Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Выступление на педсовете "Изменения в деятельности участников образовательного процесса на уроках математики в 5-х классах в соответствии с ФГОС"

Выступление на педсовете "Изменения в деятельности участников образовательного процесса на уроках математики в 5-х классах в соответствии с ФГОС"

  • Математика

Поделитесь материалом с коллегами:

СЛАЙД 1 Изменения в деятельности участников образовательного процесса на уроках математики в 5-х классах в соответствии с ФГОС

Федеральные государственные образовательные стандарты (ФГОС) — совокупность требований, обязательных при реализации основных образовательных программ

Со следующего учебного года 5-е классы нашей школы начинают работать по ФГОС. В чём же различие нашей предыдущей работы от предстоящей на уроках вообще и уроках математики в частности?!

В соответствии с новыми федеральными государственными образовательными стандартами, нужно, прежде всего, усилить мотивацию ребенка к познанию окружающего мира, продемонстрировать ему, что школьные занятия – это не получение отвлеченных от жизни знаний, а наоборот – необходимая подготовка к жизни, ее узнавание, поиск полезной информации и навыки ее применения в реальной жизни. Ученик должен стать живым участником образовательного процесса. ЭТО ГЛАВНАЯ ИДЕЯ ФГОСов.
Новизна современного урока математики заключается в организации индивидуальных и групповых форм работы. Постепенно преодолевается авторитарный стиль общения между учителем и учеником.
Требования, предъявляемые к современному уроку математики:
    - хорошо организованный урок в хорошо  оборудованном кабинете
   - учитель должен спланировать свою деятельность и деятельность  учащихся;
   - урок должен быть проблемным и развивающим; учитель сам нацеливается на сотрудничество с учениками и умеет направлять учеников на сотрудничество с учителем и одноклассниками;
    - учитель организует проблемные и поисковые ситуации, активизирует деятельность учащихся;
     - вывод делают сами учащиеся;
    - в центре внимания урока – дети;
    - учет уровня и возможности учащихся, в котором учтены такие аспекты, как стремление учащихся, настроение детей;
   - планирование обратной связи;

СЛАЙД 2 Сравнительный анализ отдельных элементов деятельности учителя и учащихся на уроке.

Для сравнения (многие моменты применяются учителями и сейчас)

Сейчас

По-новому

1. Ознакомление с темой урока проводит учитель

1. Тему урока интуитивно могут сформулировать почти все дети в классе, это возможно в системе специально подобранных устных и письменных упражнений.

Использование учителем различных видов заголовков  выводят урок на новый, современный уровень; позволяют применять проблемное обучение.

2. Цель урока ставит учитель

2. Дети ставят цель урока по-своему, задавая вопросы, проводя дискуссию. 
Учащиеся определяют границы знания и незнания.

Что это такое?

Как это применить в решении задач?

Зачем это нужно в жизни?

Ученики ставят проблему перед собой и коллективом.

3. Учебник используют для прочтения, заучивания правил и ответа на вопросы 
в конце текста

3. Учебник используется как научная литература.

С какими понятиями мы не знакомы?

Прочитаем…
Проанализируем…
Что общего…
В чем различие…
Есть ли разные способы решения задачи...
Сделаем вывод...
Сформулируем алгоритм…
Сформулируем новое правило…

4. Проверка знаний осуществляется в основном с помощью самостоятельных 
и контрольных работ.

4. Проверяется умение применять знания в новых ситуациях, больше в парной и групповой работе.

В ходе практической групповой работы осуществляется:

Определение проблемы
– Планирование работы в группах
– Распределение ролей в группе, кто какой частью работы руководит
– Выполнение работы
– Выслушивание друг друга
– Выводы, итоги.

Для проверки развернутого решения задач применяют сличение с образцом. 
Учитель учит вежливо и уважительно общаться в парах, группах. Приобретается опыт социального общения, становления личности.

5. Проверка домашнего задания проводится в основном учителем, с комментарием, 
по готовому образцу.

5. Оценивание домашнего задания начинается с помощью группы консультантов, а потом по эталону.

Обсуждение выполнения домашнего задания проводится с качественной оценкой (выполнено верно, полностью или частично, красиво оформлено, есть два способа решения и т.д.)

Учащиеся выбирают задание из предложенных учителем с учетом индивидуальных возможностей.

6. Формы и методы.

6. Формы и методы применяются практически те же. Больше в игровой и групповой формах проходит закрепление и обобщение темы.

Карточки-памятки, тетради справочники; карточки с пропусками; система творческих заданий, мини проектов.

(Задачи на десятичные дроби со сказочным сюжетом, придумать, оформить и решить. Защита коллективного проекта в форме ролевой игры. Ролевые игры: Конструкторское бюро. Заседание редакционной коллегии. Пресс-конференция.)

Дети приобретают опыт поиска решения учебной проблемы.

7. Учитель много говорил

7. Учитель организует деятельность учащихся

помогает в поиске информации
– помогает учиться обобщать способы действий
– учит ставить задачи для собственной деятельности

8. Уроки чаще всего комбинированные

8. Чаще используются уроки группового общения или индивидуальной деятельности

СЛАЙД 10 Система контроля текущего состояния и отслеживание динамики достижения планируемых результатов.

Контроль текущего состояния и отслеживание динамики достижения планируемых результатов можно осуществлять, заполняя след. таблицу (варианты могут быть и другие)

  1. Умеет ставить цель работы

  2. Умеет выполнять свою роль в группе

  3. Умеет сравнивать свою работу с образцом

  4. Учитывает мнение товарищей

  5. Толерантно относится к товарищам

  6. Умеет оценивать свою работу, учитывая эталон

  7. Умеет выбирать задание по силам и т.д.



(Оценку можно выбрать свою 3-х бальную, 5-и бальную; периодичность оценивания тоже можно выбрать – урок, неделя, тема и т.д.)



СЛАЙД 11 Какие виды УУД (универсальные учебные действия) формирует учитель у своих учеников?

  • Сравнивать рисунки.

  • Делать выводы по ситуации.

  • Искать нужную информацию в тексте.

  • Обрабатывать информацию в решении задач.

  • Общаться в группах.

  • Умение высказываться, аргументировать, приводить примеры.

  • Ставить новые цели, переносить понятия в новую ситуацию.


СЛАЙД 12 Т.о. деятельность участников образовательного процесса сводится к следующему:


Деятельность учителя

Деятельность ученика

Организует

Инструктирует

Инспектирует

Помогает урегулировать конфликт

  • Принимает участие в работе групп

  • Распределяет роли(кто какую роль выполняет, кто руководит, кто оформляет)

  • Ставят учебные цели

  • Выполняют работу

  • Оформляют

  • Высказывают своё мнение

  • Совместно оценивают работу каждого, словесная оценка

  • Обобщают

  • Ставят вопрос о возможности применения темы в жизни людей


Примеры некоторых моментов урока: Урок в 5 классе «Упрощение выражений», в частности использование распределительного закона умножения





СЛАЙД 13

Деятельность учителя

Деятельность учащихся



-Ранее мы изучили свойства сложения и умножения, я предлагаю, используя эти свойства решить устно заданные примеры, назвать свойство, которое применяется в каждом примере:

А) 27+174+73;

Б) 50∙19∙2;

В) 64+(79+36);

Г) 135∙12+8∙135.





-устно решают примеры А-В с комментированием, называют свойства;


В примере Г) возникло затруднение: дети не могут устно решить пример, учитель задает вопросы (проблемный диалог):

- если бы мы решали пример по действиям, сколько действий нужно выполнить?

- мы их можем выполнить устно?

- давайте обратим внимание на числа в примере;

-значит, мы можем предположить, что есть какой-то прием для решения такого примера более простым способом, попробуем этот способ найти.

Итак, целью нашего урока будет являться следующее: сформулировать свойство, которое позволит упрощать вычисления в подобных примерах, работа на нашем уроке будет проходить в парах, вы сможете помогать друг другу, совместно искать решение проблемы, исправлять ошибки. В конце урока, вы оцените участие каждого в этой работе.

Запишите в тетрадях тему нашего урока «Упрощение выражений».






- 3 действия;

-нет;

-есть два одинаковых числа;

СЛАЙД 14 Для того, чтобы сформулировать новое свойство, учитель предлагает решить задачу:

Для украшения новогодней ёлки решили купить по 7 шаров синего и красного цвета. Синие шарики стоят 150 руб., а красные 200 руб. Сколько денег необходимо для всей покупки?

-Для решения задачи нужно составить числовое выражение двумя различными способами.





СЛАЙД 15 -Так как мы получили равные результаты можно сделать вывод, что выполняется равенство:

(150+200)∙7=150∙7+200∙7;

Гипотеза: можем ли мы предположить, что подобные равенства будут выполняться для любых чисел?

Давайте убедимся в верности данного предположения.

Составьте похожее равенство с однозначными числами и проверьте его.

Вывод. Для того чтобы умножить сумму на число, можно умножить на это число каждое слагаемое и полученные произведения сложить.

Это правило выражает распределительное свойство умножения относительно сложения.

Предлагаю записать это свойство с помощью букв.

Такое же свойство выполняется для умножения разности на число, оно называется распределительное свойство умножения относительно вычитания.

Запишите его с помощью букв.

Итак, вы сами сейчас сформулировали распределительное свойство, которое позволяет упрощать числовые выражения и находить их значения более удобным способом.

Работа в парах, поисковая деятельность, учащиеся предлагают различные варианты решений.

Два ученика, которые первыми составили разные выражения, выходят к доске и записывают свои выражения:

150∙7+200∙7=2450 (руб.)

(150+200)∙7=2450 (руб.)











Работа в парах, каждая пара составляет свое равенство, например:

(7+2)∙5=7∙5+2∙5

45=45











(а+в)с=ас+вс

(а-в)с=ас-вс

Давайте вернемся к примеру Г) 135∙12+8∙135.

Как вы думаете, можно ли для решения этого примера применить распределительное свойство?

