания древних».

Виет изложил программу своих исследований и перечислил трактаты, объединенные общим замыслом и написанные на математическом языке новой буквенной алгебры, в изданном в 1591 году знаменитом «Введение в аналитическое искусство». Перечисление шло в том порядке, в каком эти труды должны были издаваться, чтобы составить единое целое — новое направление в науке. К сожалению, единого целого не получилось.

Трактаты публиковались в совершенно случайном порядке, и многие увидели свет только после смерти Виета. Один из трактатов вообще не найден. Однако главный замысел ученого замечательно удался: началось преобразование алгебры в мощное математическое исчисление. Само название «алгебра» Виет в своих трудах заменил словами «аналитическое искусство». Он писал в письме к де Партене. «Все математики знали, что под алгеброй и алмукабалой... скрыты несравненные сокровища, но не умели их найти. Задачи, которые они считали наиболее трудными, совершенно легко решаются десятками с помощью нашего искусства...»

Основу своего подхода Виет называл видовой логистикой. Следуя примеру древних, он четко разграничивал числа, величины и отношения, собрав их в некую систему «видов». В эту систему входили, например, переменные, их корни, квадраты, кубы, квадрато-квадраты и т д., а также множество скаляров, которым соответствовали реальные размеры — длина, площадь или объем. Для этих видов Виет дал специальную символику, обозначив их прописными буквами латинского алфавита. Для неизвестных величин применялись гласные буквы, для переменных — согласные.

Виет показал, что, оперируя с символами, можно получить результат, который применим к любым соответствующим величинам, т. е решить задачу в общем виде. Это положило начало коренному перелому в развитии алгебры: стало возможным буквенное исчисление.

Демонстрируя силу своего метода, ученый привел в своих работах запас формул, которые могли быть использованы для решения конкретных задач. Из знаков действий он использовал «+» и «-», знак радикала и горизонтальную черту для деления. Произведение обозначал словом «т». Виет первым стал применять скобки, которые, правда, у него имели вид не скобок, а черты над многочленом. Но многие знаки, введенные до него, он не использовал. Так, квадрат, куб и т. д. обозначал словами или первыми буквами слов.

Знаменитая теорема, устанавливающая связь коэффициентов многочлена с его корнями, была обнародована в 1591 году. Теперь она носит имя Виета, а сам автор формулировал ее так: «Если B+D, умноженное на А, минус А в квадрате равно BD, то А равно В и равно D».

Теорема Виета стала ныне самым знаменитым утверждением школьной алгебры. Теорема Виета достойна восхищения, тем более что ее можно обобщить на многочлены любой степени.

Больших успехов достиг ученый и в области геометрии. Применительно к ней он сумел разработать интересные методы. В трактате «Дополнения к геометрии» он стремился создать по примеру древних некую геометрическую алгебру, используя геометрические методы для решения. Уравнений третьей и четвертой степеней. Любое уравнение третьей и четвертой степени, утверждал Виет, можно решить геометрическим методом трисекции угла или построением двух средних пропорциональных.

Математиков в течение столетий интересовал вопрос решения треугольников, так как он диктовался нуждами астрономии, архитектуры, Родезии. У Виета применявшиеся ранее методы решения треугольников приобрели более законченный вид. Так он первым явно сформулировал в словесной форме теорему косинусов, хотя положения, эквивалентные ей, эпизодически применялись с первого века до нашей эры. Известный ранее своей трудностью случай решения треугольника по двум данным сторонам и одному из противолежащих им углов получил у Виста исчерпывающий разбор. Было ясно сказано, что в этом случае решение не всегда возможно. Если же решение есть, то может быть одно или два.

Глубокое знание алгебры давало Виету большие преимущества. Причем интерес его к алгебре первоначально был вызван приложениями к тригонометрии и астрономии. «И тригонометрия, — как замечает Г. Г. Цейтен, — щедро отблагодарила алгебру за оказанную ею помощь». Не только каждое новое применение алгебры давало импульс новым исследованиям по тригонометрии, но и полученные тригонометрические результаты являлись источником важных успехов алгебры. Виету, в частности, принадлежит вывод выражений для синусов (или хорд) и косинусов кратных дуг.

В 1589 году, после убийства Генриха Гиза по приказу короля, Виет возвратился в Париж. Но в том же году Генрих III был убит монахом — приверженцем Гизов. Формально французская корона перешла к Генриху Наваррскому — главе гугенотов. Но лишь после того, как в 1593 году этот правитель принял католичество, в Париже его признали королем Генрихом IV. Так был положен конец кровавой и истребительной религиозной войне, долгое время оказывавшей влияние на жизнь каждого француза, даже вовсе не интересовавшегося ни политикой, ни религией.

Подробности жизни Виета в тот период неизвестны, что само по себе говорит о его желании оставаться в стороне от кровавых дворцовых событий. Известно только, что он перешел на службу к Генриху IV, находился при дворе, был ответственным правительственным чиновником и пользовался огромным уважением как математик.

По преданию, посол Нидерландов сказал на приеме у короля Франции Генриха IV, что их математик ван Роомен задал математикам мира задачу. Но во Франции, видимо, нет математиков, так как среди тех, кому особо адресовался вызов, нет ни одного француза. Генрих IV ответил, что во Франции есть математик, и пригласил Виета. Знание синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное нидерландским ученым.

В последние годы жизни Виет ушел с государственной службы, но продолжал интересоваться наукой. Известно, например, что он вступил в полемику по поводу введения нового, григорианского календаря в Европе. И даже хотел создать свой календарь.

В мемуарах некоторых придворных Франции есть указание, что Виет был женат, что у него была дочь, единственная наследница имения, по которому Виет звался сеньор де ла Биготье. В придворных новостях маркиз Летуаль писал: «...14 февраля 1603 г. господин Виет, рекетмейстер, человек большого ума и рассуждения и один из самых ученых математиков века умер... в Париже, имея, по общему мнению, 20 тыс. экю в изголовье. Ему было более шестидесяти лет».

Непосредственно применение трудов Виета очень затруднялось тяжелым и громоздким изложением. Из-за этого они полностью не изданы до сих пор. Более или менее полное собрание трудов Виета было издано в 1646 году в Лейдене нидерландским математиком ван Скоотеном под названием «Математические сочинения Виета». Г. Г. Цейтен отмечал, что чтение работ Виета затрудняется несколько изысканной формой, в которой повсюду сквозит его большая эрудиция, и большим количеством изобретенных им и совершенно не привившихся греческих терминов. Потому влияние его, столь значительное по отношению ко всей последующей математике, распространялось сравнительно медленно».

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Великие математики. ( Для внеклассных мероприятий)"

Получите профессию

Интернет-маркетолог

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Выбранный для просмотра документ ƒ ملل.docx

                        Карл Гаусс

 

Карл Гаусс

«Гаусс напоминает мне образ высочайшей вершины баварского горного хребта, какой она предстает перед глазами наблюдателя, глядящего с севера. В этой горной цепи в направлении с востока на запад отдельные вершины подымаются все выше и выше, достигая предельной высоты в могучем, высящемся в центре великане; круто обрываясь, этот горный исполин сменяется низменностью новой формации, в которую на много десятков километров далеко проникают его отроги, и стекающие с него потоки несут влагу и жизнь» (Ф. Клейн).

Карл Фридрих Гаусс родился 30 апреля 1777 года в Брауншвейге. Он унаследовал от родных отца крепкое здоровье, а от родных матери яркий интеллект.

