Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / ИЗО, МХК / Другие методич. материалы / Выступление на педагогической студии по искусству

Выступление на педагогической студии по искусству


  • ИЗО, МХК

Поделитесь материалом с коллегами:

Из выступления академика Раушенбаха на конференции «Математика и искусство»:

Есть два способа восприятия природы, книг, всего — художественный и логический. И когда пишут логики, то художники, ничего не понимают. Им доказывать бессмысленно, они понимают мир по-другому. Но тогда возникает естественный вопрос: а имеет ли вообще смысл наше взаимодействие, обсуждения и встречи, если эти две группы специалистов друг друга абсолютно не понимают? Я думаю наше взаимодействие полезно и даже необходимо. Математические методы по отношению к искусству могут играть достаточно большую роль, и математика достаточно много может дать для понимания развития искусства, для анализа его форм и своеобразной структуры».

Искусство существует и развивается как система взаимосвязанных между собой видов, многообразие которых обусловлено многогранностью самого реального мира, отображаемого в процессе художественного творчества.

Конечно же, все законы красоты невозможно вместить в несколько формул. Но, изучая математику мы открываем всё новые и новые слагаемые прекрасного, приближаясь к пониманию, а в дальнейшем и к созданию красоты и гармонии.

СЛАЙД1 «Математика в искусстве»

СЛАЙД2 Метапредметные связи решают проблему разобщенности, расколотости, оторванности друг от друга разных дисциплин и, как следствие, учебных предметов, и приводят к целостному образному восприятию мира

Существование различных видов искусств вызвано тем, что ни одно из них своими собственными средствами не может дать художественную всеобъемлющую картину мира. Такую картину может создать только вся художественная культура человечества в целом, состоящая из отдельных видов искусств.

СЛАЙД3 ВЕЛИКИЕ СФЕРЫ ЧЕЛОВЕЧЕСКОЙ ДЕЯТЕЛЬНОСТИ

Искусство, наука, красота… эти великие сферы человеческой деятельности, внешне столь разные и далекие друг от друга, тесно переплетены между собой незримыми узами! И разорвать эти узы нельзя, не повредив и тому, и другому.

Красота является самым крепким связующим звеном между наукой и искусством!

СЛАЙД4 Красота скульптуры, храма, картины, симфонии, поэмы... Что между ними общего? Разве можно сравнивать красоту храма с красотой музыки? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов - от цветка ромашки до красоты обнаженного человеческого тела.

Существуют ли объективные законы прекрасного?

  • Нельзя отрицать заглавную роль симметрии в природе, которая обязана своим существованием вечному закону природы - закону тяготения.

  • В основе основ музыки и архитектуры - гамме и пропорции – лежит математика, в частности ряд золотого сечения и модулор (система пропорций) Ле Корбюзье.

  • В изобразительном искусстве используется общая теория перспективы.

СЛАЙД5 «Симметрия, как бы широко или узко мы не понимали это слово, - есть идея, с помощью которой человек пытался объяснить и создать порядок, красоту и совершенство»

Герман Вейль

  • К фундаментальным понятиям симметрии относятся плоскость симметрии, ось симметрии, центр симметрии. Плоскостью симметрии называется такая плоскость, которая делит фигуру на две зеркально равные части, расположенные друг относительно друга так, как предмет и его зеркальное отражение.

  • Принцип "симметрии" широко используется в искусстве. Бордюры в архитектурных и скульптурных произведениях, орнаменты в прикладном искусстве, - все это примеры использования симметрии.

  • Принцип симметрии очень часто используется совместно с принципом "золотого сечения". Таким примером может служить картина Рафаэля "Обручение Марии"

СЛАЙД6 Геометрия орнаментов, бордюров, паркетов.

Орнаментальное искусство одно из самых древних. С орнаментами мы встречаемся повсюду: в декоративно-прикладном искусстве, в росписях архитектурных сооружений, в чугунных решётках, окаймляющих сады, парки, дворцы. Орнамент – это узор, состоящий из повторяющихся, ритмически упорядоченных элементов. Орнамент, как правило, подчёркивает своим построением и формой архитектурные и конструктивные особенности предмета, природную красоту материала. В построении орнамента используют главным образом принцип симметрии.

СЛАЙД7 Симметрия в архитектуре.

Театральная площадь,
Большойтеатр
О.Бове, А.Михайлов
1821-1853

Триумфальная арка
Ж.Ф.Т.Шальгрен
1806-1836
Франция, Париж

СЛАЙД8 Симметрия и асимметрия - это две формы проявления одной и той же закономерности - закономерности двойственности.

Симметрия воспринимается нами как покой, скованность, закономерность, тогда как асимметрия означает движение, свободу, случайность.

Это композиция из 10 храмов, каждый из которых обладает центральной симметрией, в целом асимметрична. Симметричные архитектурные детали собора как бы кружатся в асимметричном беспорядочном танце вокруг центрального шатра.


СЛАЙД9 ЗОЛОТОЕ СЕЧЕНИЕ

- (золотая пропорция, деление в крайнем и среднем отношении) — деление непрерывной величины на две части в таком отношении, при котором, меньшая часть так относится к большей, как большая ко всей величине.

Отношение большей части к меньшей в этой пропорции выражается квадратичной иррациональностью

φ=( √5+1)/2≈1,6180339887…

и, наоборот, отношение меньшей части к большей

1/ φ = =( √5-1)/2≈0,6180339887…

СЛАЙД10 Золотое сечение в искусстве

«Геометрия владеет двумя сокровищами – теоремой Пифагора и золотым сечением и если первое можно сравнить с мерой золота, то второе – с драгоценным камнем

Иоганн Кеплер

  • Известно, что Сергей Эйзенштейн искусственно построил фильм «Броненосец Потёмкин» по правилам золотого сечения. Он разбил ленту на пять частей. В первых трёх действие развивается на корабле. В двух последних — в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. В каждой части есть свой перелом, происходящий по закону золотого сечения. В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета, настроения.

  • Эйзенштейн считал, что, так как такой переход близок к точке золотого сечения, он воспринимается как наиболее закономерный и естественный.

СЛАЙД11 Математика и музыка.

Изучая высоту звука с помощью монохорда – простейшего инструмента Древних греков, Пифагор обнаружил поразительные вещи. Выяснилось, что приятные слуху созвучия – консонансы получаются лишь в том случае, когда длины струн, издающих эти звуки, соотносятся как целые числа первой четвёрки, т.е. 1:2, 2:3, 3:4;

звук и созвучия могут быть представлены простыми числами


Великий немецкий композитор XVII века Иоганн Себастьян Бах писал церковную музыку. Позднее уже после его смерти музыканты-исследователи выяснили, что многие мелодии композитора имеют цифровые коды - символы, а произведения точно математически просчитаны.

Французский композитор и музыкальный теоретик Жан Филипп Рамо в своём «Трактате о гармонии», написанном в 1722 году, говорил о том, что «музыка подчинена арифметике», уделял много внимания физико-математическим исследованиям.

СЛАЙД12 Игорь Стравинский, хорошо знавший музыку мастеров эпохи Ренессанса, также находил много общего между математикой и музыкой. «Способ композиторского мышления – способ, которым я мыслю, - мне кажется, не очень отличается от математического», «музыкальная форма математична хотя бы потому, что она идеальна» - эти высказывания Стравинского ярко выражают его убеждения

СЛАЙД13 Они сделали много в науке

"Математик, который не есть отчасти поэт, 

не будет никогда подлинным математиком"

К. Вейерштрасс

Поэтами были многие восточные ученые-энциклопедисты средневековья. Достаточно упомянуть лишь таких крупных мусульманских ученых, как Ибн Сина (Авиценна) (X-XI в.), аль-Хайям (XI в.), аль-Беруни (XII в.), Ибн аль-Ясмин (XII в.), Ибн аль-Хаим (XV в.) и Ибн Гази (XV в.). Они сделали много в науке вообще и в математике особенно.

СЛАЙД14 Математика и литература


Некоторые ошибочно думают - говорила великий русский математик-женщина С. Ковалевская, что математика - это сухая наука. Они смешивают математику с арифметикой, в которой проводятся вычисления, порой трудные и скучные, с числами. Но для того чтобы быть настоящим математиком, добавила С.Ковалевская, нужно быть поэтом в душе.

Александр Блок. Поэма «Двенадцать»

Число 12 олицетворяет, в первую очередь, время: 12 часов (ноль часов) - начало новой эпохи, когда из бури и хаоса возникает новый мир. Так же 12 - это число солдат революции, и, невольно напрашивается ассоциация с двенадцатью апостолами новой, еще непонятной веры. Раскрытию авторской идеи способствует и структура поэмы. Она состоит из 12 глав, а число строк в поэме кратно 12...


СЛАЙД15 Лев Толстой и Льюис Кэрролл

Льюис Кэрролл (настоящее имя – Чарлз Латуидж Доджсон).

Научные работы Кэрролла предвосхитили некоторые идеи математической логики. Но больше он известен как автор популярных повестей для детей. Так  в 1865 году он издал сказку «Алиса в стране чудес». Королева Англии, прочитав книгу, пришла в восторг от сказки и приказала срочно приобрести остальные сочинения Кэрролла. И очень удивилась, когда выяснилось, что все остальные произведения Кэрролла - сочинения по высшей математике, сравнительной анатомии, палеонтологии и систематике животных.

Никто не замечал, что в самом заглавии романа – «Война и мир» - закодирован закон золотого сечения. В самом деле, название романа построено на первых четырех членах ряда Фибоначчи 1, 2, 3, 5.Один союз, два существительных, три слова. Пять букв в первом ключевом. Отношение ключевых слов 5:3=1,666… есть первое рациональное приближение коэффициента золотого сечения.

СЛАЙД16 Математика и живопись

«И, поистине, живопись – это наука и законная дочь природы, ибо она порождена природой…»

Леонардо да Винчи

Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок истории. Сам Леонардо да Винчи говорил: “Пусть никто, не будучи математиком, не дерзнет читать мои труды”.
Он снискал славу непревзойденного художника, великого ученого, гения, предвосхитившего многие изобретения, которые не были осуществлены вплоть до XX в.

  • Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Вся

  • фигура и картина в целом опутана здесь двумя золотыми треугольниками и сетью больших, средних и малых

  • золотых прямоугольников, ориентированных по ширине или высоте полотна.


СЛАЙД17 Геометрический фрактал

Наука и искусство, словно нити холста, переплетались в полотнах мастеров Возрождения. Живопись переходила в начертательную геометрию, а геометрия – в искусство.


Люди придумали цифры и действия с ними, а потом в них же открыли множество законов, правил и теорем. Кроме того, оказалось, что в жизни цифр, линий, углов и бесконечно малых величин можно увидеть много красивого – изящные теоремы, тела, поверхности, даже условия задач. Числа живут своей жизнью, и мы, соприкоснувшись с ней, удивляемся, а иногда и любуемся ею. Компьютер дает нам возможность видеть на экране те или иные процессы, которые мы программируем.

Фракталы получают с помощью некоторой ломаной. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется по некоторому правилу на некоторую ломаную в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

СЛАЙД18 Заключение

Примеры взаимопроникновения математики в различные сферы искусства и наоборот можно приводить бесконечно…И чем дальше этим занимаешься, тем увлекательнее становится такая работа. Но даже приведенных примеров, я думаю, достаточно для того, чтобы согласиться со словами Бертрана Рассела:

«Математика владеет не только истиной, но и высшей красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусств

Спасибо за внимание!



Автор
Дата добавления 25.12.2015
Раздел ИЗО, МХК
Подраздел Другие методич. материалы
Просмотров147
Номер материала ДВ-284002
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх