Настоящий материал опубликован пользователем Жанабаева Светлана Нигиметовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Удалить материалУчительница
Файл будет скачан в форматах:
Материал разработан автором:
Аникина Екатерина Николаевна
учитель русского языка и литературы, учитель-логопед.
«Работа с текстом» (Текст полностью уникален. Списать невозможно)
Задания в рабочем листе:
Курс повышения квалификации
Курс повышения квалификации
36 ч. — 144 ч.
Курс повышения квалификации
36 ч. — 144 ч.
Курс профессиональной переподготовки
500/1000 ч.
Еще материалы по этой теме
Смотреть
Рабочие листы
к вашим урокам
Скачать
1 слайд
Виет теоремасы
Алгебра 8 сынып
Математика пәнінің мұғалімі: Жанабаева С.Н.
Аякөз қаласының №6 орта мектебі
2 слайд
Сабақ мақсаты:
1. Виет теоремасын тұжырымдау және дәлелдеу. Квадрат теңдеулерді түбірлердің қасиеттерін қолдану арқылы шешуді үйрету;
2. Оқушыларға Виет теоремасын қолдану тәсілдерімен таныстыру және квадрат теңдеулерді шешуді үйрету;
3. Виет теоремасын қолдана отырып есептер шығаруға оқушыларды баулу және дағдыландыру.
3 слайд
Қайталау сұрақтары:
түріндегі теңдеу қалай аталады?
формуласымен есептелетін сан қалай аталады?
3. Егер D>0 болса, онда квадраттық теңдеудің неше түбірі болады?
4. Егер D=0 болса, онда квадраттық теңдеудің неше түбірі болады?
5. Егер D<0 болса, онда квадраттық теңдеудің неше түбірі болады?
6. Қандай жағдайда квадраттық теңдеу келтірілген квадраттық теңдеу деп атайды?
7. теңдеуінің коэффициенттерін атап шығыңдар.
8. Егер квадраттық теңдеуінде коэффициенттердің бірі – b не с немесе b мен с-ның екеуі де 0-ге тең болса, мұндай теңдеулерді қалай атайды?
4 слайд
Түбірлері бар бірнеше келтірілген квадраттық теңдеудің түбірлерін, түбірлерінің қосындысы мен көбейтіндісінің мәндерін табыңдар және жауаптарын кестеге толтырыңдар.
5 слайд
Бұл мысалдардан, келтірілген квадраттық теңдеу түбірлерінің қосындысы қарсы таңбасымен алынған екінші коэффициентке, ал көбейтіндісі бос мүшеге тең екенін байқадық.
Енді бұл қасиетті теорема ретінде тұжырымдап шығайық.
Теорема : Келтірілген квадраттық теңдеу түбірлерінің қосындысы қарсы таңбасымен алынған екінші коэффициентке, ал көбейтіндісі бос мүшеге тең болады:
6 слайд
(келтірілген квадрат теңдеу)
– екінші коэффициент
– бос мүше
Теңдеудің дискриминанті:
Егер D>0, онда теңдеудің екі түбірі бар: және
Түбірлердің қосындысы:
Түбірлердің көбейтіндісі:
. Сонымен,
7 слайд
Бұл теореманы бірінші дәлелдеген француз математигі Француа Виет (1540-1603) болғандықтан, соның атымен аталады.
Кейбір есептерді шешкенде Виет теоремасына кері теореманы қолданады.
Теорема (кері теорема). Егер сандары үшін шарттары орындалса, онда сандары теңдеуінің түбірлері болады.
8 слайд
Виет теоремасы және оған кері теорема теңдеуді шешпей-ақ , түбірлерінің қосындысы мен көбейтіндісін табуға және түбірлері белгілі болғанда, теңдеуді құруға мүмкіндік береді.
Мысал қарастырайық:
Түбірлері және
болған квадраттық теңдеуді құрайық:
9 слайд
№257
10 слайд
№258
11 слайд
№261. Түбірлері болатын теңдеулерді жазыңдар:
12 слайд
х2 - 12х + с = 0 теңдеуінің бір түбірі х1=5.
х1+ х2=12 және х1 · х2=с. с-ны табыңдар.
х2 +рх + 15 = 0 теңдеуінің бір түбірі х1=3.
х1+ х2= -р және х1 · х2=15. р-ны табыңдар.
3. Теңдеулерді шешіп Виет теоремасы және кері теорема арқылы тексеріңдер:
а) х2 - 9х + 8 = 0,
б) х2 + 12х + 20 = 0,
в) х2 - 4х - 21 = 0.
13 слайд
Тест сұрақтары:
Берілген теңдеудің түбірлерінің қосындысы мен көбейтіндісін табыңдар:
А) 8; 15 В) -8; 15 С) 8; -15 D) -8; -15 Е) 5; -18
2. Түбірлері болатын теңдеуді жазыңдар:
А) В) С)
D) Е)
теңдеуінің бір түбірі 7-ге тең. Екінші түбірін және
р-ны табыңдар.
А) 2; 5 В) -2; 5 С) -5; -2 D) 2; -5 Е) 5; -1.
4. Теңдеудің түбірлерін табыңдар:
А) 11; 10 В) -1; 10 С) 1; 10 D) 1; -10 Е) -1; -10
5. Келтірілген квадраттық теңдеуді көрсет:
А) В) С)
D) Е)
14 слайд
15 слайд
Теңдеулердің түбірлерінің қосындысы мен көбейтіндісін табыңдар:
16 слайд
Үйге тапсырма: §3.
№259, №260 79 бет
алгебрадан 8 класка арналган презентация
квадрат теңдеулер тарауы бойынша
виет теоремасы тақырыбын түсіндіру .
7 240 235 материалов в базе
Вам будут доступны для скачивания все 218 289 материалов из нашего маркетплейса.
Мини-курс
4 ч.
Мини-курс
4 ч.
Мини-курс
10 ч.
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.