В семь лет Карл Фридрих поступил в Екатерининскую народную школу. Поскольку считать там начинали с третьего класса, первые два года на маленького Гаусса внимания не обращали. В третий класс ученики обычно попадали в десятилетнем возрасте и учились там до конфирмации (пятнадцати лет). Учителю Бюттнеру приходилось заниматься одновременно с детьми разного возраста и разной подготовки. Поэтому он давал обычно части учеников длинные задания на вычисление, с тем чтобы иметь возможность беседовать с другими учениками. Однажды группе учеников, среди которых был Гаусс, было предложено просуммировать натуральные числа от 1 до 100. По мере выполнения задания ученики должны были класть на стол учителя свои грифельные доски. Порядок досок учитывался при выставлении оценок. Десятилетний Карл положил свою доску, едва Бюттнер кончил диктовать задание. К всеобщему удивлению, лишь у него ответ был правилен. Секрет был прост: пока диктовалось задание. Гаусс успел для себя открыть заново формулу для суммы арифметической прогрессии! Слава о чудо-ребенке распространилась по маленькому Брауншвейгу.

В 1788 году Гаусс переходит в гимназию. Впрочем, в ней не учат математике. Здесь изучают классические языки. Гаусс с удовольствием занимается языками и делает такие успехи, что даже не знает, кем он хочет стать — математиком или филологом.

О Гауссе узнают при дворе. В 1791 году его представляют Карлу Вильгельму Фердинанду — герцогу Брауншвейгскому. Мальчик бывает во дворце и развлекает придворных искусством счета. Благодаря покровительству герцога Гаусс смог в октябре 1795 года поступить в Геттингенский университет. Первое время он слушает лекции по филологии и почти не посещает лекций по математике. Но это не означает, что он не занимается математикой.

В 1795 году Гаусса охватывает страстный интерес к целым числам. Незнакомый с какой бы то ни было литературой, он должен был все создавать себе сам. И здесь он вновь проявляет себя как незаурядный вычислитель, пролагающий пути в неизвестное. Осенью того же года Гаусс переезжает в Геттинген и прямо-таки проглатывает впервые попавшуюся ему литературу: Эйлера и Лагранжа.

«30 марта 1796 года наступает для него день творческого крещения. — пишет Ф. Клейн. — Гаусс уже занимался с некоторого времени группировкой корней из единицы на основании своей теории «первообразных» корней. И вот однажды утром, проснувшись, он внезапно ясно и отчетливо осознал, что из его теории вытекает построение семнадцатиугольника... Это событие явилось поворотным пунктом жизни в Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике».

Работа Гаусса надолго становится недосягаемым образцом математического открытия. Один из создателей неевклидовой геометрии Янош Бойяи называл его «самым блестящим открытием нашего времени или даже всех времен». Сколь трудно было это открытие постигнуть. Благодаря письмам на родину великого норвежского математика Абеля, доказавшего неразрешимость в радикалах уравнения пятой степени, мы знаем о трудном пути, который он прошел, изучая теорию Гаусса. В 1825 году Абель пишет из
Германии: «Если даже Гаусс — величайший гений, он, очевидно, не стремился, чтобы все это сразу поняли...» Работа Гаусса вдохновляет Абеля на построение теории, в которой «столько замечательных теорем, что просто не верится». Несомненно влияние Гаусса и на Галуа.

Сам Гаусс сохранил трогательную любовь к своему первому открытию на всю жизнь.

«Рассказывают, что Архимед завещал построить над своей могилой памятник в виде шара и цилиндра в память о том, что он нашел отношение объемов цилиндра и вписанного в него шара — 3:2. Подобно Архимеду, Гаусс выразил желание, чтобы в памятнике на его могиле был увековечен семнадцатиугольник. Это показывает, какое значение сам Гаусс придавал своему открытию. На могильном камне Гаусса этого рисунка нет, памятник, воздвигнутый Гауссу в Брауншвейге, стоит на семнадцатиугольном постаменте, правда, едва заметном зрителю», — писал Г. Вебер.

30 марта 1796 года, в день, когда был построен правильный семнадцатиугольник, начинается дневник Гаусса — летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Частные случаи этого утверждения доказали ферма, Эйлер, Лагранж. Эйлер сформулировал общую гипотезу, неполное доказательство которой дал Лежандр. 8 апреля Гаусс нашел полное
доказательство гипотезы Эйлера. Впрочем, Гаусс еще не знал о работах своих великих предшественников. Весь нелегкий путь к «золотой теореме» он прошел самостоятельно!

Два великих открытия Гаусс сделал на протяжении всего десяти дней, за месяц до того, как ему исполнилось 19 лет! Одна из самых удивительных сторон «феномена Гаусса» заключается в том, что он в своих первых работах практически не опирался на достижения предшественников, открыв как бы заново за короткий срок то, что было сделано в теории чисел за полтора века трудами крупнейших математиков.

В 1801 году вышли знаменитые «Арифметические исследования» Гаусса. Эта огромная книга (более 500 страниц крупного формата) содержит основные результаты Гаусса. Книга была издана на средства герцога и ему посвящена. В изданном виде книга состояла из семи частей. На восьмую часть денег не хватило. В этой части речь должна была идти об обобщении закона взаимности на степени выше второй, в частности — о биквадратичном законе взаимности. Полное доказательство биквадратичного закона Гаусс нашел лишь 23 октября 1813 года, причем в дневниках он отметил, что это совпало с рождением сына.

За пределами «Арифметических исследований» Гаусс, по существу, теорией чисел больше не занимался. Он лишь продумывал и доделывал то, что было задумано в те годы.

«Арифметические исследования» оказали огромное влияние на дальнейшее развитие теории чисел и алгебры. Законы взаимности до сих пор занимают одно из центральных мест в алгебраической теории чисел В Брауншвейге Гаусс не имел литературы, необходимой для работы над Арифметическими исследованиями». Поэтому он часто ездил в соседний Гельмштадт, где была хорошая библиотека. Здесь в 1798 году Гаусс подготовил диссертацию, посвященную доказательству Основной теоремы алгебры ~ утверждения о том, что всякое алгебраическое уравнение имеет корень, который может быть числом действительным или мнимым, одним словом — комплексным. Гаусс критически разбирает все предшествующие опыты и доказательства и с большой тщательностью проводит идею до Ламбера. Безупречного доказательства все же не получилось, так как не хватало строгой теории непрерывности. В дальнейшем Гаусс придумал еще три доказательства Основной теоремы (последний раз — в 1848 году).

«Математический век» Гаусса — менее десяти лет. При этом большую часть времени заняли работы, оставшиеся неизвестными современникам (эллиптические функции).

Гаусс считал, что может не торопиться с публикацией своих результатов, тридцать лет так и было. Но в 1827 году сразу два молодых математика — Абель и Якоби — опубликовали многое из того, что было им получено.

О работах Гаусса по неевклидовой геометрии узнали лишь при публикации посмертного архива. Так Гаусс обеспечил себе возможность спокойно работать отказом обнародовать свое великое открытие, вызвав несмолкающие по сей день споры о допустимости занятой им позиции.

С наступлением нового века научные интересы Гаусса решительно сместились в сторону от чистой математики. Он много раз эпизодически будет обращаться к ней, и каждый раз получать результаты, достойные гения. В 1812 году он опубликовал работу о гипергеометрической функции. Широко известна заслуга Гаусса в геометрической интерпретации комплексных чисел.

Новым увлечением Гаусса стала астрономия. Одной из причин, по которой он занялся новой наукой, была прозаическая. Гаусс занимал скромное положение приват-доцента в Брауншвейге, получая 6 талеров в месяц.

Пенсия в 400 талеров от герцога-покровителя не настолько улучшила его положение, чтобы он мог содержать семью, а он подумывал о женитьбе. Получить где-нибудь кафедру по математике было не просто, да Гаусс и не очень стремился к активной преподавательской деятельности. Расширяющаяся сеть обсерваторий делала карьеру астронома более доступной, Гаусс начал интересоваться астрономией еще в Геттингене. Кое-какие наблюдения он проводил в Брауншвейге, причем часть герцогской пенсии он израсходовал на покупку секстанта. Он ищет достойную вычислительную задачу.

Ученый вычисляет траекторию предполагаемой новой большой планеты. Немецкий астроном Ольберс, опираясь на вычисления Гаусса, нашел планету (ее назвали Церерой). Это была подлинная сенсация!

25 марта 1802 году Ольберс открывает еще одну планету — Палладу. Гаусс быстро вычисляет ее орбиту, показав, что и она располагается между Марсом и Юпитером. Действенность вычислительных методов Гаусса стала для астрономов несомненной.

К Гауссу приходит признание. Одним из признаков этого было избрание его членом-корреспондентом Петербургской академии наук. Вскоре его пригласили занять место директора Петербургской обсерватории. В то же время Ольберс предпринимает усилия, чтобы сохранить Гаусса для Германии. Еще в 1802 году он предлагает куратору Геттингенского университета пригласить Гаусса на пост директора вновь организованной обсерватории. Ольберс пишет при этом, что Гаусс «к кафедре математики имеет положительное отвращение». Согласие было дано, но переезд состоялся лишь в конце 1807 году. За это время Гаусс женился. «Жизнь представляется мне весной со всегда новыми яркими цветами», — восклицает он. В 1806 году умирает от ран герцог, к которому Гаусс, повидимому, был искренне привязан. Теперь ничто не удерживает его в Брауншвейге.

Жизнь Гаусса в Геттингене складывалась несладко. В 1809 году после рождения сына умерла жена, а затем и сам ребенок. Вдобавок Наполеон обложил Геттинген тяжелой контрибуцией. Сам Гаусс должен был заплатить непосильный налог в 2000 франков. За него попытались внести деньги Ольберс и, прямо в Париже, Лаплас. Оба раза Гаусс гордо отказался.

Однако нашелся еще один благодетель, на этот раз — аноним, и деньги возвращать было некому. Только много позднее узнали, что это был курфюрст Майнцский, друг Гёте. «Смерть мне милее такой жизни», — пишет Гаусс между заметками по теории эллиптических функций. Окружающие не ценили его работ, считали его, по меньшей мере, чудаком. Ольберс успокаивает Гаусса, говоря, что не следует рассчитывать на понимание людей: «их нужно жалеть и им служить».

В 1809 году выходит знаменитая «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Гаусс излагает свои методы вычисления орбит. Чтобы убедиться в силе своего метода, он повторяет вычисление орбиты кометы 1769 года, которую в свое время за три дня напряженного счета вычислил Эйлер. Гауссу на это потребовался час. В книге был изложен метод наименьших квадратов, остающийся по сей день одним из самых распространенных методов обработки результатов наблюдений.

На 1810 год пришлось большое число почестей: Гаусс получил премию Парижской академии наук и золотую медаль Лондонского королевского общества, был избран в несколько академий.

Регулярные занятия астрономией продолжались почти до самой смерти. Знаменитую комету 1812 года (которая «предвещала» пожар Москвы!) всюду наблюдали, пользуясь вычислениями Гаусса. 28 августа 1851 года Гаусс наблюдал солнечное затмение. У Гаусса было много учеников-астрономов: Шумахер, Герлинг, Николаи, Струве. Крупнейшие немецкие геометры Мебиус и Штаудт учились у него не геометрии, а астрономии. Он состоял в активной переписке со многими астрономами регулярно.

К 1820 году центр практических интересов Гаусса переместился в геодезию. Геодезии мы обязаны тем, что на сравнительно короткое время Математика вновь стала одним из главных дел Гаусса. В 1816 году он думает об обобщении основной задачи картографии — задачи об отображении одной поверхности на другую «так, чтобы отображение было подобно отображаемому в мельчайших деталях».

В 1828 году вышел в свет основной геометрический мемуар Гаусса «Общие исследования о кривых поверхностях». Мемуар посвящен внутренней геометрии поверхности, т. е. тому, что связано со структурой самой этой поверхности, а не с ее положением в пространстве.

Оказывается, «не покидая поверхности», можно узнать, кривая она или нет. «Настоящую» кривую поверхность ни при каком изгибании нельзя развернуть на плоскость. Гаусс предложил числовую характеристику меры искривления поверхности.

К концу двадцатых годов Гаусс, перешедший пятидесятилетний рубеж, начинает поиски новых для себя областей научной деятельности. Об этом свидетельствуют две публикации 1829 и 1830 годов. Первая из них несет печать размышлений об общих принципах механики (здесь строится «принцип наименьшего принуждения» Гаусса); другая посвящена изучению капиллярных явлений. Гаусс решает заниматься физикой, но его узкие интересы еще не определились.

В 1831 году он пытается заниматься кристаллографией. Это очень трудный год в жизни Гаусса' умирает его вторая жена, у него начинается тяжелейшая бессонница. В этом же году в Геттинген приезжает приглашенный по инициативе Гаусса 27-летний физик Вильгельм Вебер Гаусс познакомился с ним в 1828 году в доме Гумбольдта Гауссу было 54 года, о его замкнутости ходили легенды, и все же в Вебере он нашел сотоварища по занятиям наукой, какого он никогда не имел прежде.

Интересы Гаусса и Вебера лежали в области электродинамики и земного магнетизма. Их деятельность имела не только теоретические, но и практические результаты. В 1833 году они изобретают электромагнитный телеграф. Первый телеграф связывал магнитную обсерваторию с городом Нейбургом.

Изучение земного магнетизма опиралось как на наблюдения в магнитной обсерватории, созданной в Геттингене, так и на материалы, которые собирались в разных странах «Союзом для наблюдения над земным магнетизмом», созданным Гумбольдтом после возвращения из Южной Америки. В это же время Гаусс создает одну из важнейших глав математической физики — теорию потенциала.

Совместные занятия Гаусса и Вебера были прерваны в 1843 году, когда Вебера вместе с шестью другими профессорами изгнали из Геттингена за подписание письма королю, в котором указывались нарушения последним конституции (Гаусс не подписал письма) Возвратился в Геттинген Вебер лишь в 1849 году, когда Гауссу было уже 72 года.

Умер Гаусс 23 февраля 1855 года.

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Великие математики. ( Для внеклассных мероприятий)"

Получите профессию

HR-менеджер

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Выбранный для просмотра документ Гипатия.doc

ГИПАТИЯ, ИПАТИЯ АЛЕКСАНДРИЙСКАЯ (370-415)

(HYPATIA)

 

Гипатия - греческий математик, философ. Руководительница школы неоплатоников в Александрии. Активно занималась просветительской и полемической деятельностью, автор комментариев к Диофанту и Аполонию Пергамскому.

Шестнадцать веков назад, Гипатия была одним из самых эрудированных в математике и астрономии людей в мире. Ее легендарное знание, скромность, красноречие расцвело в период Знаменитой Александрийской Библиотеки. Гипатия внесла свой вклад в геометрию и астрометрию, кроме того, сыграла важную роль в создании астролябии. "Сохраняй свое право на размышление, мыслить неправильно лучше, чем не думать совсем ", говорила Гипатия.

Гипатия была дочерью Теона, знаменитого астронома и механика, от него она получила первые знания в геометрии и астрономии. Они жили в Мусейоне, в то время бывшим ведущим научным центром Египта. Там же находилась и Александрийская библиотека, основанная и собранная наследниками Александра Македонского.

За книгами древних философов Гипатия провела многие годы. Широта интересов, удивительная работоспособность, острота ума, глубокое понимание Платона и Аристотеля снискали ей уважение профессоров Мусейона. Она была еще очень молода, когда у нее появились первые ученики. Вместо обычной одежды молодой девушки она стала носить темный плащ философа. Молва о ее необыкновенных познаниях распространялась все шире и шире. Александрия, жемчужина Египта, издавна славилась своими учеными. Теперь Гипатия стала ее новой гордостью

Гипатия жила в трудное время гонений, когда по приказу епископа Феофила в 391 году, был уничтожен Мусейон и почти полностью уничтожена Александрийская библиотека, которая уже горела во времена Цезаря и тогда в огне погибло около семисот тысяч томов, но была восстановлена Антонием, распорядившимся доставить в Александрию все книги из Пергама. Феофил, а позднее его племянник и наследник, епископ Кирилл долгое время не трогали Гипатию, которая также старалась публично не выступать против гонения на науку. Ведь славой Александрией была Гипатия. Однако Гипатия однажды не выдержала и в публичной лекции позволила коснуться богословских взглядов Кирилла, который был образованным человеком, и в свое время даже слушавшим ее лекции, что они расходятся с прежними постановлениями церковных соборов. Это вызвало сильнейшее недовольство Кирилла, так как играло на руку его врагам в борьбе за власть.

Мог ли Теон знать, что Гипатии суждена такая страшная смерть? Гипатию подстерегли, ее буквально разорвали на части, а останки были сожжены на костре. После этого события, префект Александрии, Орест, который был единственным сильным противником Кирилла, был сломлен. Так Кирилл стал властителем Александрии. Гипатия погибла в 415 году, во время великого поста.

Противники Гипатии убили не только ее. Им удалось уничтожить и наследство великой Женщины - не осталось ни одной записи, сделанной Ею. То есть, убита была и сама память о Теоне. Лишь по сохранившимся воспоминаниям современников смогли ученые восстановить ее биографию. Много веков спустя о Гипатии напишут научные труды и романы, назовут ее дважды убитой.

Математические достижения Гипатии получили высокую оценку современников. Несомненно, что ее репутация была выше, чем у других александрийских ученых. Характерно высказывание Сократа из его “Historia Ecclesiastica”: “Она достигла таких высот познания, что превзошла всех философов своего времени; наследница платоновской школы, возрожденной Плотином, она читала философские лекции всем тем, в ком было желание услышать”.

 

 

 

 

Картинка 4 из 648 Картинка 17 из 648

Картинка 18 из 648 Картинка 39 из 648

Картинка 22 из 648

Картинка 42 из 648

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Великие математики. ( Для внеклассных мероприятий)"

Получите профессию

Технолог-калькулятор общественного питания

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Получите профессию

Экскурсовод (гид)

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 662 222 материала в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 13.11.2015 2761
    • ZIP 866.7 кбайт
    • 32 скачивания
    • Рейтинг: 5 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Габдрахманова Фанзия Мудировна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    • На сайте: 8 лет и 9 месяцев
    • Подписчики: 7
    • Всего просмотров: 92131
    • Всего материалов: 33

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Интернет-маркетолог

Интернет-маркетолог

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Реализация межпредметных связей при обучении математике в системе основного и среднего общего образования

36 ч. — 144 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 22 человека из 14 регионов
  • Этот курс уже прошли 94 человека

Курс профессиональной переподготовки

Математика и информатика: теория и методика преподавания в образовательной организации

Учитель математики и информатики

500/1000 ч.

от 8900 руб. от 4150 руб.
Подать заявку О курсе
  • Сейчас обучается 681 человек из 79 регионов
  • Этот курс уже прошли 1 808 человек

Курс повышения квалификации

Применение математических знаний в повседневной жизни

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 32 человека из 20 регионов
  • Этот курс уже прошли 11 человек

Мини-курс

Продвинутые техники нарративного подхода в психологии

5 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 25 человек из 16 регионов

Мини-курс

Организация и контроль занятий со студентами специальных медицинских групп

4 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Эффективная корпоративная коммуникация

8 ч.

1180 руб. 590 руб.
Подать заявку О курсе