-этими свойствами можно пользоваться и в обратном порядке

ас+вс=(а+в)с

ас-вс=(а-в)с

Фронтальная работа по решению заданий на применение нового свойства.

Работа в парах, поисковая деятельность.

135∙12+8∙135=(12+8)135=20∙135=

2700







559 (а, б) – образец решения, 1 ученик

559 (в, г) – работа с комментированием, решают самостоятельно и проверяют результат.

560 (а, б) – образец решения, 1 ученик

560 (в, г) – работа с комментированием, решают самостоятельно и проверяют результат.

Решить примеры из левого столбика, применяя распределительное свойство умножения. В правом столбике найти соответствующие числа, поставить в соответствие для каждой буквы примера номер ответа.

  1. 74∙3+36∙3;

  2. 7∙599;

  3. 140∙6-40∙6;

  4. 83∙7;

  5. 34∙5+66∙5.



  1. 581;

  2. 4193;

  3. 300;

  4. 500;

  5. 600;

  6. 4200;

  7. 330;

  8. 561.

В тетрадях чертят таблицу, в которую вносят номер правильного ответа.

Решение примеров записывается в тетради подробно.

A

B

C

D

E

7

2

5

1

4





Правильные решения высвечиваются на доске, дети находят и исправляют ошибки, ставят себе оценку в соответствии с критериями:

5 правильных ответов – оценка «5»

4 правильных ответа – оценка «4»

3 правильных ответа – оценка «3»

СЛАЙД 16

Какое свойство мы сформулировали на уроке?

Как вы считаете, вы его сами сформулировали?

Для чего применяется это свойство?

Будете ли вы в дальнейшей работе применять это свойство?

Помогла ли вам работа в парах на нашем уроке?

Помогли ли вы своему товарищу во время урока?







Технологический процесс подготовки урока по-прежнему базируется на известных каждому учителю этапах урока. Это определение цели урока и задач, отбор содержания учебного материала, подбор методов и приемов обучения, определение форм организации деятельности учащихся, подбор материала для домашней работы, определение способов контроля, продумывание места, времени на уроке для оценки деятельности учащихся, подбор вопросов для подведения итогов урока. Главной особенностью является то, что изменяется характер деятельности и учителя и учащихся на уроке. 



Учитель должен как можно чаще задавать вопросы: «Как ответить на данный вопрос?» или «Где можно найти ответ на данный вопрос?»



Итак, подведем  итоги.

 

Познавательный аспект цели

Развивающий аспект цели

Воспитывающий аспект цели

  • Обучение каждого

ученика самостоятельно добывать знания

  • Формирование умений,

обеспечивающих успешное выполнение деятельности

  • Формирование навыков

  • Развитие речи как показателя интеллектуального и общего развития ученика

  • Развитие мышления

  • Развитие сенсорной сферы

  • Развитие двигательной сферы

  • Нравственные объекты, с которыми ученик вступает во взаимодействие на уроке

  • «Другие люди», т.е. учитель, учащиеся, в общении с которыми формируются нравственные качества личности

  • «Я», т.е. отношение к самому себе

  • «Общество и коллектив»

Важно!

При планировании обучающей цели формулировать ее через ожидаемый результат учащихся

Важно!

Один и тот же развивающий аспект цели целесообразно формулировать для нескольких уроков, а иногда и для уроков целой темы, ведь развитие всегда идет медленнее, чем обучение

Важно!

Кредо обучающей деятельности учителя – «воспитывающее обучение»

 

Раньше мы работали только над предметными результатами

Предметные результаты

Освоенный обучающимися в ходе изучения учебного предмета опыт специфической

для данной предметной области деятельности по получению нового знания, его

преобразованию и применению, а также система основополагающих элементов

научного знания, лежащих в основе современной научной картины мира.

теперь

Требования к результатам (сформулированные в ФГОС)

Личностные результаты - готовность и способность обучающихся к саморазвитию, сформированность мотивации к обучению и познанию, ценностно-смысловые установки обучающихся (ученик осознаѐт свою принадлежность к своей стране, воспринимает планету Земля как общий дом для многих народов, умеет выстраивать добропорядочные отношения в учебном коллективе, активно участвует в процессе обучения, выходит на постановку собственных образовательных целей и задач, осмысленно относится к тому что делает, знает для чего он это делает, соотносит свои действия и поступки с нравственными нормами, позитивно участвует в коллективной и групповой работе учащихся, умеет входить в коммуникацию со взрослыми людьми, соблюдает в повседневной жизни нормы речевого этикета и правила устного общения (обращение, вежливые слова). В ситуации конфликта ищет пути его равноправного, ненасильственного преодоления, терпим к другим мнениям, учитывает их в совместной работе)


Метапредметные результаты - освоенные обучающимися универсальные учебные действия (познавательные,

регулятивные и коммуникативные) (умение соотносить свои действия с планируемыми результатами, умение самостоятельно планировать пути достижения целей, умение оценивать правильность выполнения учебной задачи, строить логическое рассуждение, умозаключение и т. д.







Выберите курс повышения квалификации со скидкой 50%:

Автор
Дата добавления 29.09.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров483
Номер материала ДВ-020291
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх