Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Внеаудиторная самостоятельная работа обучающихся по дисциплине Математика для профессии Электромонтер по ремонту и обслуживанию электрооборудования (по отраслям).

Внеаудиторная самостоятельная работа обучающихся по дисциплине Математика для профессии Электромонтер по ремонту и обслуживанию электрооборудования (по отраслям).

  • Математика

Название документа ВСР- ЭЛ-КИ,2014-2016 уч.г..docx

Поделитесь материалом с коллегами:

Самостоятельная работа № 1

Тема: Типовой расчет по теме «Решение треугольников».

Цель работы:

  • повторить теорему Пифагора, теорему синусов, теорему косинусов, решение треугольников;

  • развитие умений и навыков работы с таблицами Брадиса,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал:

  1. использовать материал : Самостоятельная работа № 1,

  2. использовать формулы:

а2+b2 = с2 , а2 = с2 - b2 , b 2 = с2 - а2,

, а = , b = , с = ,

с2 = а2 + b2 – 2 а b cos C , а2 = b2 + с2 -2 b с cos А, b2 = а2 + с2 – 2ас cos В,

cos А = (b2 + с2 - а2) : (2 b с), cos В = (а2 + с2 - b2) : (2ас), cos C = (а2 + b2 2) : (2 а b),

А+ В + С = 180°.

Решение типовых заданий:

Пример 1. а = 5, b = 12, найти с. Решение: с2 = а2+b2 = 52 + 122= 25 + 144=169, с = 13; Ответ: 13.

Пример 2. с = 41, а = 40, найти b. Решение: b 2 = с2а2 = 412–402=1681–1600 = 81, b = 9; Ответ: 9.

Пример 3. а = 10, b = , найти с. Решение: с2 = а2+b2 = 102 + 2 = 100 + 44 = 144,с = 12; Ответ: 12.

Пример 4. а = 10, b = 10, с = 12, найти h1, h2, h3.

Решение: p = (а + b + с) : 2 = (10 + 10 + 12) : 2 = 16, S = =

= = = 642 = 48,

h1 = 2S : a = 2 48: 10 = 9,6, h2 = 2S : b = 2 48:10 = 9,6, h3 = 2S : с = 2 48 : 12 = 8; Ответ: 8.

Пример 5. а = 12, b = 18, С = 50°, найти с, А, В.

Решение: с2 = а2 + b2 – 2 а b cos C = 122 +182 -2 12 18 cos 50° = = 144 + 324 – 2 12 18 0,6428 = 144 +3 24 – 278 = 190, с ≈ 14,

cos А = (b2 + с2 а2) : (2 b с) = (182 + 142 – 122) : (21814) = 0,7460, А = 41°45 / ,

В = 180° – (50° + 41°45 /) = 180° – 91°45 / = 89° – 45 / = 88°15 /; Ответ: 14, 41°45 / , 88°15 / .



Пример 6. а =24,6, В = 45°,С = 70°, найти А, b, с.

Решение: А = 180° – (45° + 70°) = 65°,

b = = 24,6 = 24,6 = 19,2;

с = = 24,6 = 24,6 = 25,6; Ответ: 65°,19,2; 25,6 .

Пример 7. а = 14, b = 18, с = 20, найти А, В, С .

Решение: cos А = (b2 + с2 а2) : (2 b с) = (182 + 202 142) : (2 18 20) = 0,7333;

А = 42°50 / ≈ 43°, cos В = (а2 + с2b2) : (2ас) = (142 + 202 – 182) : (21420) = 0,4857;

В = 60°56 / ≈ 61°, С = 180° – (43° + 61°) = 76°; Ответ: 43°,61°,76°.

Задание:

а = 10, b = 10, с = 16,

найти h1, h2, h3.

а = 20, b = 20, с = 32,

найти h1, h2, h3.

а = 6, b = 8, с = 10,

найти h1, h2, h3.

4.

а = 6,3, b = 6,3, <С = 54°, найти с, А, В.

а = 10, b = 7, <С = 60°, найти с, А, В.

а = 16, b = 10, <С = 80°, найти с, А, В.

5.

а =14, <В = 40°,<С = 60°, найти А, b, с.

а =4,5, <В = 30°,<С = 75°, найтиА, b, с.

а =32, <В = 45°,<С = 87°, найти А, b, с.

6.

а = 6, b = 7,3, с = 4,8, найти А, В, С .

а = 7, b = 9, с = 10, найти А, В, С .

а = 12, b = 14,6, с = 9,6, найтиА, В, С .



Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-6,

Оценка «4» выставляется , если : выполнено задание № 1-4,

Оценка «3» выставляется, если : выполнено задание № 1-3.

Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.







Самостоятельная работа № 2


Тема: Составление опорного конспекта «Четырехугольники».

Цель работы:

  • повторить понятия: параллелограмм, прямоугольник, ромб, трапеция, квадрат, их свойства;

  • развитие умений и навыков работы с источником информации, с практическим материалом.

План работы:

  1. Определение параллелограмма, изображение параллелограмма и его свойства;

  2. Определение прямоугольника, изображение прямоугольника и его свойства;

  3. Определение ромба, изображение ромба и его свойства;

  4. Определение трапеции, изображение трапеции и ее свойства;

  5. Определение квадрата, изображение квадрата и его свойства;

  6. Формулы для вычисления площади четырехугольников;

Методические рекомендации к составлению конспекта:


Конспект– это работа с другим источником.

Цель –зафиксировать ,переработать тот или иной текст.

Конспект представляет собой дословные выписки из текста источника. При этом конспект это не полное переписывание чужого текста. При написании конспекта сначала прочитывается текст –источник, в нем выделяются основные положения , подбираются примеры , идет перекомпоновка материала, а затем уже оформляется текст конспекта. Конспект может быть полным, когда работа идет со всем текстом источника или неполным, когда интерес представляет какой-либо один или несколько вопросов, затронутых в источнике.

Общую последовательность действий при составлении конспекта можно определить таким образом:

1. Уяснить цели и задачи конспектирования.

2.Внимательно прочитать текст параграфа, главы и отметить информационно значимые места.

3. Составить конспект.

Критерии оценки:

Оценка «5» выставляется если : содержание соответствует теме, материал проработан глубоко, грамотно и полно использованы источники, приведены сложные примеры;

Оценка «4» выставляется , если : материал проработан не глубоко, использованы не все источники, приведены сложные примеры ;

Оценка «3» выставляется, если : материал проработан не полностью, приведены примеры.


Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.










Самостоятельная работа № 3

Тема: Решение теста по теме «Планиметрия».

Цель работы: повторить, закрепить основные понятия планиметрии.

Методические рекомендации к выполнению теста: Решив задачу, нужно выбрать правильный ответ и записать номер, под которым он записан.

Задание:

hello_html_6a76ff4a.pnghello_html_5f7da47a.png

hello_html_49969193.png

hello_html_d25e025.png

hello_html_340838f4.pnghello_html_m1cf7c3c4.png

hello_html_5b10e420.pnghello_html_7b6af9ff.png



hello_html_m7fb89045.png

Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-18,с записью решения, даже с недочетами.

Оценка «4» выставляется , если : выполнено задание № 1-15, с записью решения,даже с недочетами.

Оценка «3» выставляется, если : выполнено задание № 1-10.

Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.






Самостоятельная работа № 4

Тема: Составление опорного конспекта «Параллельность прямых и плоскостей».

Цель работы:

  • повторить понятия: параллельные прямые, параллельность прямой и плоскости, параллельные плоскости, их свойства;

  • развитие умений и навыков работы с источником информации, с практическим материалом.

План работы:

  1. Определение параллельных прямых и их свойства( теоремы и лемма);

  2. Взаимное расположение прямой и плоскости(определение и чертежи);

  3. Определение параллельности прямой и плоскости, их свойства;

  4. Взаимное расположение прямых (определение и чертежи);

  5. Определение параллельности плоскостей, их свойства;

Методические рекомендации к составлению конспекта:


Конспект– это работа с другим источником.

Цель –зафиксировать ,переработать тот или иной текст.

Конспект представляет собой дословные выписки из текста источника. При этом конспект это не полное переписывание чужого текста. При написании конспекта сначала прочитывается текст –источник, в нем выделяются основные положения , подбираются примеры , идет перекомпоновка материала, а затем уже оформляется текст конспекта. Конспект может быть полным, когда работа идет со всем текстом источника или неполным, когда интерес представляет какой-либо один или несколько вопросов, затронутых в источнике.

Общую последовательность действий при составлении конспекта можно определить таким образом:

1. Уяснить цели и задачи конспектирования.

2.Внимательно прочитать текст параграфа, главы и отметить информационно значимые места.

3. Составить конспект.

Критерии оценки:

Оценка «5» выставляется если : содержание соответствует теме, материал проработан глубоко, грамотно и полно использованы источники, приведены сложные примеры;

Оценка «4» выставляется , если : материал проработан не глубоко, использованы не все источники, приведены сложные примеры ;

Оценка «3» выставляется, если : материал проработан не полностью, приведены примеры.


Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.












Самостоятельная работа № 5

Тема: Типовой расчет по теме «Параллельность плоскостей».

Цель работы:

  • повторить, закрепить основные понятия по теме «Параллельность плоскостей».

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 1.

Решение типовых заданий:

Пример 1. Два отрезка длин а и b упираются концами в две параллельные плоскости. Проекция первого отрезка (длины а) на плоскость равна с. Найдите проекцию второго отрезка, если а = 17 , b = 10, с = 15 см.

Дано: α || β, а = 17 , b = 10, с = 15 см

Найти: х

Решение: а2 – с2 = b2 – х2, х2 = b2а2 + с2 , х2 = 102 – 172 + 152 =

= 100 – 289 + 225 = 36, х = 6 см. Ответ: х = 6 см.


Пример 2. Две параллельные плоскости расстояние между

которыми 2 дм, пересечены прямой, составляющей с каждой из

плоскости угол в 300. Найти длину отрезка этой прямой, заключенной

между плоскостями.

Дано: α || β, АВα = А, АВβ = В, АВС = 30°, АС = 2 дм.

Найти: АВ

Решение: Δ АСВ – прямоугольный, АВС = 30°, АС = 2 дм.

АВ = 2 АС = 2 2 = 4 дм. Ответ: АB = 4 дм.


Пример 3. Расстояние между параллельными плоскостями равно 8 см. Отрезок прямой длина которого 17 см расположен между ними так, что его конец принадлежит плоскости. Найти проекцию этого отрезка на другую плоскость.

Дано: α || β, АВα = А, АВβ = В, АВ = 17 см, АС = 8 см.

Найти: ВС

Решение: Δ АСВ – прямоугольный, ВС2 = АВ2 – АС2 = 172 – 82 = 289 – 64 = 225, ВС = 15 см.

Ответ: BС = 15 см.

Пример 4. На параллельных плоскостях α и β, выбрано по паре точек А12 и В12 соответственно так, что прямые А1В1 и А2В2 пересекаются в точке S Вычислите SА1 и SВ2, если А1В1= 6см; SА2 = 2,5см; SВ2 : SА2 = 3 : 1 . S

Дано: α || β, А1 А2В1 В2 = S, А1, А2 α, В12 β,

А1В1= 6см; SА2 = 2,5см; SВ2 : SА2 = 3 : 1

Найти: 1, SВ2

Решение: Δ SА1 А2 ~ Δ SВ1В2 , (α || β), SВ2 : SА2 = 3 : 1, SА2 = 2,5см,

2 = 3 2,5 = 7,5 см. 1 : SА1 = 3 : 1, А1В1= 6см, SА1 = х ,

( х + 6 ) : х = 3 : 1, 3х = х + 6 , 2х = 6, х = 3, SА1 = 3 см.

Ответ:1 = 3 см, SВ2 = 7,5 см .





Пример 5.hello_html_m40fa69e3.jpg

Дано: α || β, а α, b β, а || b, с - секущая, 1 = 150°,

Найти: 2, 3, 4, 5, 6, 7, 8.

Решение: 3 = 1 = 150°(верт.), 3 = 5 = 150°(н.леж.),

5 = 7 = 150°(верт.), 1 + 2 = 180°(смежные),

2 = 180° - 1 = 180° - 150° = 30°,

2 = 4 = 30°(верт.), 4 = 6 = 30°(н.леж.), 6 = 8 = 30°(верт.).

Ответ: 3 = 5 = 7 = 150°, 2 = 4 = 6 = 8 = 30°.

Задание:

1 вариант.

  1. Два отрезка длин а и b упираются концами в две параллельные плоскости. Проекция первого отрезка (длины а) на плоскость равна с. Найдите проекцию второго отрезка, если а = 13 , b = 15, с = 5 см.

  2. Две параллельные плоскости расстояние между которыми 6 дм, пересечены прямой, составляющей с каждой из плоскости угол в 300. Найти длину отрезка этой прямой, заключенной между плоскостями.

  3. Расстояние между параллельными плоскостями равно 10 см. Отрезок прямой длина которого 26 см расположен между ними так, что его конец принадлежит плоскости. Найти проекцию этого отрезка на другую плоскость.

  4. На параллельных плоскостях α и β, выбрано по паре точек А12 и В12 соответственно так, что прямые А1В1 и А2В2 пересекаются в точке S Вычислите SА1 и SВ2, если А1В1= 12см; SА2 = 4,5см; SВ2 : SА2 = 3 : 1.

  5. Дано: α || β, а α, b β, а || b, с - секущая, 1 = 140°,

Найти: 2, 3, 4, 5, 6, 7, 8.

2 вариант.

  1. Два отрезка длин а и b упираются концами в две параллельные плоскости. Проекция первого отрезка (длины а) на плоскость равна с. Найдите проекцию второго отрезка, если а = 25 , b = 17, с = 20 см.

  2. Две параллельные плоскости расстояние между которыми 8 дм, пересечены прямой, составляющей с каждой из плоскости угол в 300. Найти длину отрезка этой прямой, заключенной между плоскостями.

  3. Расстояние между параллельными плоскостями равно 9 см. Отрезок прямой длина которого 15 см расположен между ними так, что его конец принадлежит плоскости. Найти проекцию этого отрезка на другую плоскость.

  4. На параллельных плоскостях α и β, выбрано по паре точек А12 и В12 соответственно так, что прямые А1В1 и А2В2 пересекаются в точке S Вычислите SА1 и SВ2, если А1В1= 18см; SА2 = 6,5см; SВ2 : SА2 = 3 : 1.

  5. Дано: α || β, а α, b β, а || b, с - секущая, 1 = 110°,

Найти: 2, 3, 4, 5, 6, 7, 8.

Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-5,

Оценка «4» выставляется , если : выполнено задание № 1-4,

Оценка «3» выставляется, если : выполнено задание № 1-3.

Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.

Самостоятельная работа №6

Тема: Составление опорного конспекта «Перпендикулярность прямых, прямой и плоскости». 

Цель работы:

  • повторить понятия: перпендикулярность прямых, перпендикулярность прямой и плоскости, их свойства;

  • развитие умений и навыков работы с источником информации, с практическим материалом.

План работы:

  1. Определение перпендикулярных прямых, их свойства;

  2. Определение перпендикулярности прямой и плоскости, их свойства(теоремы, чертежи, признак);

  3. Перпендикуляр и наклонные( определение и чертежи ) ;

  4. Теорема о 3 перпендикулярах;

Методические рекомендации к составлению конспекта:


Конспект– это работа с другим источником.

Цель –зафиксировать ,переработать тот или иной текст.

Конспект представляет собой дословные выписки из текста источника. При этом конспект это не полное переписывание чужого текста. При написании конспекта сначала прочитывается текст –источник, в нем выделяются основные положения , подбираются примеры , идет перекомпоновка материала, а затем уже оформляется текст конспекта. Конспект может быть полным, когда работа идет со всем текстом источника или неполным, когда интерес представляет какой-либо один или несколько вопросов, затронутых в источнике.

Общую последовательность действий при составлении конспекта можно определить таким образом:

1. Уяснить цели и задачи конспектирования.

2.Внимательно прочитать текст параграфа, главы и отметить информационно значимые места.

3. Составить конспект.

Критерии оценки:

Оценка «5» выставляется если : содержание соответствует теме, материал проработан глубоко, грамотно и полно использованы источники, приведены сложные примеры;

Оценка «4» выставляется , если : материал проработан не глубоко, использованы не все источники, приведены сложные примеры ;

Оценка «3» выставляется, если : материал проработан не полностью, приведены примеры.


Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.












Самостоятельная работа № 7

Тема: Типовой расчет по теме «Перпендикуляр и наклонная».

Цель работы: повторить, закрепить основные понятия:

  • перпендикуляра и наклонной, проведенных из точки к плоскости, проекции наклонной на плоскость;

  • расстояния от точки до плоскости;

  • проекции точки и произвольной фигуры на данную плоскость;

  • угла между прямой и плоскостью, пересекающей эту прямую и не перпендикулярную к ней;

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 2.

(рис.1)

АС - перпендикуляр, АВ - наклонная, СВ – проекция наклонной, АВ2 = ВС2 + АС2.

φ - угол между наклонной и плоскостью α.




Рис.1 рис.2

Решение типовых заданий:

Пример 1. Из точки, не принадлежащей данной плоскости , проведены к ней две наклонные, равные 10см и 18см. Сумма длин их проекций на плоскость равна 16см. Найти проекцию каждой наклонной.(рис.2)

Дано: ОС - перпендикуляр, АС и ВС - наклонные, АО и ОВ – их проекции,

АС = 10 см, СВ = 18 см, АО + ОВ = 16 см,

Найти: АО, ОВ

Решение: АС = 10, СВ = 18, АО + ОВ = 16, АО = х, ОВ = 16 – х,

АС2 – АО2 = ВС2 – ОВ2 , 102 – х2 = 182 – (16 – х)2, 100 – х2 = 324 – 256 + 32 х – х2 ,

32 х = 32, х = 1, АО = 1, ОВ = 16 – 1 = 15.

Ответ: 1 и 15 см.

Пример 2. Из точки к плоскости проведены две наклонные. Одна из них длиной 12см наклонена к плоскости под углом 60°, проекция другой на эту плоскость равна 6 см.

Найти длину этой наклонной.

Дано: ОС - перпендикуляр, АС и ВС - наклонные, АО и ОВ – их проекции,

СА = 12 см , САО = 60°, ОВ = 6 см ,

Найти: СВ

Решение: Δ АОС- прямоугольный, АСО = 90 ° – 60 ° = 30°, АО = СА : 2 = 12: 2 = 6,

СО2 = СА2 –АО2 = 122 – 62 = 144 – 36 = 108,

СВ2 = СО2 + ОВ2 = 108 + (6 )2 = 108 + 36 6 = 108 + 216 = 324, СВ = 18 см

Ответ: 18 см.


Пример 3. Из точки С к данной плоскости проведены перпендикуляр СО = 6см и две наклонные. Каждая из наклонных образует с плоскостью угол 60°. Угол между наклонными 120°. Найти расстояние между основаниями наклонных.

Дано: ОС - перпендикуляр, АС и ВС - наклонные, АО и ОВ – их проекции,

СО = 6см, САО = СВО = 60°, АСВ = 120°,

Найти: АВ

Решение: sin САО = СО : АС, АС = ВС = СО : sin САО = 6: sin60 ° = 6 : = 12 : = 4 ,

Δ АВС – равнобедренный, АВ2 = АС2 + ВС2 – 2АС ВС cos АСВ =

= (4)2 + (4)2 – 24 cos 120° = 16 3 + 16 3 – 216 3( – ) = 48 + 48 + 48 = 144,

АВ = 12 см.

Ответ: АВ = 12 см.

Пример 4. Из точки С к данной плоскости проведены перпендикуляр СО и две наклонные СВ и АС. ОВ= 4,САО = 30°, СВО = 60°, а угол между наклонными 90°. Найти расстояние между основаниями наклонных.

Дано: ОС - перпендикуляр, АС и ВС - наклонные, АО и ОВ – их проекции,

ОВ= 4,САО = 30°, СВО = 60°, АСВ = 90°,

Найти: АВ

Решение: ΔСОВ – прямоугольный, СВО = 60°, ОСВ = 90 ° – 60 ° = 30 °,

ВС= 2 ОВ = 24 = 8, СО2 = ВС2 – ОВ2 = 82 – 42 = 64 – 16 = 48, СО = = 4,

АС = 2 СО = 24 = 8 , АСВ - прямоугольный, АВ2 = АС2 + ВС2 = (8)2 + 82 =

= 64 3 + 64 = 256, АВ = 16 см.

Ответ: АВ = 16 см.

Пример 5. Диагонали квадрата АВСD пересекаются в точке О. Из точки О проведён к плоскости квадрата перпендикуляр ОМ. Найти расстояние от точки М до стороны ВС, если AD = 6см, ОМ = 4см. (рис.3)

Дано: АВСD - квадрат, ОМ - перпендикуляр, О - точка пересечения диагоналей квадрата,

МК - расстояние от точки М до стороны ВС, AD = 6см, ОМ = 4см.

Найти: МК

Решение: ОК = АВ : 2 = AD : 2 = 6 : 2 = 3, МОК - прямоугольный,

МК2 = ОМ2 + ОК2 = 42 + 32 = 16 + 9 = 25, МК = 5.

Ответ: МК = 5 см.

Рис.3








А В









Задание: Задачи № 1-4 по рис.2., задача № 5 по рис.3.

1 вариант.

  1. Из точки, не принадлежащей данной плоскости , проведены к ней две наклонные, равные 20 см и 36 см. Сумма длин их проекций на плоскость равна 32 см. Найти проекцию каждой наклонной.

  2. Из точки к плоскости проведены две наклонные. Одна из них длиной 24 см наклонена к плоскости под углом 60°, проекция другой на эту плоскость равна 12 см. Найти длину этой наклонной.

  3. Из точки С к данной плоскости проведены перпендикуляр СО = 12 см и две наклонные. Каждая из наклонных образует с плоскостью угол 60°. Угол между наклонными 120°. Найти расстояние между основаниями наклонных.

  4. Из точки С к данной плоскости проведены перпендикуляр СО и две наклонные СВ и АС. ОВ= 8,САО = 30°, СВО = 60°, а угол между наклонными 90°. Найти расстояние между основаниями наклонных.

  5. Диагонали квадрата АВСD пересекаются в точке О. Из точки О проведён к плоскости квадрата перпендикуляр ОМ. Найти расстояние от точки М до стороны ВС, если AD = 12 см, ОМ = 8 см.

2 вариант.

  1. Из точки, не принадлежащей данной плоскости , проведены к ней две наклонные, равные 5см и 9см. Сумма длин их проекций на плоскость равна 8 см. Найти проекцию каждой наклонной.

  2. Из точки к плоскости проведены две наклонные. Одна из них длиной 6 см наклонена к плоскости под углом 60°, проекция другой на эту плоскость равна 3 см. Найти длину этой наклонной.

  3. Из точки С к данной плоскости проведены перпендикуляр СО = 3см и две наклонные. Каждая из наклонных образует с плоскостью угол 60°. Угол между наклонными 120°. Найти расстояние между основаниями наклонных.

  4. Из точки С к данной плоскости проведены перпендикуляр СО и две наклонные СВ и АС. ОВ= 12,САО = 30°, СВО = 60°, а угол между наклонными 90°. Найти расстояние между основаниями наклонных.

  5. Диагонали квадрата АВСD пересекаются в точке О. Из точки О проведён к плоскости квадрата перпендикуляр ОМ. Найти расстояние от точки М до стороны ВС, если AD = 10 см, ОМ = 12 см.

Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-5,

Оценка «4» выставляется , если : выполнено задание № 1-4,

Оценка «3» выставляется, если : выполнено задание № 1-3.

Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.

Тема: Решение теста по теме «Перпендикулярность прямых и плоскостей в пространстве». 

Цель работы: повторить, закрепить основные понятия по теме «Перпендикулярность прямых и плоскостей в пространстве».

Методические рекомендации к выполнению теста:

Прочитать вопрос, ответить на его и записать букву , под которой записан правильный ответ.

Задание: тест по теме «Перпендикулярность прямых и плоскостей».

1.Если угол между двумя прямыми равен 90°, то эти прямые: а) пересекаются, б) параллельны, в) скрещиваются, г) перпендикулярны, д) совпадают. 2. Какое из следующих утверждений неверно: а) если прямая перпендикулярна к двум прямым, лежащим в плоскости, то она перпендикулярна и к этой плоскости, б) если прямая перпендикулярна к плоскости, то она ее пересекает, в) если две плоскости перпендикулярны к прямой, то они параллельны, г) если две прямые перпендикулярны к плоскости, то они параллельны, д) если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. 3.Если одна из двух скрещивающихся прямых перпендикулярна к плоскости, то будет ли перпендикулярна к этой плоскости вторая прямая? а) да, б) да, но при определенных условиях, в) определить нельзя, г) нет, д) другой ответ. 4. Прямая а перпендикулярна к прямым с и в, лежащим в плоскости hello_html_6f92222e.gif, прямая а перпендикулярна к плоскости hello_html_6f92222e.gif. Каково взаимное расположение прямых с и в? а) параллельны, б) пересекаются, в) параллельны или пересекаются, г) совпадают, д)определить нельзя. 5.Одна из двух параллельных плоскостей перпендикулярна прямой, тогда: а) другая плоскость параллельна прямой, б) прямая лежит в другой плоскости, в) другая плоскость перпендикулярна прямой, г) прямая не пересекает другую плоскость, д)выполняются все случаи, указанные в пунктах а - г. 6.Точка Е не принадлежит плоскости прямоугольника АВСD, ВЕ hello_html_m5d32ab2b.gifАВ, ВЕ hello_html_m5d32ab2b.gifВС. Тогда прямая и плоскость ВСЕ: а) параллельны, б) перпендикулярны, в) скрещиваются, г) прямая лежит в плоскости,  д) перпендикулярны, но не пересекаются. 7.Какое из следующих утверждений неверно? а) перпендикуляр и наклонная, выходящие из одной точки, имеют равные длины, б) проекцией прямой на плоскость является точка или прямая, в) наклонные разной длины, проведенные к плоскости из одной точки, имеют проекции разных длин, 

г) прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна к ее проекции, д) расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости называется расстоянием между параллельными плоскостями. 8.Расстояния от точки М до сторон прямоугольного треугольника АВС (угол С равен 90°) равны. Какое из следующих утверждений верно? а) плоскости МАВ и АВС перпендикулярны, б) плоскости МВС и АВС перпендикулярны, в) плоскости МАС и АВС перпендикулярны, г) плоскости МАС и МВС перпендикулярны, д) условия в пунктах а - г неверны. 9.Угол между двумя плоскостями равен 80°. Какое из следующих утверждений неверно? а) плоскости пересекаются, б) в одной из плоскостей найдется прямая, перпендикулярная другой плоскости, в) в одной из плоскостей все прямые не перпендикулярны другой плоскости, г) в одной из плоскостей найдется прямая, параллельная другой плоскости, д) плоскости не перпендикулярны. 10.Какое из следующих утверждений верно? а) градусная мера двугранного угла не превосходит 90°, б) двугранным углом называется плоский угол, образованный прямой а и двумя полуплоскостями с общей границей а, в) если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны, г) угол между плоскостями всегда тупой,  д) все линейные углы двугранного угла различны. 11.Какое из следующих утверждений верно? а) в прямоугольном параллелепипеде все шесть граней - произвольные параллелограммы, б) все двугранные углы прямоугольного параллелепипеда - острые, в) прямоугольный параллелепипед, у которого все три измерения равны, называется кубом, г) квадрат диагонали прямоугольного параллелепипеда равен сумме трех его измерений, д) параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию. 12.Длины трех ребер, имеющих общую вершину, называются: а) высотами прямоугольного параллелепипеда, б) диагоналями прямоугольного параллелепипеда, в) измерениями прямоугольного параллелепипеда, г) диагоналями основания прямоугольного параллелепипеда, д) смежными ребрами прямоугольного параллелепипеда.



Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-12,

Оценка «4» выставляется , если : выполнено задание № 1-10,

Оценка «3» выставляется, если : выполнено задание № 1-6.



Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.



Учебно-методическое и информационное обеспечение: приложение №1.









Самостоятельная работа № 9

Тема: Типовой расчет по теме «Прямоугольный параллелепипед».

Цель работы:

  • повторить, закрепить основные понятия по теме «Прямоугольный параллелепипед»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 2.п.24.

Решение типовых заданий:

Пример 1. Найти площадь основания ABCD прямоугольного параллелепипеда ABCDA1B1C1D1 если DB1 = см, DB = 5 см, BC1 = 4 см.

Решение: Для нахождения длин сторон ( поскольку параллелепипед в условии задачи прямоугольный, а значит, все ребра пересекаются под прямым углом  )  используем теорему Пифагора. Найдем BB1 в прямоугольном треугольнике  DBB1 :
BB1 =   
BB12 =  (34 –25) = 9. BB1 =3.Соответственно  СС1 = BB1 = 3 см. Для прямоугольного треугольника BC1C : BC2 =  ( BC12  – C1C2 ) , BC2 =  ( 16 – 9 ) = 7 . BC = В треугольнике BCD найдем CD:  CD2 =  ( BD2 – BC2 ), CD2 =  ( 25 – 7 ) = 18, CD = 3 . Откуда площадь основания параллелепипеда равна: 
S = BC CD =  3 = 3.
Ответ:   площадь основания  прямоугольного параллелепипеда равна 3. Пример 2.Сумма трех измерений прямоугольного параллелепипеда ABCDA1B1C1D1 равна 40, AB : AA1 : AD = 2 : 2 : 4.   Найдите наибольшую из диагоналей граней параллелепипеда. Решение: Обозначим ребра 2х, 2х, 4х. 2х+2х+4х =40, 8х=40,   х=5. Ребра 10,10 и 20. Грани имеют размеры 10х10 или 10х20. Диагональ грани 10х10:   d12= (102+102) = 200, d1= 10, Диагональ грани 10х20:   d22= (102 +202) = 500, d2= 10- наибольшая диагональ . Ответ: d2= 10- наибольшая диагональ . Пример 3. Сумма всех ребер параллелепипеда ABCDA1B1C1D1 равна 120 см. Найти каждое ребро параллелепипеда. если АВ/ВС= 4/5 и ВС/ВВ1 = 5/6. Решение: Пусть АВ = 4х, тогда ВС= 5х,  ВВ1 = 6х. У параллелепипеда по 4 равных ребра, а всего 12 ребер. 4 (4х+5х+6х)=120, 4 15х=120, 60х=120, х=2, АВ = 8,  ВС = 10,  ВВ1 = 12. Ответ:  АВ = 8 см,  ВС = 10 см,  ВВ1 = 12 см. Пример 4. Дано: а = 3, b = 4, с = 12, Найти d. Решение: d2 = а2 + b2 + с2 , d2 = 32 + 42 + 122 = 9 + 16 + 144 = 169, d= 13. Ответ:  d= 13. Пример 5. Дано: ABCDA1B1C1D1 - прямоугольный параллелепипед, AB = 12 см, BC= 5 см, ÐBDB1 = 45° . Найти BB1. Решение: В треугольнике BАD найдем ВD:  ВD2 =  АD2 + АB2 , ВD2 =  ВС2 + АB2 , ВD2 =  52 + 122 = 25 + 144 = 169, ВD = 13 см. В прямоугольном треугольнике BDB1 найдем BB1: ÐBDB1 = 45°, BB1 = ВD = 13 см. Ответ:  BB1 = 13 см. Пример 6. Дано: ABCDA1B1C1D1 - прямоугольный параллелепипед, AС1 = 12 см, α = 30°, β = 45°. Найти измерения прямоугольного параллелепипеда а, b, с. Решение: В прямоугольном треугольнике BАD1, α = 30°, AB = а = BD1 : 2 = AС1: 2 = 12: 2 = 6 см. В прямоугольном треугольнике BDD 1, β = 45°, с = DD 1= BD = = 6 . В прямоугольном треугольнике АBD, BD = 6, АВ = 6 см, АD2 =  BD2  – АВ2  , АD2 =  BD2  – АВ2  = 72 – 36 = 36, АD = b = 6 см. Ответ:  а = b = 6 см, с = 6 см.
hello_html_m321ec67f.gif

Задание: 1 Вариант.

  1. Найти площадь основания ABCD прямоугольного параллелепипеда ABCDA1B1C1D1, если DB1 = см, DB = 10 см, BC1 = 7 см.

  2. Сумма трех измерений прямоугольного параллелепипеда ABCDA1B1C1D1 равна 48, AB : AA1 : AD = 2 : 2 : 4.   Найдите наибольшую из диагоналей граней параллелепипеда.

  3. Дано: а = 8, b = 9, с = 12, Найти d.

  4. Дано: ABCDA1B1C1D1 - прямоугольный параллелепипед, AB = 24 см, BC= 10 см, ÐBDB1 = 45° . Найти BB1.

  5. Дано: ABCDA1B1C1D1 - прямоугольный параллелепипед, AС1 = 16 см, α = 30°, β = 45°. Найти измерения прямоугольного параллелепипеда а, b, с.

2 Вариант.

  1. Найти площадь основания ABCD прямоугольного параллелепипеда ABCDA1B1C1D1 если DB1 = см, DB = 6 см, BC1 = 12 см.

  2. Сумма всех ребер параллелепипеда ABCDA1B1C1D1 равна 240 см. Найти каждое ребро параллелепипеда. если АВ/ВС= 4/5 и ВС/ВВ1 = 5/6.

  3. Дано: а = 6, b = 8, с = 24, Найти d.

  4. Дано: ABCDA1B1C1D1 - прямоугольный параллелепипед, AB = 30 см, BC= 15 см, ÐBDB1 = 45° . Найти BB1.

  5. Дано: ABCDA1B1C1D1 - прямоугольный параллелепипед, AС1 = 20 см, α = 30°, β = 45°. Найти измерения прямоугольного параллелепипеда а, b, с.

Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-5,

Оценка «4» выставляется , если : выполнено задание № 1-4,

Оценка «3» выставляется, если : выполнено задание № 1-3.



Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.







Самостоятельная работа № 10

Тема: Типовой расчет по теме «Пирамида».

Цель работы:

  • повторить, закрепить основные понятия по теме «Пирамида»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 3.§ 2.

Решение типовых заданий:

Пример 1. В основании пирамиды лежит прямоугольный треугольник, один из катетов которого 8см, а радиус описанной около него окружности равен 5 см. Основанием высоты этой пирамиды является середина гипотенузы. Высота пирамиды равна 12см. Вычислить боковые ребра пирамиды. 
Решение:
В основании пирамиды лежит прямоугольный треугольник. Центр окружности, описанной около прямоугольного треугольника, лежит на его гипотенузе. Соответственно, AB = 10 см, AO = 5 см.
 
Поскольку высота ON = 12 см, то величина ребер AN и NB равна
 
AN
2 = AO2 + ON2 , AN2 = 52 + 122 , AN = , AN = 13. 
Поскольку нам известна величина AO = OB = 5 см и величина одного из катетов основания (8 см), то высота, опущенная на гипотенузу, будет равна
 
CB
2 = CO2 + OB2 , 64 = CO2 + 25 , CO2 = 39 , CO = .
Соответственно, величина ребра CN будет равна
 :
CN
2 =  CO2 + NO2 , CN2 = 39 + 144 , CN = .
Ответ: 13, 13 , .hello_html_m48fa674b.gif

Пример 2. Боковая грань правильной треугольной пирамиды представляет собой правильный треугольник, площадь которого 16 корней из 3 см2 (16). Вычислить периметр основания пирамиды. 
Решение
:
Правильный треугольник - это равносторонний треугольник. Соответственно, боковая грань пирамиды представляет собой равносторонний треугольник.
 
Площадь равностороннего треугольника равна:
 . 
Соответственно:
 16 = a2 / 4 , 16 = a2 / 4 , a2 = 64 ,a = 8 см .
Основанием правильной треугольной пирамиды является правильный (равносторонний) треугольник. Таким образом, периметр основания пирамиды равен
  Р = 83 = 24 см .
Ответ: 24 см. 

Пример 3. Высота основания правильной треугольной пирамиды равна 3 см. а угол между боковой гранью и основанием пирамиды равен 45 градусов. Надо найти площадь полной поверхности пирамиды .
Решение:  В основании правильной треугольной пирамиды лежит равносторонний треугольник. Поэтому для решения задачи воспользуемся свойствами правильного треугольника: 
hello_html_m33c284ca.gif 
Нам известна высота треугольника, откуда можно найти его площадь.
 
h = /2 a
 , a = h / (/2),  a = 3 / (/2) , a = 6 / .
Откуда площадь основания будет равна:
  S = /4 a2 , S = /4 ( 6 / )2 , S = 3.
Для того, чтобы найти площадь боковой грани, вычислим высоту KM. Угол OKM по условию задачи равен 45 градусам.
 Таким образом:  OK / MK = cos 45°. 
Воспользуемся
 таблицей значений тригонометрических функций и подставим известные значения. OK / MK = /2. Учтем, что OК равен радиусу вписанной окружности. Тогда  OK = /6 a ,OK = /66/= 1. 
Тогда
  OK / MK = /2  ,1 / MK = /2  , MK = 2/ .
Площадь боковой грани тогда равна половине произведения высоты на основание треугольника.
 Sбок = 1/2 (6 / ) (2/) = 6/ .
Таким образом, площадь полной поверхности пирамиды будет равна
 
S = 3+ 36/ , S = 3+ 18/ .
Ответ: 3 + 18/ .hello_html_m3f19bf97.gifhello_html_m3f19bf97.gif

Пример 4. Высота правильной треугольной пирамиды 4 см, а ее апофемы 8 см. Вычислите площадь боковой поверхности пирамиды. 
Решение: 
Исходя из того, что MK = 8, MO = 4, синус угла OKM равен
  MO/MK = 1/2 , откуда угол равен arcsin 1/2 = 30 °. Откуда  KO / MK = cos 30° , KO / 8 = cos 30° , KO = 8 cos 30° .
По таблице тригонометрических функций найдем
 значение косинуса 30 °. KO = 8/2 = 4 .
Учтем, что KO является радиусом вписанной окружности в основание правильной треугольной пирамиды (согласно
 свойствам правильной пирамиды). Тогда по свойству равностороннего треугольника r = a/6.
Подставим в формулу известное нам значение радиуса вписанной окружности, откуда найдем значение стороны равностороннего треугольника
 4 = a /6 , a = 24. 
Теперь, зная размер основания боковой грани и ее апофему, найдем площадь боковой грани как площадь равнобедренного треугольника:
 Sт = 1/224 8 = 96 см2 .
Откуда площадь боковой поверхности пирамиды
 S = 3 Sт = 3 96 = 288 см2 . 
Ответ: 288 см2.

Пример 5. Высота и сторона основания правильной четырехугольной пирамиды соответственно равны 24 и 14. найдите апофему пирамиды. 
Решение: Поскольку пирамида правильная, то в ее основании лежит правильный четырехугольник - квадрат. Кроме того, высота пирамиды проецируется в центр квадрата. Таким образом, катет прямоугольного треугольника, который образован апофемой пирамиды, высотой и отрезком, их соединяющим, равен половине длины основания правильной четырехугольной пирамиды.  Откуда по теореме Пифагора длина апофемы будет найдена из уравнения:  72 + 242 = x2 , x2 = 625,  x = 25.  Ответ: 25 см .hello_html_m678d7f82.png

Задание:

1 вариант.

  1. В основании пирамиды лежит прямоугольный треугольник, один из катетов которого 16 см, а радиус описанной около него окружности равен 10 см. Основанием высоты этой пирамиды является середина гипотенузы. Высота пирамиды равна 24 см. Вычислить боковые ребра пирамиды. 

  2. Боковая грань правильной треугольной пирамиды представляет собой правильный треугольник, площадь которого 64 корней из 3 см2 (64). Вычислить периметр основания пирамиды. 

  3. Высота основания правильной треугольной пирамиды равна 6 см. а угол между боковой гранью и основанием пирамиды равен 45 градусов. Надо найти площадь полной поверхности пирамиды .

  4. Высота правильной треугольной пирамиды 8 см, а ее апофемы 16 см. Вычислите площадь боковой поверхности пирамиды. 

  5. Высота и сторона основания правильной четырехугольной пирамиды соответственно равны 24 и 20. Найдите апофему пирамиды. 

2 вариант.

  1. В основании пирамиды лежит прямоугольный треугольник, один из катетов которого 9 см, а радиус описанной около него окружности равен 6 см. Основанием высоты этой пирамиды является середина гипотенузы. Высота пирамиды равна 8 см. Вычислить боковые ребра пирамиды. 

  2. Боковая грань правильной треугольной пирамиды представляет собой правильный треугольник, площадь которого 4 корня из 3 см2 (4). Вычислить периметр основания пирамиды. 

  3. Высота основания правильной треугольной пирамиды равна 9 см. а угол между боковой гранью и основанием пирамиды равен 45 градусов. Надо найти площадь полной поверхности пирамиды .

  4. Высота правильной треугольной пирамиды 2 см, а ее апофемы 4 см. Вычислите площадь боковой поверхности пирамиды. 

  5. Высота и сторона основания правильной четырехугольной пирамиды соответственно равны 12 и 18. Найдите апофему пирамиды. 

Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-5, Оценка «4» выставляется , если : выполнено задание № 1-4, Оценка «3» выставляется, если : выполнено задание № 1-3. Требования к оформлению самостоятельной работы: Расчетные задания должны быть выполнены в рабочей тетради №2.

Учебно-методическое и информационное обеспечение: приложение №1.








Самостоятельная работа № 11

Тема: Типовой расчет по теме «Усеченная пирамида».

Цель работы:

  • повторить, закрепить основные понятия по теме «Усеченная пирамида»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 3. § 2.

Решение типовых заданий:

Пример 1. Дано: усеченная правильная пирамида, n = 3, h = 4, a1= 16 , a2= 10 .
Надо найти площадь полной поверхности
усеченной пирамиды .

Решение: 

r1= a1 / 2  = 16  : 2  = 8, r2= a2 / 2  = 10  : 2  = 5,

l2 = h2 + (r2 r1)2, l2 = 42 + (5 8)2 = 16 + 9 = 25, l = 5.

Sn =  /4 (a12 + a22) + 1,5 l(a1 + a2) .

Sn =  /4 ((16 )2 + (10 )2) + 1,5 5(16  + 10 ) =  /4 (768 + 300) + 1,5 5 = =267 + 195  = 462  .

Ответ: 462 

Пример 2. Дано: усеченная правильная пирамида, n = 4, h = 3, a1= 16, a2= 8 . Надо найти площадь полной поверхности усеченной пирамиды .

Решение:

 r1= a1 / 2= 16: 2= 8, r2= a2 / 2= 8  : 2  = 4,

l2 = h2 + (r2 r1)2, l2 = 32 + (4 8)2 = 9 + 16 = 25, l = 5.

Sn = (a12 + a22) + 2 l(a1 + a2) .Sn = (162 + 82) + 2 5(16 + 8) = 320 + 240 = 560 .

Ответ: 560

Пример 3. Дано: усеченная правильная пирамида, n = 6, h = 2, a1= 2 , a2= 6 . Надо найти площадь полной поверхности усеченной пирамиды .

Решение:

 r1= a1 / 2  = 2  : 2  =  , r2= a2 / 2  = 6  : 2  = 3 ,

l2 = h2 + (r2 r1)2, l2 = 22 + ( )2 = 4 + 12 = 16, l = 4.

Sn =3  /2 (a12 + a22) + 3 l(a1 + a2) .Sn =3  /2 (22 + 62) + 3 4(2 + 6) = 60   + 96 .

Ответ: 60   + 96

Пример 4. В правильной усеченной четырехугольной пирамиде высота равна 2, а стороны оснований равны 3 и 5. Найдите диагональ усеченной пирамиды.

Решение:

Проведем сечение через противоположные боковые ребра AA1 и CC1 данной усеченной пирамиды ABCDA1B1C1D1 с основаниями ABCD и A1B1C1D1(AB = 5, A1B1 = 3).

Пусть O и O1 - центры оснований ABCD и A1B1C1D1соответственно.

Секущая плоскость проходит через высоту OO1 усеченной пирамиды.

В сечении получим равнобедренную трапецию AA1C1C с основаниями AC= 5  и A1C1 = 3 . Пусть A1K - высота трапеции. Тогда A1K = OO1 = 2, AK = 1/2 (AC  A1C1) = 1/2 (5 3) = , CK = AC  AK = 5   = 4.

Из прямоугольного треугольника A1KC находим, что

A1C =  =  =  = 6.

Ответ: 6.

Пример 5. Дано: усеченная правильная пирамида, n = 4, h = 3, r1=2, r2= 6 .
Надо найти площадь полной поверхности
усеченной пирамиды .

Решение: l2 = h2 + (r2 r1)2, l2 = 32 + (6 2)2 = 9 + 16 = 25, l = 5.

Sn = 4 (r12 + r22) + 4 l(r1 + r2) . Sn = 4 (22 + 62) + 2 5(2 + 6) = 160 + 80 = 240 .

Ответ: 240.

Задание:

1 вариант.

  1. Дано: усеченная правильная пирамида, n = 3, h = 8, a1= 14 , a2= 2 . Надо найти площадь полной поверхности усеченной пирамиды .

  2. Дано: усеченная правильная пирамида, n = 4, h = 8, a1= 16, a2= 4 . Надо найти площадь полной поверхности усеченной пирамиды .

  3. Дано: усеченная правильная пирамида, n = 6, h = 2, a1= 4 , a2= 8 . Надо найти площадь полной поверхности усеченной пирамиды .

  4. В правильной усеченной четырехугольной пирамиде высота равна 4, а стороны оснований равны 6 и 10. Найдите диагональ усеченной пирамиды.

  5. Дано: усеченная правильная пирамида, n = 4, h = 3, r1=5, r2= 9 . Надо найти площадь полной поверхности усеченной пирамиды .

2 вариант.

  1. Дано: усеченная правильная пирамида, n = 3, h = 6, a1= 18 , a2= 2 . Надо найти площадь полной поверхности усеченной пирамиды .

  2. Дано: усеченная правильная пирамида, n = 4, h = 6, a1= 18, a2= 2 . Надо найти площадь полной поверхности усеченной пирамиды .

  3. Дано: усеченная правильная пирамида, n = 6, h = 2, a1= 6 , a2= 10 . Надо найти площадь полной поверхности усеченной пирамиды .

  4. В правильной усеченной четырехугольной пирамиде высота равна 6, а стороны оснований равны 9 и 15. Найдите диагональ усеченной пирамиды.

  5. Дано: усеченная правильная пирамида, n = 4, h = 4, r1=5, r2= 8 . Надо найти площадь полной поверхности усеченной пирамиды .


Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-5,

Оценка «4» выставляется , если : выполнено задание № 1-4,

Оценка «3» выставляется, если : выполнено задание № 1-3.


Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.







Самостоятельная работа № 12

Тема: Составление опорного конспекта «Правильные многогранники».

Цель работы:

  • закрепить понятия: правильных многогранников, их виды, элементы симметрии правильных многогранников ;

  • развитие графических и вычислительных умений и навыков: построение чертежей, вычисление элементов правильных многогранников;

  • развитие умений и навыков работы с источником информации, с практическим материалом.

План работы:

  1. Определение правильного многогранника;

  2. Виды правильных многогранников и их описание, изображения;

  3. Расчет элементов правильных многогранников по теореме Эйлера;

  4. Элементы симметрии правильных многогранников: центр, ось, плоскость;

Методические рекомендации к составлению конспекта:


Конспект– это работа с другим источником.

Цель –зафиксировать ,переработать тот или иной текст.

Конспект представляет собой дословные выписки из текста источника. При этом конспект это не полное переписывание чужого текста. При написании конспекта сначала прочитывается текст –источник, в нем выделяются основные положения , подбираются примеры , идет перекомпоновка материала, а затем уже оформляется текст конспекта. Конспект может быть полным, когда работа идет со всем текстом источника или неполным, когда интерес представляет какой-либо один или несколько вопросов, затронутых в источнике.

Общую последовательность действий при составлении конспекта можно определить таким образом:

1. Уяснить цели и задачи конспектирования.

2.Внимательно прочитать текст параграфа, главы и отметить информационно значимые места.

3. Составить конспект.

Критерии оценки:

Оценка «5» выставляется если : содержание соответствует теме, материал проработан глубоко, грамотно и полно использованы источники, приведены сложные примеры;

Оценка «4» выставляется , если : материал проработан не глубоко, использованы не все источники, приведены сложные примеры ;

Оценка «3» выставляется, если : материал проработан не полностью, приведены примеры.


Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.









Самостоятельная работа № 13

Тема: Решение теста по теме «Многогранники» .

Цель работы: повторить, закрепить основные понятия по теме «Многогранники».

Методические рекомендации к выполнению теста:

Прочитать вопрос, ответить на его и записать букву , под которой записан правильный ответ.

Задание:

1) тетраэдр -  поверхность, составленная из…

 А) 4 треугольников;            Б ) 3 треугольников;

 В) 5 треугольников;             Г) 4 четырехугольников;

2) параллелепипед – поверхность, составленная из ….

 А) параллелограммов;        Б) 6 параллелограммов;

 В) 4 треугольников;             Г) 6 прямоугольников;

3) любая поверхность ограничивает….., отделяет …… от остальной части……..

А) многогранник, плоскости;  Б) тело, пространство;

В) геометрическое тело, плоскость; 

Г) геометрическое тело, пространство;

4) поверхность, составленная из многоугольников и ограничивающую геометрическое тело, называют…..

 А) многогранником;           Б) многоугольником;

 В) тетраэдром;                     Г) параллелепипедом;

 5) концы ребер многоугольника называют….

 А) грани;               Б) ребра;            В) вершины;               Г) диагонали;

6) Сколько ребер у тетраэдра?

А) 6; Б) 7; В) 8; Г) 12;

7) Двойственный многогранник это …

А) тетраэдр; Б) октаэдр; В) додекаэдр;

Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-7,

Оценка «4» выставляется , если : выполнено задание № 1-6,

Оценка «3» выставляется, если : выполнено задание № 1-4.


Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.









Самостоятельная работа № 14

Тема: Составление опорного конспекта «Цилиндр» .

Цель работы:

  • закрепить понятия: цилиндра и его элементов, сечения цилиндра различными плоскостями, развертка боковой поверхности цилиндра;

  • развитие графических и вычислительных умений и навыков: построение чертежей, вычисления по формулам площади цилиндра;

  • развитие умений и навыков работы с источником информации, с практическим материалом.

План работы:

  1. Определение цилиндра и его элементов: основания, ось, радиус, высота, образующая;

  2. Сечения цилиндра различными плоскостями;

  3. Развертка боковой поверхности цилиндра;

  4. Формулы для вычисления площади полной поверхности и площади боковой поверхности цилиндра;

Методические рекомендации к составлению конспекта:


Конспект– это работа с другим источником.

Цель –зафиксировать ,переработать тот или иной текст.

Конспект представляет собой дословные выписки из текста источника. При этом конспект это не полное переписывание чужого текста. При написании конспекта сначала прочитывается текст –источник, в нем выделяются основные положения , подбираются примеры , идет перекомпоновка материала, а затем уже оформляется текст конспекта. Конспект может быть полным, когда работа идет со всем текстом источника или неполным, когда интерес представляет какой-либо один или несколько вопросов, затронутых в источнике.

Общую последовательность действий при составлении конспекта можно определить таким образом:

1. Уяснить цели и задачи конспектирования.

2.Внимательно прочитать текст параграфа, главы и отметить информационно значимые места.

3. Составить конспект.

Критерии оценки:

Оценка «5» выставляется если : содержание соответствует теме, материал проработан глубоко, грамотно и полно использованы источники, приведены сложные примеры;

Оценка «4» выставляется , если : материал проработан не глубоко, использованы не все источники, приведены сложные примеры ;

Оценка «3» выставляется, если : материал проработан не полностью, приведены примеры.


Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.




Самостоятельная работа № 15

Тема: Типовой расчет по теме «Цилиндр».

Цель работы:

  • повторить, закрепить основные понятия по теме «Цилиндр»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал:

  1. Л.С. Атанасян. Геометрия 10-11 класс, глава 6. § 1.

  2. Самостоятельная работа № 14.

Решение типовых заданий:

Пример 1. В цилиндре параллельно его оси проведено сечение, диагональ которого равна 17 см, высота цилиндра равна 15 см., а радиус основания 5 см. На каком расстоянии от оси проведено это сечение? 
Решение. 
Сечение цилиндра в плоскости представляет собой прямоугольник. Таким образом, BM также представляет собой высоту цилиндра. Треугольник BMK - прямоугольный. Таким образом, можно найти длину
hello_html_m1ed0129.gif

стороны MK = BC:
BK
2 = BM2 + MK2 , MK2 = BK2 - BM2 ,MK2 = 172  152 ,
MK
2 = 64 , MK = 8. 
Таким образом, MK = BC = 8 см.
 
Теперь, проведем сечение через основание цилиндра. Рассмотрим получившуюся плоскость.
 (это делать совершенно необязательно, сечение основания цилиндра проведено только для простоты понимания решения задачи). 
AD - диаметр цилиндра, проведенный как сечение, параллельное заданному в условии задачи. BC - прямая, принадлежащая сечению, параллельному оси цилиндра. Поэтому ABCD - трапеция. Если трапеция равнобедренная, то вокруг нее можно описать окружность. Таким образом, ABCD - равнобедренная трапеция. Найдя высоту трапеции, получим расстояние от проведенного по условию задачи сечения до оси цилиндра. Найдем величины некоторых отрезков.
 AD = 2R = 2 5 = 10 см, OC = OD = R = 5 см .
В равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований. Таким образом,
 
AN = DP = ( 10
8 ) / 2 = 1 см , тогда

OP = OD DP = 5 1 = 4 см .
Треугольник CPO - прямоугольный, так как CP - высота трапеции. Откуда
 
CP
2 + OP2 = OC2 ,CP2 = OC2  OP2, CP2 = 52  42 ,CP2 = 25 16 ,CP = 3. 
Ответ: Проведенное сечение цилиндра находится на расстоянии 3 см от его оси.hello_html_m2050d35.gif

Пример 2. Найдите площадь полной поверхности цилиндра, если диагональ его осевого сечения, равная 8см, составляет с образующей цилиндра угол величиной 30° . Решение: Поскольку AC = 8 см, а угол ACD = 30°, то 
CD = AC cos 30°
 . Пояснение. Треугольник ACD - прямоугольный. Соответственно, CD / AC = cos ACD по свойству тригонометрических функций в прямоугольном треугольнике. Значение  cos 30 найдем из таблицы значений тригонометрических функций. CD = 8  /2 = 4. Аналогично,  AD = AC sin 30° , AD = 8 1/2 = 4, Откуда радиус основания цилиндра раен R = 4/2 = 2 см. Площадь основания цилиндра, соответственно, равна  S1 = πR2 = 4π. Площадь боковой поверхности цилиндра равна площади его развертки - произведению длины окружности основания и высоты цилиндра.
То есть:
 S2 = 2πRh = 2π 2 4= 16π. Общая площадь поверхности цилиндра равна:  S =S1 + S2 =  4π +  16π. Ответ:  4π +  16π.
Пример 3. Дано: цилиндр; ABCD - квадрат; АС = 4 см (рис. ). Найти: Sб.п.ц.
Решение: Sб.п.ц. = 2πRH. Пусть АВ = х, тогда х2 + х2 = 42;
2 = 16; х2 = 8; х = 2. = ; Н = 2. Sб.п.ц. = 2π · · 2= 8π (см2). Ответ: 8π см2.
Пример 4. Дано: цилиндр, ABCD - квадрат; Sосн.ц. = 16π см2 (рис.). Найти: Sб.п.ц.
Решение: πR2 = 16π; R2 = 16; R = 4. АВ = ВС = 4 · 2 = 8 (см). Sб.п.ц. = 2πRH, hello_html_40222fab.gifhello_html_m2ae74cee.jpg

где R = 4; Н = 8.Sб.п.ц. = 2π · 4 · 8 = 64π (см2). Ответ: 64π см2. Пример 5. Дано: цилиндр, АВ1 = 16 см, B1AB = 30° (рис.). Найти: hRосн.  Решение:1) hк. = BB1;
2)Из ΔАВВ1 находим AB: AB = 16 cos 30° = 16 /2 = 8
R = 1/2 AB = 8 : 2 = 4 .
3) Из ΔВ
1АВ находим BB1: BB1 = 16 sin 30 ° = 16 1/2 = 16 : 2 = 8 см. Ответ: = 8 см; R = 4 см. hello_html_m41d996ff.jpg

Задание:hello_html_m5b1a35f0.jpg

1вариант.

1)В цилиндре параллельно его оси проведено сечение, диагональ которого равна 34 см, высота цилиндра равна 30 см., а радиус основания 10 см. На каком расстоянии от оси проведено это сечение?

2)Найдите площадь полной поверхности цилиндра, если диагональ его осевого сечения, равная 16 см, составляет с образующей цилиндра угол величиной 30 °.

3)Дано: цилиндр; ABCD - квадрат; АС = 16 см (рис. ). Найти: Sб.п.ц.

4) Дано: цилиндр, ABCD - квадрат; Sосн.ц. = 25π см2 (рис.). Найти: Sб.п.ц.

5)Дано: цилиндр, АВ1 = 8 см, B1AB = 30° (рис.). Найти: hRосн.

2 вариант.

1)В цилиндре параллельно его оси проведено сечение, диагональ которого равна 10 см, высота цилиндра равна 6см., а радиус основания 5 см. На каком расстоянии от оси проведено это сечение?

2)Найдите площадь полной поверхности цилиндра, если диагональ его осевого сечения, равная 4 см, составляет с образующей цилиндра угол величиной 30 °. 

3)Дано: цилиндр; ABCD - квадрат; АС = 8см (рис. ). Найти: Sб.п.ц.

4)Дано: цилиндр, ABCD - квадрат; Sосн.ц. = 36π см2 (рис.). Найти: Sб.п.ц.

5)Дано: цилиндр, АВ1 = 20 см, B1AB = 30° (рис.). Найти: hRосн.

Критерии оценки:
Оценка «5» выставляется если : выполнено задание № 1-5,
Оценка «4» выставляется , если : выполнено задание № 1-4,
Оценка «3» выставляется, если : выполнено задание № 1-3.

Требования к оформлению самостоятельной работы: Расчетные задания должны быть выполнены в рабочей тетради №2.

Учебно-методическое и информационное обеспечение: приложение №1.



Самостоятельная работа № 16

Тема: Типовой расчет по теме «Конус».

Цель работы:

  • повторить, закрепить основные понятия по теме «Конус»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 6. § 2.

Решение типовых заданий:

Пример 1. Высота конуса равна 5см, а радиус основания 12см. Найдите площадь полной поверхности конуса. 
Решение
Для нахождения площади поверхности конуса воспользуемся следующими формулами: S
1 = rl - площадь боковой поверхности конуса, где r - радиус конуса, а l - длина образующей, S2 = r2 - площадь круга, то есть основания конуса. Таким образом, площадь поверхности конуса составит  S = S1 + S2 .
Поскольку S
1 = rl , найдем образующую. Поскольку высота конуса, радиус основания конуса и образующая являются сторонами прямоугольного треугольника, то  l2 = h2 + r2 , l2 = 52 + 122 = 25 + 144 = 169 , l = 13.
Тогда
 S = S1 + S2 = + 144 = 156+ 144 = 300 ≈ 942,48 
Ответ: 300 ≈ 942,48 см2 .hello_html_m6d6bd24b.jpg

Пример 2. Дано: конус, ОР = 15 см, ОВ = r = 8 см (рис.). Найти:РВ.  Решение: Из ΔОРВ по теореме Пифагора:PB2= PO2 + OB2,
PB2= 152 + 82 = 225 + 64 = 289, PB = 17.
Ответ: 17 см.

Пример 3. Дано: Конус, ABC = 120°, АВ = 6 (рис.). Найти: R,h.  Решение:1) ΔАВС - равнобедренный, угол при основании 
С = 30°. 2)Из ΔАВО : h = ВО = AB : 2 = 3.
3)
R = AO = AB · cos 30° = 6 ·  : 2 = 3 .
Ответ: H = 3, R = 3.hello_html_m6bcb7613.jpg

Пример 4. Дано: Конус. ΔАВС - равносторонний, АВ = 12, = 10 (рис.). Найти: OK,h. 
Решение:1) Из ΔВОС по теореме Пифагора: h2 = OB2 = BC2OC2,
h2 = 122 – 102 = 144 – 100 = 44, h = = 2
2)
ΔABC - равносторонний, АС = 12, СК = 6. Из ΔСОК по теореме Пифагора ОК2 = ОС2СК2, ОК2 = 102 62 = 100 36 = 64, OK = 8. Ответ: h = 2, ОК = 8.hello_html_m2d0d5103.jpg

Пример 5. Дано: конус, h = OP = 1,2 см, Sосев. = 0,6 см2 (рис.). Найти: Sполн. .
Решение:hello_html_28ad1e01.jpg

  1. Осевое сечение - треугольник: высота 1,2 см и основание 2r.

Sосев. =  · 2r h = r h, r = Sосев. : h = 0,6 : 1,2 = 0,5 см.

  1. Из ΔАОР по теореме Пифагора: l2 = h2 + r2  = OP2 + OA2. l2 = 1,22 + 0,52 = 1,44 + 0,25 = 1,69, l = 1,3 см.

  2. Sполн. = · (r + l) , Sполн. = 0,5 · (0,5 + 1,3) = · 0,5 · 1,8 = 0,9
    Ответ: 0,9π см2.



Задание:

1вариант.

  1. Высота конуса равна 10 см, а радиус основания 24 см. Найдите площадь полной поверхности конуса.

  2. Дано: конус, ОР = 12 см, ОВ = r = 9 см (рис.). Найти: РВ. 

  3. Дано: Конус, ABC = 120°, АВ = 8 (рис.). Найти: R, h. 

  4. Дано: Конус. ΔАВС - равносторонний, АВ = 24, = 20 (рис.). Найти: OK, h.

  5. Дано: конус, OP = 2,4 см, Sосев. = 2,4 см2 (рис.). Найти: Sполн. 

2 вариант.

  1. Высота конуса равна 6 см, а радиус основания 8 см. Найдите площадь полной поверхности конуса.

  2. Дано: конус, ОР = 15 см, ОВ = r = 20 см (рис.). Найти: РВ. 

  3. Дано: Конус, ABC = 120°, АВ = 10 (рис.). Найти: R, h. 

  4. Дано: Конус. ΔАВС - равносторонний, АВ = 32, = 20 (рис.). Найти: OK, h.

  5. Дано: конус, OP = 0,9 см, Sосев. = 1,08 см2 (рис.). Найти: Sполн. 

Критерии оценки: Оценка «5» выставляется если : выполнено задание № 1-5,

Оценка «4» выставляется , если : выполнено задание № 1-4,

Оценка «3» выставляется, если : выполнено задание № 1-3.


Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.






























Самостоятельная работа № 17

Тема: Типовой расчет по теме «Усеченный конус». 

Цель работы:

  • повторить, закрепить основные понятия по теме «Усеченный конус»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 6. § 2.

Решение типовых заданий:

Пример 1. Дано: усеченный конус, O1С = 3см, OD = 6 см, OO1 = 4 см (рис. ).

Найти: So.сеч., Sбок. hello_html_m28dc10d1.jpg

Решение: Осевым сечением усеченного конуса является равнобедренная трапеция. Sсеч.= (BC + AD ) · OO1 : 2 ,
BC = 2O
1C = 2 · 3 = 6 см. AD = 2 OD = 2 · 6 = 12 см .

Sсеч.= (6 + 12 ) · 4 : 2 = 18 ·  2 = 36 см2, ΔCKD - прямоугольный, по теореме Пифагора:

CD2 = CK2 + KD2, CK = OO1 = 4 см, KD = OD – OK = OD – O1C = 6 – 3 = 3 см. CD2 = 42 + 32 = 16 + 9 = 25,CD = 5, Sбок. = · l · (r1 + r2) = ( O1C + OD)· CD.

Sбок= (3 + 6) · 5 = 45 см2.

Ответ: Sсеч. = 36 cм2, Sбок. = 45π см2.

Пример 2. Дано: усеченный конус, r 1 = 5 см, r 2 = 11 см, CD = 10 см, Найти: So.сеч., h.

Решение: Осевым сечением усеченного конуса является равнобедренная трапеция.

Sсеч.= (BC + AD ) · OO1 : 2 , BC = 2O1C = 2 r 1= 2 · 5 = 10 см.

AD = 2 OD = 2 r 2 = 2 · 11 = 22 см .

ΔCKD - прямоугольный, по теореме Пифагора: CD2 = CK2 + KD2,

KD = OD – OK = OD – O1C = r2 r 1= 11 5= 6, h = OO1 = CK, CK 2 = CD2 – KD2,

CK2 = 102 – 62 = 100 – 36 = 64, CK = 8, h = 8 см, Sсеч.= (10 + 22 ) · 8 : 2 = 32 · 4 = 128 см2. Ответ: Sсеч. = 128 cм2h = 8 см.

Пример 3. Дано: усеченный конус, АС = 40 см, AC  CDhello_html_m5f94854e.jpg

CD = 30 см (рис. ). Найти: Sсеч., Sполн.. 

Решение: Сечение усеченного конуса является равнобедренная трапеция Sсеч.= (BC + AD ) · OO1 : 2 , Sполн. = SO1 + SO2 + Sбок. 

Sбок. = · l · (r 1 + r 2), SO1 = · , SO2 = · , r 1 = O1C, r 2 = OD, ΔADC - прямоугольный, по теореме Пифагора: AD2 = AC2 + CD2,

AD2 = 402 + 302 = 1600 + 900 = 2500 , AD = 50 см. Так как СН - высота прямоугольного треугольника, то СН2 = АН · HD. ΔCHD - прямоугольный; CH2 = CD2HD2 ,

HD = ADAH = 50 – AH, АН · HD = CD2HD2, AH · ( 50 AH ) = 900 – ( 50 AH)2 ,

50AH – AH2 = 900 – 2500 + 100 AH – AH2, 50 AH = 1600, AH = 32 см. HD = 50 – 32 = 18,

OD = AD : 2 = 50 : 2 = 25 см , OH = OD – HD = 25 – 18 = 7 см, CH2 = 32· 18, CH = 24 см,

Sсеч.= (2OH + 2OD ) · CH : 2 = (14 + 50) · 24 : 2 = 768см2,

Sполн. = SO1 + SO2 + Sбок.  = 49 + 625 + ·30 · (7 + 25) = 1634 .

Ответ: Sсеч. = 768 см2, Sполн..  = 1634π см2.

Пример 4. Дано: усеченный конус, hello_html_658e6bdc.jpg

O1С = = 16 см, OD = 25 см.

Окружность, вписанная в сечение (осевое) (рис. ).

Найти: Sполн.. 

Решение: Sполн. = SO1 + SO2 + Sбок.  
Осевым сечением усеченного конуса является равнобедренная трапеция. Так как в трапецию вписана окружность, то 
O1С = CF = 16 (см) и OD = DF = 25 (см) (как отрезки касательных к окружности, проведенных из одной точки). CD = CF + DF = 16 + 25 = 41 см,
HD = OD O1C = 25 – 16 = 9 ,

ΔCHD - прямоугольный:  CH2 = CD2HD2, CH 2 = 412 – 9 2 = 1681 81 = 1600, CH = 40 см.

Sполн. = SO1 + SO2 + Sбок.  = ·(O1C2 + OD2 + (O1C + OD) · CD )= ·(162 + 252 + (16 + 25) · 41)=

= · (256 + 625 + 1681) = 2562 см2.

 Ответ: Sполн..  = 2562π см2.

Пример 5. Дано: усеченный конус, r 1 = 3 см, r 2 = 6 см, h = 4 см, Найти: l.

Решение:   l2 = h2 + (r2r1)2 , l2 = 42 + ( 6 3)2  = 16 + 9 = 25 , l = 5 см.

Ответ: l = 5 см.

Задание:

1вариант.

  1. Дано: усеченный конус, O1С = 6 см, OD = 12 см, OO1 = 8 см (рис. ). Найти: So.сеч., Sбок. 

  2. Дано: усеченный конус, r1 = 3 см, r2 = 11 см, CD = 10 см, Найти: So.сеч., h.

  3. Дано: усеченный конус, АС = 20 см, AC  CDCD = 15 см (рис.). Найти: Sсеч., Sполн.. 

  4. Дано: усеченный конус,  O1С = 3см, OD = 12 см. Окружность, вписанная в сечение (осевое) (рис.). Найти: Sполн.. 

  5. Дано: усеченный конус, r 1 = 3 см, r 2 = 9 см, h = 8 см, Найти: l.

2 вариант.

  1. Дано: усеченный конус, O1С = 12 см, OD = 24 см, OO1 = 16 см (рис.). Найти: So.сеч., Sбок. 

  2. Дано: усеченный конус, r1 = 6 см, r2 = 18 см, CD = 20 см, Найти: So.сеч., h.

  3. Дано: усеченный конус, АС = 4 см, AC  CDCD = 3 см (рис.). Найти: Sсеч., Sполн.. 

  4. Дано: усеченный конус,  O1С = 1 см, OD = 9 см. Окружность, вписанная в сечение (осевое) (рис. ). Найти: Sполн.. 

  5. Дано: усеченный конус, r 1 = 1 см, r 2 = 6 см, h = 12 см, Найти: l.


Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-5,

Оценка «4» выставляется , если : выполнено задание № 1-4,

Оценка «3» выставляется, если : выполнено задание № 1-3.

Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.



















Самостоятельная работа № 18

Тема: Решение теста по теме «Тела вращения».

Цель работы: повторить, закрепить основные понятия по теме «Тела вращения».

Методические рекомендации к выполнению теста:

  1. Прочитать вопрос, ответить на его и записать букву , под которой записан правильный ответ.

  2. Решив задачу, нужно выбрать правильный ответ и записать номер, под которым он записан.

Задание: Тест: «Тела вращения».

1. Сколько диаметров у сферы? А.1. Б.3.В.2. Г. бесконечно много.

2. Какой фигурой является сечение шара плоскостью?

А. отрезком. Б. Кругом. В. окружностью. Г. сферой.

3. Если радиус сферы увеличить в 2 раза то объём увеличиться

А. в 2 раза .Б. в 8 раз. В. в 4 раза. Г. в 16 раз.

4. В формуле V=4/3. R 3 ,V-объём

А. шара. Б. Цилиндра. В. конуса .Г. шарового сектора.

5. Конус можно получить, если вращать вокруг стороны

А. равносторонний треугольник .Б. остроугольный треугольник.

В. тупоугольный треугольник .Г. прямоугольный треугольник.

6. Площадь поверхности шара (сферы) уменьшили в 9 раза. Объём уменьшиться в ...

А. 3 раз. Б. 27 раз. В. 9 раз. Г.81 раз.

7.Площадь боковой поверхности конуса равна

А. 2, Б. 4 , В. ;

8.Тело вращения, площадь боковой поверхности которого равна 2 называется

А. цилиндр, Б. Шар, В. конус;

9.У какого тела вращения 2 основания

А. конус, Б. шар, В. цилиндр;

10.В сечении треугольник. В каком теле вращения это возможно?

А. конус, Б. шар, В. цилиндр;

11.В каком теле вращения нет высоты;

А. шар, Б. цилиндр, В. конус, Г. усеченный конус;

12.Какая фигура в осевом сечении у шара

А. квадрат, Б. ромб, В. круг, Г. прямоугольник;


Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-12,

Оценка «4» выставляется , если : выполнено задание № 1-10,

Оценка «3» выставляется, если : выполнено задание № 1-6.


Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.







Самостоятельная работа № 19

Тема: Типовой расчет по теме «Объём прямоугольного параллелепипеда».

Цель работы:

  • повторить, закрепить основные понятия по теме «Объём прямоугольного параллелепипеда»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 7. § 1. Решение типовых заданий:

Пример 1. Площадь грани прямоугольного параллелепипеда равна 12. Ребро, перпендикулярное этой грани, равно 4. Найдите объем параллелепипеда. Решение: Каждая грань прямоугольного параллелепипеда –прямоугольник. Пусть SABCD= a b = 12 , тогда АА1= h = 4, т.к. АА1 АВСD. Используем формулу объема прямоугольного параллелепипеда V = a b h , V = 12 4 = 48. Ответ: 48 см3. Пример 2. Объем прямоугольного параллелепипеда равен 12. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру. Решение: Пусть АА1 АВСD, V = 12 , АА1= h = 3. Найдём SABCD. Используем формулу объема прямоугольного параллелепипеда V = a b h, где SABCD= a b, S ABCD 3 = 12,S ABCD = 4. Ответ: 4 см2. Пример 3. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 4. Диагональ параллелепипеда равна 6. Найдите объем параллелепипеда. Решение: a = 4, b = 2, d = 6. Найдем V. Формула диагонали прямоугольного параллелепипеда: d2 = a2 + b2 + h2 , 16 + 4 + h2 = 36, h2 = 16, h = 4. Формула объема прямоугольного параллелепипеда: V = abh , V = 4 2 4 = 32. Ответ: 32 см3. Пример 4. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2, 3. Объем параллелепипеда равен 36. Найдите его диагональ и высоту. Решение: a = 3, b = 2. Формула объема прямоугольного параллелепипеда: V = abh , 3 . 2 . h = 36, 6h = 36, h = 6. V = 36.Найдем d. d2 = 9 + 4 + 36, d2 = 49, d = 7. Ответ: 7 и 6 см. Пример 5. Дано: ABCDA1B1C1D1 - прямоугольный параллелепипед, диагональ D1= 18 составляет угол в 30° с плоскостью боковой грани, и угол в 45° с боковым ребром (рис. ). Найти: V.

 Решение: BC1 - проекция D1на плоскость боковой грани BB1С1С, поэтому D1BC1 = 30°D1BB1= 45°. Рассмотрим ΔD1C1BD1C1= 90° (рис.). ∠В = 30°. => D1C1 = 18 : 2 = 9 см. Рассмотрим ΔD1B1- прямоугольный: BB1= 18 cos 45° = 18 : 2 = 9 см. Диагональ (d) и измерения (а, b, с) прямоугольного параллелепипеда связаны соотношением: d2 = a2 + b2 + h2 , 182 = 92 + (9)2 + B1C12 , (ΔD1B1B: B1B =D1 B1). B1C12 = 182 92 (9)2 = 324 – 8181 2 = 81, B1C1 = 9см. V = 99 9 = 729 см3hello_html_m49e41dc8.jpg

Ответ: V = 729см3.

Пример 6. Стороны основания прямоугольного параллелепипеда 3 и 4. Найти его объём, если высота равна длине диагонали его основания.
Решение: BD - диагональ основания прямоугольного параллелепипеда. BD2 = АВ2 + АD2, BD2 = 32 +42 = 9 + 16 = 25, BD = 5, h = 5. V = 345 = 60 см3. Ответ: 60 см3.

Пример 7. Найти объём прямоугольного параллелепипеда, если стороны основания 2 и 3, а диагональ параллелепипеда .

Решение: d2 = a2 + b2 + h2 , ()2 = 22 + 32 + h2 , h 2 = 38 – 4 9 = 25, h = 5.

V = 23 5 = 30 см3.

Ответ: 30 см3.

Задание:

1вариант.

  1. Площадь грани прямоугольного параллелепипеда равна 15. Ребро, перпендикулярное этой грани, равно 6. Найдите объем параллелепипеда.

  2. Объем прямоугольного параллелепипеда равен 24. Одно из его ребер равно 3. Найдите площадь грани параллелепипеда, перпендикулярной этому ребру.

  3. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3, 4. Диагональ параллелепипеда равна 13. Найдите объем параллелепипеда.

  4. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3, 6. Объем параллелепипеда равен 108. Найдите его диагональ и высоту.

  5. Дано: ABCDA1B1C1D1 - прямоугольный параллелепипед, диагональ  D1= 12 составляет угол в 30° с плоскостью боковой грани, и угол в 45° с боковым ребром (рис. ). Найти: V.

2 вариант.

  1. Площадь грани прямоугольного параллелепипеда равна 18. Ребро,перпендикулярное этой грани, равно 5. Найдите объем параллелепипеда.

  2. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3, 4. Объем параллелепипеда равен 144. Найдите его диагональ и высоту.

  3. Дано: ABCDA1B1C1D1 - прямоугольный параллелепипед, диагональ  D1= 16 составляет угол в 30° с плоскостью боковой грани, и угол в 45° с боковым ребром (рис. ). Найти: V.

  4. Стороны основания прямоугольного параллелепипеда 6 и 8. Найти его объём, если высота равна длине диагонали его основания.

  5. Найти объём прямоугольного параллелепипеда, если стороны основания 4 и 6, а диагональ параллелепипеда .

Критерии оценки: Оценка «5» выставляется если : выполнено задание № 1-5, Оценка «4» выставляется , если : выполнено задание № 1-4, Оценка «3» выставляется, если : выполнено задание № 1-3.


Требования к оформлению самостоятельной работы: Расчетные задания должны быть выполнены в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.













Самостоятельная работа № 20

Тема: Типовой расчет по теме «Расчет объёма прямой и наклонной призмы».

Цель работы:

  • повторить, закрепить основные понятия по теме «Объём прямой и наклонной призмы»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 7. § 2-3. Решение типовых заданий: hello_html_m3970c1fc.jpg

1 ЧАСТЬ. Объём прямой призмы.

Пример 1. Дано: АВСА1В1С1 - прямая призма, АС = ВС, ACB = 90°BN NACNC1 = 45°CC1 = 6 (рис.). Найти: V. Решение: V = Sh , S = BC2 : 2, BC2 = BN2 + CN2 , BN =CN

(ΔABC – прямоугольный,AC =BC), ΔC1CN – прямоугольный,CNC1 = 45°

CC1 = CN= 6, BC2 =2CN2 = 2 62 = 236 = 72, BC =6 ,

V = (62 6 : 2 = 216 см3.    
Ответ:216см3.     Пример 2. Дано: ABCDА1В1С1D1 - прямая призма,  ABCD - ромб, BAD = 60° (рис.). ВВ1 = 2, B1DB = 45°. Найти: V. РешениеSp = AB AD sin 60°. ΔABD – равносторонний( AB = AD,BAD = 60° ). AB = BD = AD. ΔB1DB –прямоугольный , B1DB = 45°. =>hello_html_6c1a9bbb.jpg

ΔB1DB – равнобедренный, ВВ1 = ВD = 2, V = AB AD sin 60° BB1= BB13 sin 60° =

= 23 / 2 = 4 см3.

Ответ: 4 см3hello_html_72355ff0.jpg

Пример 3. Дано: ABCDFM...M1 - правильная шестиугольная призма. AD1 = 8 см - наибольшая диагональ.AD1= 30°(рис.). Найти: V.  Решение: V= S0 · h. h = DD1 в ΔADD1, = 90°. D1 = 30°, DD1 = AD1 · cos 30°. DD1 = 8 / 2 = 4 , AD = AD1 : 2 = 4 см,

OD = OC = CD = AD : 2 = 2 см,

S0 = 6S ΔOCD = 6 / 4) a2 = 6 / 4) 22 = 6 см. V = 6 = 72 см3.    

Ответ: 72 см3.     hello_html_m47ca6280.jpg

Пример 4. Дано: АВСА1В1С1 - прямая призма, АВ = ВС = 10 см, АС = 12 см, К - середина ребра,  KDB =60° (рис.). Найти: Vпр. Решение:1) Рассмотрим получившееся сечение: ΔАКС и определим угол между плоскостью (АКС) и плоскостью основания. В ΔАВС проведем BD AC, тогда AC  KD (теорема о трех перпендикулярах).KDB и есть линейный угол двугранного угла между плоскостью (АКС) и плоскостью основания;KDB = 60°. 2) V= S0 · h. 3) Найдем площадь основания. S0 = ah : 2 . Рассмотрим AВС: равнобедренный, поэтому BD - высота, медиана и биссектриса треугольника, т. е.AD DC = 6 см. Далее из BDC по теореме Пифагора находим высоту треугольника ABC: h2 = BD2 = BC2DC2 = 102 62 = 100 36 = 64, h = BD = 8 см. a = AC = 12 см,S0 = 128 : 2 = 48 см2. 4) Найдем высоту призмы ВВ1. Рассмотрим ΔBDK - прямоугольный, BDK =60°, BK = BD tg 60° = 8 = 8см. h = BB1 = 2BK = 16 см. 5) V= S0 · h. V= 48 · 16 = 768 см3.  Ответ: 768 см3.    

Пример 5. a) Дано: АВСDА1В1С1D1 — прямая призма,  ABCD - трапеция, hello_html_m62762a7f.jpg

S(BB1C1C) = 8 см2, S(AA1D1D) = 12см2, BH = 5 см (рис.). Найти: Vnp.  Решение:1)Расстояние между параллельными плоскостями ВВ1С1 и AA1D1 есть длина перпендикуляра ВН, который является высотой трапеции ABCD.

2) Обозначим верхнее основание трапеции - а, нижнее - b, высоту призмы h, тогда S(BB1C1C) = ah, 8 = ah, a = 8 / h, S(AA1D1D) = bh , 12 = bh, b = 12 / h,

3) S0 = (AD + BC)BH : 2 = ( a + b ) BH : 2 = (8 / h + 12 / h) 5 : 2 = 50 / h,

4) V= S0 · h. V= 50 / · h = 50 см3.  Ответ: 50 см3.


б) Дано: АВСDА1В1С1D1 — прямая призма,  ABCD - трапеция. 

V np. = 40 см3, S(BB1C1C) = 6 см2, S(AA1D1D )= 14 см 2. Найдите: BH. Решение:1) Расстояние между параллельными плоскостями ВВ1С1 и AA1D1 есть длина перпендикуляра ВН, который является также высотой трапеции ABCD. 2) Обозначим: а - верхнее основание трапеции, b - нижнее основание, h - высота призмы, тогда S(BB1C1C) = ah, 6 = ah, a = 6 / h, S(AA1D1D) = bh , 14 = bh, b = 14 / h, S0 = (AD + BC)BH : 2 = ( a + b ) BH : 2= (6 / h + 14 / h) BH : 2 = 10 BH / h. 3) V= S0 · h.  40 = 10 BH / h h = 10 BH, BH = 40 : 10 = 4 см. Oтвет: 4 см.

2ЧАСТЬ. Объём наклонной призмы.

Пример 1. В наклонной призме боковое ребро равно 7 см, перпендикулярное сечение - прямоугольный треугольник с катетами: 4 см и 3 см. найдите объем призмы. Решение: V= Sперп.сеч. · а. Sперп.сеч – площадь перпендикулярного сечения, а – боковое ребро. Sперп.сеч = b·с : 2 = 4·3 : 2 = 6, V= Sперп.сеч. · а = 6 ·7 = 42 см3.hello_html_m2de4b194.jpg

Ответ: 42 см3.

Пример 2. Дано: АВСА1В1С1 - наклонная призма, АВ = 10 см, ВС = 10 см,

АС = 12 см, ВВ1 = 8 см,  B1BK = 60° (рис.).Найти: Vnp. Решение:1) V= S0 · h.  p = (a + b + c) : 2= (10 + 12 +10) : 2 = 16,

S0 = (ф-ла Герона).

S0 = см2.

2) ΔBB1- прямоугольный, так как В1Н - высота. В1Н = ВВ1 · sin60°;

В1Н = h = 8 · / 2 = 4 см.

3) V= S0 · h = · 48 = 192 см3

Ответ: Vnp. = 192 см3.

Пример 3. Дано: АВСА1В1С1 - наклонная призма, ВВ1С1С - ромб, B1С  (ABC), В1С = 3, ΔАВС - равносторонний, ВВ1 = 5 (рис.).hello_html_67079322.jpg

Найти: Vnp. Решение:1) V= S0 · h. BB1 = BC  (по условию).

2) S0 = 1/2 AB · BC · sin 60° = 1/2· 5· 5 · sin 60° = 1/2 · 25 · / 2 = 6,25

3) B1CK = 90° (по определению угла между прямой и плоскостью);

В1С = 3. V= 6,25 = 18,75  см3. Ответ: 18,75  см3hello_html_54f588cc.jpg

Пример 4. Дано: АВСА1В1С1 - наклонная призма, АВ = АС = 3 см; ВС = 2 см; АА1 = 4 см;  А1АН = 45°Vnp. = Vкуба. (рис.).

Найти: а - ребро куба. Решение:

1) Vnp.= S0 · h.  p = (a + b + c) : 2= (2 + 3 + 3) : 2 = 4,

S0 = по формуле Герона; 

S0 = см2.

2) AK  BС;  АК; ΔАА1Н - прямоугольный, A1H = A1A · sinА1АН, A1H = h = 4 · sin45° = 4 · / 2 = 2 см. 3) Vnp.= S0 · h =  2 = 8 см3.

4) Vк = Vnp. Vк = a3 = 8 , a = 2 см.

Ответ: а = 2 см.

Пример 5. Дано: ABCDA1B1C1D1 - наклонная призма; hello_html_m5492efc4.jpg

ABCD - прямоугольник; АВ = 6 см; AD = 8 см,

AA1B1B - квадрат; KHF = 60° (рис.).

Найти: Vnp.

Решение:

1. Vnp.= S0 · h. S0 = AB · AD, S0 = 6 · 8 = 48см2.

2. КО - высота призмы; ΔКОН - прямоугольный, KO = h = KH · sinKHF,

 KO = 6 · sin 60° = 6 · / 2 = 3 KH = AA1 = AB = 6 см.

3. Vnp.= S0 · h = 48 · 3 = 144 см3.

Ответ: 144 см3.

Задание: 1 ЧАСТЬ.

1вариант.

  1. Дано: АВСА1В1С1 - прямая призма, АС = ВС, ACB =90°BN NACNC1 = 45°CC= 8 (рис.). Найти: V.

  2. Дано: ABCDА1В1С1D1 - прямая призма,  ABCD - ромб, BAD = 60° (рис.). ВВ1 = 4B1DB = 45°. Найти: V.

  3. Дано: ABCDFM...M1 - правильная шестиугольная призма. AD1 = 16 см - наибольшая диагональ.AD1= 30° (рис.). Найти: V. 

  4. Дано: АВСА1В1С1 - прямая призма, АВ = ВС = 20 см, АС = 24 см, К - середина ребра,  KDB =60° (рис.). Найти: Vпр.

  5. a)трапеция, S(BB1C1C) = 10 см2, S(AA1D1D) = 14см2, BH = 10 см (рис.). Найти: Vnp.  б)Дано: АВСDА1В1С1D1 — прямая призма,  ABCD - трапеция. 

V np. = 35 см3, S(BB1C1C) = 4 см2, S(AA1D1D )= 10 см 2 .Найдите: BH.

2 вариант.

  1. Дано: АВСА1В1С1 - прямая призма, АС = ВС, ACB =90°BN NACNC1 = 45°CC= 10 (рис.). Найти: V.

  2. Дано: ABCDА1В1С1D1 - прямая призма,  ABCD - ромб, BAD = 60° (рис.). ВВ1 = 6B1DB = 45°. Найти: V.

  3. Дано: ABCDFM...M1 - правильная шестиугольная призма. AD1 = 4 см - наибольшая диагональ.AD1= 30° (рис.). Найти: V. 

  4. Дано: АВСА1В1С1 - прямая призма, АВ = ВС = 5 см, АС = 6 см, К - середина ребра,  KDB =60° (рис.). Найти: Vпр.

  5. a)трапеция, S(BB1C1C) = 6 см2, S(AA1D1D) = 10см2, BH = 8 см (рис.). Найти: Vnp.  б)Дано: АВСDА1В1С1D1 — прямая призма,  ABCD - трапеция. 

V np. = 80 см3, S(BB1C1C) = 8 см2, S(AA1D1D )= 12 см 2 .Найдите: BH.

2 ЧАСТЬ.

1вариант.

  1. В наклонной призме боковое ребро равно 5 см, перпендикулярное сечение - прямоугольный треугольник с катетами: 6 см и 8 см. найдите объем призмы.

  2. Дано: АВСА1В1С1 - наклонная призма, АВ = 5 см, ВС = 5 см, АС = 6 см, ВВ1 = 12 см,  B1BK = 60° (рис.). Найти: Vnp.

  3. Дано: АВСА1В1С1 - наклонная призма, ВВ1С1С - ромб, B1С  (ABC), В1С = 5, ΔАВС - равносторонний, ВВ1 = 6 (рис.). Найти: Vnp.

  4. Дано: АВСА1В1С1 - наклонная призма, АВ = АС = 6 см; ВС = 4 см; АА1 = 8 см; А1АН = 45°Vnp. = Vкуба. (рис.).Найти: а - ребро куба.

  5. Дано: ABCDA1B1C1D1 - наклонная призма; ABCD - прямоугольник; 

АВ = 8 см; AD = 10 см, AA1B1B - квадрат; KHF = 60° (рис.). Найти: Vnp.

2 вариант.

  1. В наклонной призме боковое ребро равно 10 см, перпендикулярное сечение - прямоугольный треугольник с катетами: 5 см и 8 см. найдите объем призмы.

  2. Дано: АВСА1В1С1 - наклонная призма, АВ = 15 см, ВС = 15 см, АС = 18 см, ВВ1 = 14 см,  B1BK = 60° (рис.). Найти: Vnp.

  3. Дано: АВСА1В1С1 - наклонная призма, ВВ1С1С - ромб, B1С  (ABC), В1С = 9, ΔАВС - равносторонний, ВВ1 = 4 (рис.). Найти: Vnp.

  4. Дано: АВСА1В1С1 - наклонная призма, АВ = АС = 9 см; ВС = 6 см; АА1 = 10 см; А1АН = 45°Vnp. = Vкуба. (рис.).Найти: а - ребро куба.

  5. Дано: ABCDA1B1C1D1 - наклонная призма; ABCD - прямоугольник; 

АВ = 4 см; AD = 10 см, AA1B1B - квадрат; KHF = 60° (рис.). Найти: Vnp.

Критерии оценки: Оценка «5» выставляется если : выполнено задание № 1-5, обе части, Оценка «4» выставляется , если : выполнено задание № 1-4, обе части, Оценка «3» выставляется, если : выполнено задание № 1-3, обе части.

Требования к оформлению самостоятельной работы: Расчетные задания должны быть выполнены в рабочей тетради №2. Учебно-методическое и информационное обеспечение: приложение №1.

Самостоятельная работа № 21

Тема: Типовой расчет по теме «Объём цилиндра».

Цель работы:

  • повторить, закрепить основные понятия по теме «Объём цилиндра»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 7. § 2.

Решение типовых заданий:

Пример 1. Дано: цилиндр, r = 2см, h = 3 см. Найти: V.

Решение: V= S0 · h. V= πr2 · h = π()2 3 = π 8 3= 24 π см3. Ответ: 24π см3.

Пример 2. Дано: цилиндр, r = h= 8π см3. Найти: h.

Решение: V= S0 · h. V= πr2 · h, так как r = h, то V = πh3 => h3 = V / π, h3 = 8 π / π = 8, h = 2 см. Ответ: 2 см.

Пример 3. Дано: цилиндр, ABCD - осевое сечение, ABCD - квадрат, hello_html_2cd2a3a8.jpg

АС = 8см. (рис.). Найдите: Vцил. 

Решение:1) V= S0 · h. 

2)Рассмотрим ΔАВС - прямоугольный, так как ABCD квадрат.

Пусть АВ = ВС = x см(x >0), тогда x2 + x2 = (8)2, 2x2 = 642,x2 = 64, x = 8.

Итак: АВ = ВС = 8 см, т.е. = 8 (см).

3) Найдем радиус основания: = 1/2AD = h / 2 = 4 см, тогда S0 = πr2 , S0 = 16π см2. 

4) V= S0 · h. V= 16 π · 8 = 128 π см3.   Ответ: 128 π см3.

Пример 4. Дано: цилиндр, ABCD - осевое сечение, ABCD - квадрат, АС = 6см (рис. Пример 3.).

Найдите: Vцил. Решение: 1) V= S0 · h.  2)Рассмотрим ΔАВС - прямоугольный и равнобедренный, так как ABCD – квадрат. Обозначим АВ = ВС = х см (x >0), тогда x2 + x2 = (6)2, 2x2 = 362,x2 = 36, x = 6, т. е. АВ = ВС = 6 см, и так = 6 см. 3) Найдем радиус основания r = AD : 2 = AB : 2 = 6 : 2 = 3см. S0  = πr2 = 9πсм2. 

  1. V= S0 · h. V=  · 6 = 54πсм3.  

Ответ: 54π см3.

Пример 5. Дано: цилиндр (MNKL) || OO1, ОН =15 см, МК = 20 см, r = 17 см (рис.). Найдите: Vцил. hello_html_60118f26.jpg

Решение:

1) Рассмотрим получившееся сечение: так как плоскость параллельна оси цилиндра, то MN || OO’ иKL || OO’, т.е. MN || KL; ОО1 основанию  MN  основанию и КО  основанию, кроме того NK ||ML - лежат в параллельных плоскостях, таким образом четырехугольник MNKL - прямоугольник.

2)  V= S0 · h. V= πr2 · h = 172πh = 289 πh см3

3) Рассмотрим ΔMOL: проведем ОН  ML; ОН и есть расстояние от плоскости сечения

до оси цилиндра, т. е. ОН = 15 см. ОН - высота, медиана и биссектриса

равнобедренного ΔMOL, HL = ML : 2 , HL2 = OL2OH2 = 172 – 152 = 289 – 225 = 64 ,

HL = 8см, ML = 16 см.

4) Находим высоту цилиндра из прямоугольного ΔMKL: h2 = KL2 = MK2ML2 = 202 – 162 = 400 – 256 = 144, h = 12см.

5) V =289π 12 = 3468π см3.

Ответ: 3468π см3.


Задание:

1вариант.

  1. Дано: цилиндр, r = 4см, h = 3 см.Найти: V.

  2. Дано: цилиндр, r = h= 27π см3.Найти: h.

  3. Дано: цилиндр, ABCD - осевое сечение, ABCD - квадрат, АС =10см.(рис.). Найдите: Vцил. 

  4. Дано: цилиндр, ABCD - осевое сечение, ABCD - квадрат, АС = 4 см (рис. Пример 3.). Найдите: Vцил.

  5. Дано: цилиндр (MNKL) || OO1, ОН =30 см, МК = 40 см, r = 34 см (рис.). Найдите: Vцил. 

2 вариант.

  1. Дано: цилиндр, r = 6см, h = 3 см.Найти: V.

  2. Дано: цилиндр, r = h= 64π см3.Найти: h.

  3. Дано: цилиндр, ABCD - осевое сечение, ABCD - квадрат, АС =12см.(рис.). Найдите: Vцил. 

  4. Дано: цилиндр, ABCD - осевое сечение, ABCD - квадрат, АС = 14см (рис. Пример 3.). Найдите: Vцил.

  5. Дано: цилиндр (MNKL) || OO1, ОН = 24 см, МК = 25 см, r = 26 см (рис.). Найдите: Vцил.


Критерии оценки: Оценка «5» выставляется если : выполнено задание № 1-5, Оценка «4» выставляется , если : выполнено задание № 1-4, Оценка «3» выставляется, если : выполнено задание № 1-3.


Требования к оформлению самостоятельной работы: Расчетные задания должны быть выполнены в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.




























Самостоятельная работа № 22

Тема: Типовой расчет по теме «Объём конуса».

Цель работы:

  • повторить, закрепить основные понятия по теме «Объём конуса»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 7. § 3.

Решение типовых заданий:

Пример 1. a) Вычислите объем конуса, если его высота 6 см, а площадь основания 42 см2.

Решение: V= 1/3S0 · h. V= 1/3· 42 · 6 = 84 см3. Ответ: 84 см3. 

б) Найти объем конуса с радиусом основания 4 м и высотой 6 м .hello_html_22f040f9.jpg

Решение: V= 1/3 πr2 · h. V= 1/3 · π ·42 · 6 = 32 π м3.  Ответ: 32 π м3. 

Пример 2. Образующая конуса равна 60 см, высота 30 см. Найдите Vк (рис.).

Решение: Из ΔАOР (O = 90°): Так как РО = 1/2АР, то

= 30°,  R = AO = 60 · cos 30° = 60 · / 2 = 30 см,

 V= 1/3 πr2 · h. V= 1/3 π(30)2 · 30 = 27000 π см3. Ответ: V = 27000π см3.hello_html_77625222.jpg

Пример 3. Образующая конуса, равна 12 см, наклонена к плоскости основания под углом 30° (рис.). Найдите объем конуса.

Решение: V= 1/3 π ·AO2 · SO. 

Из ΔАSO (= 90°): h = SO = 1/2 AC = 12 : 2 = 6 см.

R = AO = 12 · cos 30° = 12 · / 2 = 6 см.

V= 1/3 π(6)2 · 6 = 2 π · 36 · 3 = 216 π см3.  Ответ: V= 216π см3.hello_html_6c88cf6d.jpg

Пример 4. Образующая конуса 8 см, а угол при вершине

осевого сечения 60°. Найдите объем конуса. 

Решение: (рис.) V= 1/3 πr2 · h. r = 8 : 2 = 4 см.

h = 8 · sin 60° = 8 · / 2 = 4  см. hello_html_20ab41b2.jpg

V= 1/3 π · 42 · 4 = 64 / 3 21,3π см3.Ответ: 21,3π см3.

Пример 5. Дано: конус, АР = см, PAB = 45° (рис. ). Найти: V. 

Решение: V= 1/3 πr2 · h.  AO= РО. Из ΔAОР ((= 90°): APO = 45°, значит, AO = PO = r = h. По теореме Пифагора 2r= 6, r2 = 3, r = h = .

V= 1/3 π()2 ·  = 1/3· π · 3 · = π см3. Ответ: V = π см3.

Задание:

1вариант.1)a)Вычислите объем конуса, если его высота 3 см, а площадь основания 12 см2.б) Найти объем конуса с радиусом основания 5 м и высотой 9 м.

2)Образующая конуса равна 4 см, высота 2 см. Найдите Vк (рис.).

3)Образующая конуса, равна 12 см, наклонена к плоскости основания под углом 30° (рис.).Найдите объем конуса.

4)Образующая конуса 4 см, а угол при вершине осевого сечения 60°. Найдите объем конуса. 

5)Дано: конус, АР = см, PAB = 45° (рис. ).Найти: V. 

2 вариант. 1)a)Вычислите объем конуса, если его высота 9 см, а площадь основания 15 см2.

б) Найти объем конуса с радиусом основания 7 м и высотой 3 м .

2)Образующая конуса равна 8 см, высота 4 см. Найдите Vк (рис.).

3)Образующая конуса, равна 12 см, наклонена к плоскости основания под углом 30° (рис.).Найдите объем конуса.

4)Образующая конуса 6 см, а угол при вершине осевого сечения 60°. Найдите объем конуса. 

5)Дано: конус, АР = см, PAB = 45° (рис. ).Найти: V. 

Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-5,

Оценка «4» выставляется , если : выполнено задание № 1-4,

Оценка «3» выставляется, если : выполнено задание № 1-3.

Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.

Учебно-методическое и информационное обеспечение: приложение №1.

Самостоятельная работа № 23

Тема: Типовой расчет по теме «Объём сегмента, слоя, сектора шара».

Цель работы:

  • повторить, закрепить основные понятия по теме «Объём сегмента, слоя, сектора шара»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 7. § 4.

Решение типовых заданий:

Пример 1. Какую часть шара составляет объем шарового сегмента, у которого высота

равна 0,1 диаметра шара? Решение:

Десятая часть диаметра есть пятая часть радиуса. Значит, высота сегмента

h= R/5 , V сегм. = (R/5)2 (RR /15) = (R2/25) 14R/15 = 14 R3/375, V сегм.: V =( 14/375) : (4/3) = 7/250 = 2,8 % .

Ответ:  2,8%. Пример 2. Плоскость, перпендикулярная диаметру шара, делит его на части 3 см и 9 см. На какие части делится объем шара? Решение:

= (3 + 9) : 2 = 6 см. Высота меньшего сегмента h равна 3 см.

Его V1 = h2 (Rh / 3) = 32 ( 6 1) = 45 см2. V = 4/3 R3 = 4/3 63 = 4/3 216 = 288 см3.

Значит,  V2 = VV1 = 28845 = 243 см3. hello_html_m4c44f677.jpg

Ответ: 45 , 243 см3. Пример 3. Дано: шар, DС — диаметр секущей плоскости, АМ = 6 см, MB = 12см (рис.). V1 - объем меньшего шарового сегмента,  V2 - объем большего шарового сегмента. Найти: V1V2.  Решение:

СD  АВ, ЛМ = 6 см, MB = 12 см. На рисунке: DС - диаметр круга, который является плоскостью, перпендикулярной к диаметру шара, делящей шар на два шаровых сегмента.

Диаметр шара АВ = АМ + MB = 6 + 12 = 18 (см), R = 9 см.

Объем шарового сегмента вычисляется по формуле: V = h2 (Rh / 3) ,  где h = AM - высота меньшего сегмента.

V1 = AM2 (R – AM / 3) = 62 (9 – 6/3) = 36 7 = 252 см3. Объем шара равен:   Vшара = 4/3 R3 = 4/3 93= 4 81 3 = 972 см3. V2 = VV1 =  972 252 = 720 см3.

Ответ: 252π см3 и 720π см3. Пример 4. Чему равен объем шарового сектора, если радиус окружности основания равен 60 см, а радиус шара - 75 см. hello_html_m45f5722.jpg

Решение:

Пусть R - радиус шара, r - радиус основания сегмента.

Вычислим высоту сегмента Н = РО1OP = R.

Из прямоугольного ΔОО1М:  

OO12 = OM2O1M2 = R2r2 = 752 602 = 5625 – 3600 = 2025, OO1 = 45 см.
h = PO1 = OPOO1 = 75 – 45 = 30 см.
V = 2/3 R2h = 2/3 75230 = 20 5625 = 112 500 см3. Ответ: 112 500 см3. Пример 5. Дано: шар, h = 30, R = 45 см. Найти: V1V2, V3. Решение:

Объем шарового сегмента вычисляется по формуле: V1 = h2 (Rh / 3) ,  

V1= 302 (45 – 30:3) = 900 35 = 31500 см3.

V2 = 4/3R3 2 h2 (Rh / 3) = 4/3453 2 302 (45 – 30 / 3) = 121500 63000 = = 58500см3. V3= 2/3 R2h =2/3452 30 = 40500см3. Ответ: 31500 58500 40500см3.

Задание:

1вариант.

  1. Какую часть шара составляет объем шарового сегмента, у которого высота равна 0,2 диаметра шара?

  2. Плоскость, перпендикулярная диаметру шара, делит его на части 6 см и 12 см. На какие части делится объем шара?

  3. Дано: шар, DС — диаметр секущей плоскости, АМ = 3 см, MB = 9 см (рис.). V1 - объем меньшего шарового сегмента, V2 - объем большего шарового сегмента. Найти: V1V2. 

  4. Чему равен объем шарового сектора, если радиус окружности основания равен 12см, а радиус шара - 15 см.

  5. Дано: шар, h = 30, R = 42 см. Найти: V1V2, V3.

2 вариант.

  1. Какую часть шара составляет объем шарового сегмента, у которого высота равна 0,4 диаметра шара?

  2. Плоскость, перпендикулярная диаметру шара, делит его на части 8 см и 10 см. На какие части делится объем шара?

  3. Дано: шар, DС — диаметр секущей плоскости, АМ = 10 см, MB = 14 см (рис.). V1 - объем меньшего шарового сегмента, V2 - объем большего шарового сегмента. Найти: V1V2. 

  4. Чему равен объем шарового сектора, если радиус окружности основания равен 24 см, а радиус шара - 30 см.

  5. Дано: шар, h = 12, R = 15 см. Найти: V1V2, V3.



Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-5,

Оценка «4» выставляется , если : выполнено задание № 1-4,

Оценка «3» выставляется, если : выполнено задание № 1-3.



Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.



Учебно-методическое и информационное обеспечение: приложение №1.





















Самостоятельная работа № 24

Тема: Решение теста по теме «Объёмы тел».

Цель работы: повторить, закрепить основные понятия по теме «Объёмы тел».

Методические рекомендации к выполнению теста:

  1. Прочитать вопрос, ответить на его и записать букву , под которой записан правильный ответ.

  2. Решив задачу, нужно выбрать правильный ответ и записать номер, под которым он записан.

Задание: 1 вариант.

1. Найдите объем прямоугольного параллелепипеда с ребрами 3 см, 5 см и 8 см.

а) 120 см3; б) 60 см3; в) 32 см3; г) другой ответ.

2. Длина прямоугольной комнаты в 2 раза больше ширины и на 2 м больше высоты. Найдите объем комнаты, если ее длина равна 6 м.

а) 432 м3; б) 144 м3; в) 72 м3; г) другой ответ.

3.. Найдите ребро куба, если его объем равен  512  м3

а) 4 м; б) 8 м; в) 16 м; г) другой ответ.

4. Как изменится объем параллелепипеда, если его длину увеличить в 4 раза, ширину увеличить в 6 раз, а высоту уменьшить в 8 раз?

а) увеличится в 3 раза; б) уменьшится в 12 раз; в) не изменится; г) другой ответ.

5. Выберите неверное утверждение.

а) Объём прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту;

б) Объём правильной треугольной призмы вычисляется по формуле V = a2h, где а – сторона основания , h – высота призмы;

в) Объём прямой призмы равен половине произведения площади основания на высоту.

6. Сторона основания правильной треугольной призмы равна 2 см, а высота – 5 см. Найдите объём призмы.

а) 15 см3; б) 45 см3; в) 10 см3; г) 12 см3; д) 18 см3.

7.Выпишите формулу для нахождения объёма пирамиды.

а) V=Sоснh; б) V=Sоснh; в) V=Sоснh.

8.Найдите объем пирамиды, высота которой равна 1, а основание — прямоугольник со сторонами 4 и 6. а) 4; б) 8; в) 16.hello_html_37ae8577.jpg

9.Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна hello_html_6f3a9b7f.png. а) 1,25; б) 1; в) 0,25.

10.В правильной четырехугольной пирамиде высота равна 12 м, объем равен 200 м3. Найдите боковое ребро этой пирамиды. а) 10 м; б) 13 м; в) 8 м.

11.Найдите объём правильной четырехугольной пирамиды, сторона основания которой равна 3 см, а высота – 4 см. а) 12 см3; б) 42 см3; в) 8 см3.

12.Диагональ квадрата, лежащего в основании правильной пирамиды, равна 8 дм, а её высота равна 12 дм. Найдите объём пирамиды. а) 768 дм3; б) 384 дм3; в) 128 дм3.

13. Найдите объём прямоугольного параллелепипеда, если его длина равна 6 см, ширина – 5 см, а диагональ 11 см. а) 60 см3; б) 2 см3; в) 85 см3.

14. Основанием пирамиды МАВС служит треугольник со сторонами АВ = 5 см, ВС = 12 см, АС = 13 см. Найдите объём пирамиды, если МВ (АВС) и МВ = 10 см.

а) 300 см3; б) 260 см3; в)100 см3.

15. а) Найдите объём цилиндра, если r = 4, h = 5. А) 80, В) 80 π, С) 16, Д) 21 π.

б) Найдите высоту цилиндра , если V = 100 π, r = 10 . А) 4, В) 3 π, С) 1, Д) 2 π.

16. а) Найдите объём конуса, если r = 2, h = 6. А) 4 π, В) 4, С) 8 π, Д) 8.

б) Найдите высоту конуса , если V = 144 π, r = . А) 4, В) 8 π, С) 144 π, Д) 4 π,

17. Найдите объём усеченного конуса, если h = 6, r1 = 3, r2 = 4.

А) 74, В) 74 π, С) 37, Д) 37 π.

18. а)Найдите объём шара, если его радиус R = 6. А) 288 π, В) 288, С) 72 π, Д) 72.

б) Найдите диаметр шара, если его объем V = . А) 6, В) 14, С) 7, Д) 12.

2 вариант.

1. Найдите объем прямоугольного параллелепипеда с ребрами 6 см, 3 см и 4 см.

а) 72 см3; б) 13 см3; в) 22 см3; г) другой ответ.

2. Длина прямоугольной комнаты в 3 раза больше ширины и на 2 м больше высоты. Найдите объем комнаты, если ее длина равна 6 м.

а) 432 м3; б) 144 м3; в) 48 м3; г) другой ответ.

3. Найдите ребро куба, если его объем равен  729  м3

а) 9 м; б) 8 м; в) 16 м; г) другой ответ.

4. Как изменится объем параллелепипеда, если его длину увеличить в 5 раза, ширину увеличить в 8 раз, а высоту уменьшить в 10 раз?

а) увеличится в 4 раза; б) уменьшится в 12 раз; в) не изменится; г) другой ответ.

5. Выберите верное утверждение.

а) Объём прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту;

б) Объём правильной треугольной призмы вычисляется по формуле V = a2h, где а – сторона основания , h – высота призмы;

в) Объём прямой призмы равен половине произведения площади основания на высоту.

6. Сторона основания правильной треугольной призмы равна 3см, а высота – 4 см. Найдите объём призмы.

а) 15см3; б) 45 см3; в) 27см3; г) 12 см3; д) 18 см3.

7.Выпишите формулу для нахождения объёма пирамиды.

а) V=Sоснh; б) V=Sоснh; в) V=Sоснh. hello_html_37ae8577.jpg

8.Найдите объем пирамиды, высота которой равна 6, а основание — прямоугольник со сторонами 3 и 4. А) 48; б) 24; в) 12.

9.Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 4, а объем равен hello_html_m3b6e9642.png. а) 1,5; б) 3,5; в) 16.

10.В правильной четырехугольной пирамиде высота равна 6 м, объем равен 200 м3. Найдите боковое ребро этой пирамиды. а) 86 м; б) м; в) м.hello_html_m390fd290.jpg

11.Найдите объём правильной четырехугольной пирамиды, сторона основания которой равна 2 см, а высота – 3 см.

а) 8 см3; б) 4 см3; в) 3 см3.

12. Измерения прямоугольного параллелепипеда 25 м, 10 м, 32 м. Определите ребро куба, равновеликого прямоугольному параллелепипеду. а) 1,8 м; б) 3 м; в) 20 м.

13. Найдите объём прямоугольного параллелепипеда, если его длина равна 6 см, ширина – 7 см, а диагональ 11 см. а) 252 см3; б) 24 см3; в) 85 см3.

14.Найдите объём треугольной пирамиды, стороны основания которой 5 см, 5 см и 6 см, а высота равна 12 см. а) 144 см3; б) 48 см3; в) 12 см3.

15. а) Найдите объём цилиндра, если r = 6, h = 5. А) 80, В) 180 π, С) 16, Д) 21 π,

б) Найдите радиус основания цилиндра , если V = 100 π, h = 25. А) 2, В) 20 π, С) 4, Д) 4.

16. а) Найдите объём конуса, если r = 4, h = 6. А) 32 π, В) 4, С) 8 π, Д) 8,

б) Найдите высоту конуса , если V = 144 π, r = . А) 4, В) 8 π, С) 144 π, Д) 4 π,

17. Найдите объём усеченного конуса, если h = 3, r1 = 3, r2 = 4. А) 74, В) 74 π, С) 37, Д) 37 π.

18.а) Найдите объём шара, если его диаметр d = 6. А) 36, В) 36 π, С) 216 π, Д) 216,

б) Найдите радиус шара, если V = 112500 π, h = 30. А) 60 π, В) 75 π, С) 60, Д) 75.

Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-4,

Оценка «4» выставляется , если : выполнено задание № 1-3,

Оценка «3» выставляется, если : выполнено задание № 1-2.


Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.

Самостоятельная работа № 25

Тема: Составление кроссворда по теме «Тела вращения».

Цель работы: повторение и закрепление знаний, в части правильности написания терминов и определений к ним; формирование умений поиска информации.

Методические рекомендации к составлению кроссвордов

  1. Повторите теоретический материал, соответствующий теме кроссворда, воспользовавшись материалом учебника, справочной литературой, конспектом лекции..

  2. Запишите ответы по определениям.

  3. Проведите анализ, проверьте орфографию.

  4. Оформите пустую и заполненную сетку кроссворда.

Задание:

1) Тело, ограниченное цилиндрической поверхностью и двумя кругами называется ….

2) Круги называются ….

3) Длина образующей называется ….

4) За площадь боковой поверхности цилиндра принимается площадь ее ….

5) r - …. цилиндра.

6) Тело, ограниченное конической поверхностью и кругом называются ….

7) Точка, в которой сходятся образующие называется ….

8) Отрезок, соединяющий вершину конуса с любой точкой основания называется ….

9) Если у конуса отсечена верхняя часть, то оставшаяся часть называется …. конусом.

10) Цилиндр, получается при вращении ….

11) Конус получается при вращении ….

12) Усеченный конус получается при вращении ….

13) Поверхность, составленная из всех точек пространства, расположенных на данном расстоянии от данной точки называется ….

14) Отрезок, соединяющий две точки сферы и проходящий через ее цилиндр,

называется ….

15) Плоскость, имеющая со сферой только одну общую точку, называется ….

16) Тело, ограниченное сферой, называется ….

(таблица ниже)

Критерии оценки:

Оценка «5» выставляется если : отгаданы все слова верно и построена таблица с ответами,

Оценка «4» выставляется , если : отгаданы все слова верно, но не построена таблица с ответами,

Оценка «3» выставляется, если : отгаданы не все слова верно, не построена таблица с ответами,.

Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.












Кроссворд по теме «Тела вращения».







3




12




9





7


16




















13















14








































































15






8

















5
































































1













10




2


































11



























































4







6























































































































Самостоятельная работа № 26

Тема: Типовой расчет по теме «Простейшие задачи в координатах».

Цель работы:

  • повторить, закрепить основные понятия по теме «Простейшие задачи в координатах»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 5. §1.

Решение типовых заданий:

Пример 1. Дано: ΔАВС, А(-2; 0; 1), В(-1; 2; 3), С(8; -4; 9). ВМ - медиана.

Найти: координаты вектора BM . Решение: По определению медианы, М - середина отрезка АС. Следовательно, координаты М найдем по формулам координат середины отрезка  M ((82)/2, (4+0)/2,(9+1)/2), M(3,2,5). BM{3+1,22,53}, BM {4,4,2}.

Ответ: {4; 4; 2}.

Пример 2. Дано: А(1; 5; 3), В(7; -1; 3), С(3;2; 6). Доказать: ΔABC - прямоугольный. Решение: По формуле расстояния между двумя точками найдем длины отрезков АВ, АС, ВС. AB2 = (7 + 1)2 + (5 + 1)2 + (33)2, AB2 = 64 + 36 = 100, BC2 = (73)2 + (2 + 1)2 + (6 3)2, BC2 = 16 + 1 + 9 = 26, AC2 = (3 + 1)2 + (5 + 2)2 + (63)2, AC2 = 16 + 49 + 9 = 74. Проверим равенство АВ2 = ВС2 + АС2, 100 = 26 + 74 верно. По теореме обратной теореме Пифагора делаем вывод, что ΔABC - прямоугольный с гипотенузой АВ.
Ответ: ΔABC - прямоугольный с гипотенузой АВ.

Пример 3. Дано: ΔАВС; М, N, К - середины сторон соответственно АВ, ВС, АС. М(3; 2; 5), N(3,5; 1; 6), К(1,5; 1; 2). Найти: координаты А, В, С.

Решение: Пусть A (х1; у1z1), В(х2; у2z2), С(х3; у3z3). По формулам координат середины отрезка составим системы для абсцисс, ординат и аппликат. Пользуясь методом сложения, решим эту систему:

Ответ: А(2; 0; 1), В(8; 4; 9), С(1; 2; 3).

Пример 4. Дано: А(2; 1; 2), B(6; 3; 2), С  оси OZ; АС = ВС. Найти: координаты точки С.

Решение: По условию С  оси OZ, значит она имеет координаты С(0; 0; z) и АС = ВС. Составим уравнение, пользуясь формулой расстояния между двумя точками: 

4 + 1 + (z 2)2 = 36 + 9 + (z + 2)2,

5 + z2 – 4z + 4 = 45 + z2 + 4z + 4,

8z = 40, z = 5.

Ответ: (0; 0; 5).

Пример 5. Дано: А(2; 1; 2), B(6; 3; 2), С (0; 0; 5); АС = ВС. Найти: SABC).

Решение: По формуле координат середины отрезка АВ найдем координаты

точки М — середины: M ((62)/2, (1 + 3)/2,(22)/2), M(4,2,0). AB2 = (6 + 2)2 + (31)2 + (2 + 2)2 = 16 + 4 + 16 = 36, AB = 6.

 СМ-высота равнобедренного ΔABC. CM2 = (40)2 + (20)2 + (0 (5))2 = 16 + 4 + 25 = 45, CM = 3 , SABC) = AB · CM : 2 = 6 · 3 : 2 = 9.

Ответ: 9.

Задание:

1вариант.

  1. Дано: ΔАВС; А(1; 2; 3), B(1; 0; 4), С(3; 2; 1). AM - медиана.

Найти: координаты вектора AM .

  1. Дано: А(1; 5; 3), В(1; 3; 9), С(3; 2; 6).Доказать: ΔAВС - прямоугольный.

  2. Дано: ΔАВС, М, N, К - середины сторон соответственно ABBС, AС. М(3; 2; 4), N(6; 4; 10), К(7; 2; 12). Найти: координаты вершин А, В, С.

  3. Дано: A(4; 5; 4), B(2; 3; 4); С  оси  OXAC = ВС. Найти: координаты точки С.

  4. Дано: А(4; 5; 4), B(2; 3; 4), С(1; 0; 0), АС = ВС. Найти: S(ΔABC).

2 вариант.

  1. Дано: ΔАВС; А(1; 4; 3), B(2; 0; 4), С(4; 2; 2). AM - медиана.

Найти: координаты вектора AM .

  1. Дано: А(1; 4; 2), В(7; 2; 2), С(3; 2; 6).Доказать: ΔAВС - прямоугольный.

  2. Дано: ΔАВС, М, N, К - середины сторон соответственно ABBС, AС. М(3; 2; 1), N(3; 2; 2), К(2; 4; 3).Найти: координаты вершин А, В, С.

  3. Дано: A(1; 2; 1), B(3; 2; 1); С  оси  OXAC = ВС. Найти: координаты точки С.

  4. Дано: А(1; 2; 1), B(3; 2; 1), С(0; 0; 1), АС = ВС. Найти: S(ΔABC).

Критерии оценки: Оценка «5» выставляется если : выполнено задание № 1-5, Оценка «4» выставляется , если : выполнено задание № 1-4, Оценка «3» выставляется, если : выполнено задание № 1-3.

Требования к оформлению самостоятельной работы: Расчетные задания должны быть выполнены в рабочей тетради №2.

Учебно-методическое и информационное обеспечение: приложение №1.





















Самостоятельная работа № 27

Тема: Типовой расчет по теме «Уравнение сферы».

Цель работы:

  • повторить, закрепить основные понятия по теме «Уравнение сферы»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 6. § 3.

Решение типовых заданий:

Пример 1. Сфера задана уравнением x 2 + (y +3)2 + (z – 2)2 = 25.

Найдите координаты центра и радиуса сферы.

Решение: О - центр сферы, О(0, –3,2), R = = 5. Ответ: О(0, –3,2), R = 5.

Пример 2. Напишите уравнение сферы радиуса = 7 с центром в точке А(2; 0; –1). Решение: (x –2)2 + y 2 + (z +1)2 = 49. Ответ: (x –2)2 + y 2 + (z +1)2 = 49.

Пример 3. Лежит ли А(2; 1; 4) на сфере, заданной уравнением (x + 2)2 + (y 1) 2 + (z 3)2 = 1.

Решение: Подставим координаты точки А в уравнение сферы (2 + 2)2 + (1 1) 2 + (4 3)2 = 1, 1 = 1(верно), точка А лежит на сфере. Ответ: точка А лежит на сфере.

Пример 4. Найти координаты центра и радиус сферы x2 + y2 + z2 + 4y2z = 4. Решение: x2 + y2 + z2 + 4y  2z = 4 выделим квадрат двучлена: х2 + у2 + 4у + 4 4 + z24z + 1 1 = 4, х2 + (у + 2)2 + (z  1)2 = 9,

центр окружности С(0; 2; 1), радиус R = 3. Ответ: С(0; 2; 1), R = 3.

Пример 5. Дано: уравнение сферы, х2 + у2z2 + 2у 4= 4.

Найти: а) О(х0; у0z0), R; б) m, при котором А(0; m; 2) и В(1; 1; m2) принадлежат сфере.

Решение: а) x 2 + y 2 +2у + z 24z = 4, x 2 + y 2 +2у+11 + z 2 – 4z + 4 4 = 4, x 2 + (y + 1)2 + (z – 2)2 = 9. О(0,1,2), R = = 3. б) А(0; m; 2) и В(1; 1; m2)

 , , ,

, m = 2. При m = 2 точки A и В принадлежат сфере. Ответ: а) О(0; 1; 2), R = 3; б) при m = 2.

Задание:

1вариант.

  1. Сфера задана уравнением (x – 1)2 + y 2 + (z – 2)2 = 9.

Найдите координаты центра и радиуса сферы.

  1. Напишите уравнение сферы радиуса = 4 с центром в точке А(2; 1; 0).

  2. Лежит ли А(5; –1; 4) на сфере, заданной уравнением  (x –3)2 + (y+ 1) 2 + (z4)2 = 4.

  3. Найти координаты центра и радиус сферы x2 – 6x + y2 + z2 = 0.

  4. Дано: уравнение сферы, х2 + у2z2 + 4у2= 4.

Найти: а) О(х0; у0z0), R; б) m, при котором А(0; m; 1) и В(1; 0; m2) принадлежат сфере.

2 вариант.

  1. Сфера задана уравнением (x – 3)2 + y 2 + (z + 2)2 = 16.

Найдите координаты центра и радиуса сферы.

  1. Напишите уравнение сферы радиуса = 6 с центром в точке А(3; 2; 0).

  2. Лежит ли А(5; -1; 4) на сфере, заданной уравнением  (x –5)2 + (y+ 2) 2 + (z –3)2 = 2.

  3. Найти координаты центра и радиус сферы x2 + 6y + y2 + z2 = 0.

  4. Дано: уравнение сферы, х2 + у2z2 + 4у – 2= 4.

Найти: а) О(х0; у0z0), R; б) m, при котором А(3; m; 1) и В(1; m1; 0) принадлежат сфере.

Критерии оценки: Оценка «5» выставляется если : выполнено задание № 1-5,

Оценка «4» выставляется , если : выполнено задание № 1-4,

Оценка «3» выставляется, если : выполнено задание № 1-3.

Требования к оформлению самостоятельной работы:

Расчетные задания должны быть выполнены в рабочей тетради №2.
Учебно-методическое и информационное обеспечение: приложение №1.

Самостоятельная работа № 28

Тема: Составление опорного конспекта «Умножение вектора на число». 

Цель работы:

  • закрепить понятия: умножения вектора на число и его свойства, законы;

  • развитие умений и навыков работы с источником информации, с практическим материалом.

План работы:

  1. Определение умножения вектора на число;

  2. Свойства умножения вектора на число;

  3. Законы умножения вектора на число;

  4. Примеры задач;



Методические рекомендации к составлению конспекта:


Конспект– это работа с другим источником.

Цель –зафиксировать ,переработать тот или иной текст.

Конспект представляет собой дословные выписки из текста источника. При этом конспект это не полное переписывание чужого текста. При написании конспекта сначала прочитывается текст –источник, в нем выделяются основные положения , подбираются примеры , идет перекомпоновка материала, а затем уже оформляется текст конспекта. Конспект может быть полным, когда работа идет со всем текстом источника или неполным, когда интерес представляет какой-либо один или несколько вопросов, затронутых в источнике.

Общую последовательность действий при составлении конспекта можно определить таким образом:

1. Уяснить цели и задачи конспектирования.

2.Внимательно прочитать текст параграфа, главы и отметить информационно значимые места.

3. Составить конспект.

Критерии оценки:

Оценка «5» выставляется если : содержание соответствует теме, материал проработан глубоко, грамотно и полно использованы источники, приведены сложные примеры;

Оценка «4» выставляется , если : материал проработан не глубоко, использованы не все источники, приведены сложные примеры ;

Оценка «3» выставляется, если : материал проработан не полностью, приведены примеры.


Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.









Самостоятельная работа № 29

Тема: Типовой расчет по теме «Скалярное произведение векторов».

Цель работы:

  • повторить, закрепить основные понятия по теме «Скалярное произведение векторов»,

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал: Л.С. Атанасян. Геометрия 10-11 класс, глава 5. §2.

Решение типовых заданий:

Пример 1. Даны векторы hello_html_m411373b9.jpgВычислите hello_html_m255ec84f.jpg

Решение: hello_html_m75aa0817.jpgОтвет: 6. Пример 2. Вычислить угол между прямыми AB и CD, если А(; 1; 0), В(0; 0; 2), С(0; 2; 0), D(; 1; 2). Решение:

hello_html_30566bad.jpgОтвет: 60°. Пример 3. Найдите скалярное произведение hello_html_mde78fa2.jpgесли hello_html_m3e197e0a.jpg Решение: hello_html_mde78fa2.jpg = 3·  cos 120° = 12· (1/2) = 6.
Ответ: 6.
Пример 4. В кубе ABCDA1B1C1D1 диагонали грани ABCD пересекается в точке N, а точка M ежит на ребреA1D1, причем А1М : MD1 = 1 : 4.Вычислите синус угла между прямой MN и плоскостью грани DD1C1C. Дано: ABCDA1B1C1D1 - куб, AC ∩ BD N A1D1, А1М : MD1 = 1 : 4 (рис.). Найти:  sin(MN,(DD1C1C)).
Решение: Введем систему координат так, чтобы В(0; 0; 0), АВ  ох, ВС  оу, ВВ1  oz, А(а; 0; 0), С(0; а; 0), D(а; а; 0), В1(0; 0; а), А1(а; 0; а), С1(0; aa), D1(а; а; а), М(а; a/5; a), N(a/2;a/2; 0).Угол между прямой и плоскостью –это угол между прямой и ее проекцией на эту плоскость. hello_html_m1dc61b1.jpg В ΔMFNhello_html_5450a8af.jpg так как hello_html_6c6424dc.jpghello_html_7f82cb27.jpg Значит, hello_html_m399731d3.jpg 
Ответ: hello_html_m249782ba.jpg.hello_html_4ab53b1a.jpg

Пример 5. Дано: прямые АВ и CD; А(8; 2; 3), В(3; 1; 4), С(5; 2; 0), D(7; 0; 2). Найти: hello_html_m7b608a66.jpg

Решение: hello_html_m53566d8c.jpg hello_html_17d41745.jpghello_html_m32b98f0.jpg Так как углом между прямыми считают острый угол, то hello_html_m3112ab02.jpg Ответ: 5/9.

Задание:

1вариант.

  1. Даны векторы hello_html_13c664e1.jpg Вычислите hello_html_m255ec84f.jpg 

  2. Вычислите угол между прямыми АВ и CD, если А(6; 4; 8), В(8; 2; 4), С(12; 6; 4), D(14; 6; 2).

  3. Найдите скалярное произведение hello_html_47df0bda.jpg если hello_html_4cc243af.jpg

  4. В кубе ABCDA1B1C1D1 диагонали грани ABCD пересекается в точке N, а точка M ежит на ребреA1D1, причем А1М : MD1 = 1 : 4. Вычислите синус угла между прямой MN и плоскостью грани  AA1D1D.

  5. Дано: прямые АВ и CD; А(7; 8; 15), В(8; 7; 13), С(2; 3; 5),  D(1; 0; 4). Найти: hello_html_66809286.jpg

2 вариант.

  1. Вычислите скалярное произведение hello_html_6774ecbf.jpg если hello_html_6f5e66b5.jpg

  2. Вычислите угол между прямыми АВ и CD, если А(3; 2; 4), В(4; 1; 2), С(6; 3; 2), D(7; 3; 1).

  3. Найдите скалярное произведение hello_html_47df0bda.jpg если hello_html_4cc243af.jpg120 °.

  4. В кубе ABCDA1B1C1D1 диагонали грани ABCD пересекается в точке N, а точка M ежит на ребреA1D1, причем А1М : MD1 = 1 : 4. Вычислите синус угла между прямой MN и плоскостью грани  ABCD.

  5. Дано: прямые АВ и CD; А(4; 1; 2), В(5; 0; 1), С(3; 1; 0),  D(7; 3; 4). Найти: hello_html_66809286.jpg


Критерии оценки: Оценка «5» выставляется если : выполнено задание № 1-5, Оценка «4» выставляется , если : выполнено задание № 1-4, Оценка «3» выставляется, если : выполнено задание № 1-3.

Требования к оформлению самостоятельной работы: Расчетные задания должны быть выполнены в рабочей тетради №2.

Учебно-методическое и информационное обеспечение: приложение №1.

Самостоятельная работа № 30

Тема: Решение теста по теме «Координаты и векторы».

Цель работы:

  • повторить, закрепить основные понятия по теме «Координаты и векторы»,

  • развитие вычислительных умений и навыков: вычисления по формулам координат векторов;

Методические рекомендации к выполнению теста:

Решив задачу, нужно выбрать правильный ответ и записать номер, под которым он записан.

Задание: Тест по теме: « Координаты и векторы ».



  1. Найти сумму векторов AB и BC .

  1. AC , B) CA, C) BA , D) CB .

  1. Дано: a{1, -1, 3}, b {0,2; 0}. Найти координаты вектора c = a + b .

  1. c {0, 0, 1}, B) c {1, 1, 3}, C) c {1, 0, 3}, D) c {1; 1,1}.

  1. Дано: a {5, 4, 3}, b {0, 1, 1} . Найти координаты вектора c = ab.

  1. c {4, 3, 2}, B) c {0, 2, 3}, C) c {5, 3, 2}, D) c {5, 4, 2}.

  1. Дано: a {2, -3, 4}, k = 5. Найти координаты вектора c = k · a.

  1. c {10, -15, 20}, B) c {10, -10, 4}, C) c {10, -15, 8}, D) c {10, 0, 8} .

  1. Дано: A (5, 4, 7), B (10, 10, 0). Найти координаты вектора AB.

  1. {5, 0, 3}, B){0, 4, 6}, C) {5, 6, -7}, D) {5, 6, 3}.

  1. Дано: A (10, 4, -3), B (-6, 2, 1). Найти координаты точки M – середины отрезка AB.

  1. M (2, 3, -1), B) M (2, 3, 1), C) M (2, 3, 0), D) M (-2, -3, 0).

  1. Дано: a {0, 5, 0} . Найти длину вектора.

  1. 4, B) 0, C) 3, D) 5.

  1. Дано: a {2, -2, 1}. Найти длину вектора.

  1. 3, B) 4, C) 0, D) 5.

  1. Дано: a {0, 1, -1}, b {2, 2, 1}. Найти a · b.

  1. 5, B) 4, C) 3, D) 1.

  1. Дано: a {-1, 2, 3}, b {5, х, -1} , a · b = 4, х - ?

  1. 5, B) 10, C) 6, D) 1.

Критерии оценки:

Оценка «5» выставляется если : выполнено задание № 1-10,

Оценка «4» выставляется , если : выполнено задание № 1-8,

Оценка «3» выставляется, если : выполнено задание № 1-5.



Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.

Учебно-методическое и информационное обеспечение: приложение №1.



Тема: Составление опорного конспекта «Основные понятия комбинаторики».

Цель работы:

  • повторить понятия: правило произведения, перестановки, перебор вариантов, размещения, сочетания, треугольник Паскаля, бином Ньютона ;

  • повторить понятия: событие, вероятность события, несовместимые события, независимые события, сложение и умножение вероятностей;

  • развитие умений и навыков работы с источником информации, с практическим материалом.

План работы:

  1. Перестановки, размещения, сочетания, задачи на перебор вариантов;

  2. Треугольник Паскаля, примеры;

  3. Формула бинома Ньютона;

  4. Примеры вычисления вероятности событий с помощью треугольника Паскаля и бинома Ньютона;

  5. Несовместимые события, примеры;

  6. Сумма несовместимых событий, примеры;

  7. Независимые события, примеры;

  8. Умножение вероятностей ;

  9. Произведение вероятностей для независимых событий, примеры ;

Методические рекомендации к составлению конспекта:


Конспект– это работа с другим источником.

Цель –зафиксировать ,переработать тот или иной текст.

Конспект представляет собой дословные выписки из текста источника. При этом конспект это не полное переписывание чужого текста. При написании конспекта сначала прочитывается текст –источник, в нем выделяются основные положения , подбираются примеры , идет перекомпоновка материала, а затем уже оформляется текст конспекта. Конспект может быть полным, когда работа идет со всем текстом источника или неполным, когда интерес представляет какой-либо один или несколько вопросов, затронутых в источнике.

Общую последовательность действий при составлении конспекта можно определить таким образом:

1. Уяснить цели и задачи конспектирования.

2.Внимательно прочитать текст параграфа, главы и отметить информационно значимые места.

3. Составить конспект.

Критерии оценки:

Оценка «5» выставляется если : содержание соответствует теме, материал проработан глубоко, грамотно и полно использованы источники, приведены сложные примеры;

Оценка «4» выставляется , если : материал проработан не глубоко, использованы не все источники, приведены сложные примеры ;

Оценка «3» выставляется, если : материал проработан не полностью, приведены примеры.


Требования к оформлению самостоятельной работы:

Работа должна быть выполнена в рабочей тетради №2.


Учебно-методическое и информационное обеспечение: приложение №1.


Самостоятельная работа № 32

Тема: Типовой расчет по теме «Элементы комбинаторики и теории вероятностей».

Цель работы:

  • повторить понятия: событие, противоположное событие, вероятность события ;

  • формирование умения решать простейшие текстовые задачи на расчет вероятности случайного события;

  • повторить понятия: дискретная случайная величина, ее числовые характеристики, функция распределения;

  • формирование умения решать простейшие текстовые задачи на расчет числовых характеристик дискретной случайной величины ;

  • развитие умений и навыков работы с источником информации, с практическим материалом.

Основной теоретический материал:

Ш.А. Алимов. Алгебра и начала математического анализа 10-11 класс, глава 12-13.

Решение типовых заданий:

Пример 1. a)В партии из 100 деталей имеется 5 бракованных. Определить вероятность того, что, взятая наугад, деталь окажется стандартной.

Решение: А: взятая наугад деталь оказалась стандартной.

Число исходов, благоприятствующих наступлению события А, равно 95.Поэтому вероятность события равна P(A) = m/ n = 95/100 = 0,95 .hello_html_m27618eb7.gif Ответ: 0,95.

б) Из пяти букв разрезной азбуки составлено слово «книга». Ребенок, не умеющий читать, рассыпал эти буквы, а затем собрал их в произвольном порядке. Найти вероятность того, что у него снова получится слово «книга».

Решение: А: из рассыпанных букв сложится слово «книга»

Число всех возможных исходов равно n = Pn = 5! = 120.

Число исходов, благоприятствующих событию А равно m =1.

Вероятность события А равна P(A) = m/ n = 1/120 = 0,0083 .hello_html_m27618eb7.gif 

Ответ: 0,0083.

Пример 2.a) В коробке лежат 8 зеленых, 7 синих и 15 красных карандашей. Вычислить вероятность того, что взятый наугад карандаш будет, синим или зеленым.

Решение: А: взяли синий карандаш, В: взяли зеленый карандаш, С: взяли синий или зеленый карандаш. Событие С равно сумме событий А и В: С = А + В

Вероятность события А равна P(A) = m/ n = 7/30. 

Вероятность события В равна P(B) = m/ n = 8/30. 

Вероятность события С равна P(C) = P(A) = 7/30 8/30 = 15/30 = 0,5.

Ответ: 0,5. б) В урне лежат шары, двузначные номера которых составлены из цифр 1,2,3,4,5. Какова вероятность вынуть шар с номером 15? Решение: А: вынут шар с номером 15.

Число всех возможных исходов равно n =

Число исходов, благоприятствующих событию А, m = 1.

Вероятность события А равна P(A) = m/ n = 1/20 = 0,05 .

Ответ: 0,05.

Пример 3.a) Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наугад. Найти вероятность того, что набраны нужные цифры.

Решение: А: абонент наугад набрал нужные цифры.

Число всех возможных исходов равно n =

Число исходов, благоприятствующих событию А, m = 1

Вероятность события А равна P(A) = m/ n = 1/90 = 0,011. 

Ответ: 0,011.

б) Устройство содержит два независимо работающих элемента. Вероятности отказа элементов равны соответственно 0,05 и 0,08. Найти вероятности отказа устройства, если для этого достаточно, чтобы отказал хотя бы один элемент. 

Решение: Пусть событие А — «устройство не работает», В1 — «отказал первый элемент», 

В2 — « отказал второй элемент». Событие А соответствует тому, что может отказать один из «цементов либо оба элемента. События  В1 и В2  независимы в совокупности, поэтому:

q1 = 10,05 = 0,95,   q2 = 10,08 = 0,92. P(A) = 1 q1q2= 10,950,92 = 10,874 = 0,126.

Ответ:  0,126.

Пример 4. a)Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9984. Найти вероятность попадания в цель при одном выстреле.

Решение: Пусть p - вероятность попадания в цель при одном выстреле. Введем событие 

X = {при четырех выстрелах есть хотя бы одно попадание} и противоположное ему событие  

= {при четырех выстрелах нет ни одного попадания}.

Вероятность события  равна P(  ) = (1p)4, тогда вероятность события Х равна 

P(X) =1P(  ) = 1 (1p)4. По условию эта вероятность равна 0,9984, откуда получаем уравнение относительно p: 1 (1p)4 = 0,9984, (1p)4 = 0,0016, (1p) = 0,2, p = 0,8.

Таким образом, вероятность попадания в цель при одном выстреле равна 0,8.

Ответ: 0,8.

б)На полке в случайном порядке расставлено 40 книг, среди которых находится трехтомник Пушкина. Найти вероятность того, что эти тома стоят в порядке возрастания номера слева направо, но не обязательно рядом.

Решение: Используем классическое определение вероятности: P = m/n, где n- число всех равновозможных элементарных исходов, m - число элементарных исходов, благоприятствующих осуществлению события A = (Тома стоят в порядке возрастания номера слева направо, но не обязательно рядом). n=403938=59280, так как первый том можно поставить на любое из 40 мест, второй - на любое из 39 мест и третий - на любое из оставшихся 38 мест.

А число m= 40! / (37! 3!) = (403938) : (123) = 9880.

Тогда искомая вероятность P(A)= m/n = 9880/59280 = 1/6.
Ответ: 1/6.

Пример 5. а)В коробке имеется 250 лампочек, из них 100 по 90Вт, 50 - по 60Вт, 50 - по 25Вт и 50 – по 15Вт. Определить вероятность того, что мощность любой наугад взятой лампочки не превысит 60Вт.

Решение: 1. Рассматриваем следующие события: А = {мощность лампочки равна 90Вт}, вероятность Р(А) = 100/250 = 0,4; В = {мощность лампочки равна 60Вт}; С = {мощность лампочки равна 25Вт}; D = {мощность лампочки равна 15Вт}.

2. События А, В, С, D образуют полную систему, так как все они несовместны и одно из них обязательно наступит в данном опыте (выборе лампочки). Вероятность наступления одного из них есть достоверное событие, тогда Р (А)Р (В)Р (С)Р (D) = 1.

3. События {мощность лампочки не более 60Вт} (т.е. меньше или равна 60Вт), и {мощность лампочки более 60Вт} (в данном случае – 90Вт) являются противоположными. По свойству противоположных чисел Р (В)Р (С)Р (D) = 1Р (А).

4. Учитывая, что Р (В)Р (С)Р (D) = Р (ВСD), получим

Р (В СD) = 1Р (А) = 10,4 = 0,6. Ответ: 0,6. 

б) Вероятность поражения цели первым стрелком при одном выстреле равна 0,7, а вторым стрелком – 0,9. Найти вероятность того, что 

1) цель будет поражена только одним стрелком; 2) цель будет поражена хотя бы одним стрелком.

Решение: 1. Рассматриваем следующие события:
А
1 = {первый стрелок поражает цель}, Р (А1) = 0,7 из условия задачи;
А̄
1 = {первый стрелок промахнулся}, при этом Р (А1)Р (А̄1) = 1, поскольку А1 и А̄1 – противоположные события. Отсюда Р (А̄1) = 10,7 = 0,3;
А
2 = {второй стрелок поражает цель}, Р (А2) = 0,9 из условия задачи;
А̄
2 = {второй стрелок промахнулся}, при этом Р (А̄2) = 10,9 = 0,1.

2. Событие А={цель поражена только одним стрелком} означает, что наступило одно из двух несовместных событий: либо А1А̄2, либо А̄1А2.
По правилу сложения вероятностей Р (А) = Р (А1А̄2) + Р (А̄1А2).По правилу умножения вероятностей независимых событий:
Р (А1А̄2) = Р (А1)Р (А̄2) = 0,70,1= 0,07; Р (А̄1А2) = Р (А̄1)Р (А2) = 0,30,9 = 0,27.
Тогда Р (А)= Р (А1А̄2) Р (А̄1А2) = 0,070,27 = 0,34.

3. Событие B ={цель поражена хотя бы одним стрелком} означает, что либо цель поразил первый стрелок, либо цель поразил второй стрелок, либо цель поразили оба стрелка.

Событие B̄ = {цель не поражена ни одним стрелком} является противоположным событию В, а значит Р(В) = 1Р (B̄).
Событие B̄ означает одновременное появление независимых событий Ā1 и Ā2, следовательно Р (B̄) = Р (Ā12) = Р (Ā1)Р (Ā2) = 0,30,1 = 0,03. Тогда Р (В) = 1Р (B̄) = 10,03 = 0,97.

Ответ: 1) 0,34; 2) 0,97.

Пример 6. Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение: По условию задачи возможны следующие значения случайной величины X:

0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:


Пример 7. a)Закон распределения случайной величины X имеет вид:

Вычислить Dx   и Ϭx .

Решение: Найдем вначале математическое ожидание случайной величины X:

Mx = .

Вычислим дисперсию Dx :Dx = .

Тогда среднее квадратическое отклонение: Ϭx = .

Ответ: Dx = 1, Ϭx = 1.

б) Закон распределения случайной величины X имеет вид:

Найти x. Составить функцию распределения. Вычислить: P{X > 0,7} , Mx , Dx и Ϭx .

Решение. Согласно условию нормировки имеем уравнение: 0,1   Отсюда x = 0,7 . Далее, воспользовавшись рядом распределения, найдем:

P{X > 0,7} = P {X = 1}P{X = 2} = 0,2 0,7 = 0, 9; Mx =

Dx = ; Ϭx = .

Ответ: x = 0,7 ; P{X > 0,7} = 0, 9; Mx Dx ; Ϭx

Пример 8. a)Известно, что случайная величина X, принимающая два значения  x1 = 2 и x2 = 3 , имеет математическое ожидание, равное 2,2. Построить ряд распределения случайной величины X, найти дисперсию, среднее квадратическое отклонение и составить функцию распределения.

Решение. Пусть P{X = 2} = p . Тогда, согласно условию нормировки,P{X = 3} = 1  . Используя определение математического ожидания, получим Mx = 2p . Имеем уравнение 3 , откуда находим p = 0,8 . Ряд распределения имеет вид:

Теперь вычислим дисперсию и среднее квадратическое отклонение:

Dx = ; Ϭx =  .

Согласно определению функция распределения имеет вид

Fx(x) =

Ответ: Dx ; Ϭx =   Fx(x) =

б) Возможные значения случайной величины X таковы: x1 = 2 , x2 = 3, x3 = 3 . Известно, что Mx = 2,3 ,α2 = 5,9 . Найти вероятности, соответствующие возможным значениям X, и записать ряд распределения.

Решение. Ряд распределения, с учетом возможных значений случайной величины X, будет выглядеть следующим образом:

Найдем вероятности p1 , p2 и p3, соответствующие возможным значениям X.

По условию Mx = 2,3 , поэтому имеем первое уравнение, связывающее p1p2 и p3 :

 . Аналогично из условия α2 = 5,9   получим второе уравнение:

 . Третье уравнение возникает из условия нормировки:

p1 p2 p3 = 1. Итак, имеем систему:


Ответ: ряд распределения имеет вид

Пример 9. Имеется боезапас 4 патрона. Ведётся независимая стрельба по мишени с вероятностью попадания при каждом выстреле 0.2. Построить ряд распределения с.в. --- числа выстрелов, если стрельба ведётся: 1) до 1-го попадания или окончания боезапаса;2) до 2 попаданий (не обязательно подряд) или окончания боезапаса.

Решение: 1). Возможные значения с.в. : 1,2,3, 4; попадание --- успех (У); промах --- неудача (Н);

;

(мы записали, какие элементарные исходы соответствуют каждому знач. с.в.)

; = 0,16; = 0,128;

= 0,512. Ряд распределения с.в. будет выглядеть с.о.

2). Возможные значения с.в. : 2,3, 4; попадание --- успех (У); промах --- неудача (Н);

;

(мы записали какие элементарные исходы соответствуют каждому знач. с.в.)

;

. Ряд распределения с.в. будет выглядеть с.о.

Пример 10. Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х1= 0 (ни один из элементов устройства не отказал), х2= 1 (отказал один элемент), х3= 2 (отказало два элемента) и х4= 3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли. Учитывая, что, по условию, n = 3, р = 0,1,

q = 1р = 0,9, определим вероятности значений:
P
3(0) = С30 p0 q3-0 = q3 = 0,93 = 0,729; P3(1) = С31 p1 q3-1 = 30,10,92 = 0,243; P3(2) = С32 p2 q3-2 = 30,120,9 = 0,027; P3(3) = С33 p3 q3-3 = р3= 0,13 = 0,001;
Проверка: ∑p
i = 0,7290,2430,0270,001=1.
hello_html_7b85caba.jpg

Таким образом, искомый биномиальный закон распределения Х имеет вид:

2. Для построения многоугольника распределения строим прямоугольную систему координат.

По оси абсцисс откладываем возможные значения хi, а по оси ординат – соответствующие им вероятности рi. Построим точки М1(0; 0,729), М2(1; 0,243), М3(2; 0,027), М4(3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х<х):hello_html_261ad08e.jpg

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) Р(Х=1) =0,729 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) Р(Х = 1) Р(Х = 2) = 0,9720,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.
4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 30,1 = 0,3;
- дисперсия D(X) = npq = 3∙ 0,10,9 = 0,27;
 
- среднее квадратическое отклонение σ(X) = = ≈ 0,52.


Задание:

1 вариант.


  1. a)В партии из 100 деталей имеется 3 бракованных. Определить вероятность того, что, взятая наугад, деталь окажется стандартной.

б) Из 4 букв разрезной азбуки составлено слово «мама». Ребенок, не умеющий читать, рассыпал эти буквы, а затем собрал их в произвольном порядке. Найти вероятность того, что у него снова получится слово «мама».

  1. a)В коробке лежат 5 зеленых, 3 синих и 12 красных карандашей. Вычислить вероятность того, что взятый наугад карандаш будет, синим или зеленым.

б) В урне лежат шары, двузначные номера которых составлены из цифр 1,2,3,4. Какова вероятность вынуть шар с номером 123?

  1. a)Набирая номер телефона, абонент забыл последние 3 цифры и, помня лишь, что эти цифры различны, набрал их наугад. Найти вероятность того, что набраны нужные цифры.

б) Устройство содержит два независимо работающих элемента. Вероятности отказа элементов равны соответственно 0,04 и 0,09. Найти вероятности отказа устройства, если для этого достаточно, чтобы отказал хотя бы один элемент. 

  1. a)Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9919. Найти вероятность попадания в цель при одном выстреле.

б)На полке в случайном порядке расставлено 21 книга, среди которых находится трехтомник Пушкина. Найти вероятность того, что эти тома стоят в порядке возрастания номера слева направо, но не обязательно рядом.

  1. a)В коробке имеется 200 лампочек, из них 60 по 90Вт, 60 - по 60Вт, 40 - по 25Вт и 40 – по 15Вт. Определить вероятность того, что мощность любой наугад взятой лампочки не превысит 60Вт.

б) Вероятность поражения цели первым стрелком при одном выстреле равна 0,4, а вторым стрелком – 0,7. Найти вероятность того, что 

1) цель будет поражена только одним стрелком;

2) цель будет поражена хотя бы одним стрелком.

  1. Выпущено 200 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 40 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

  2. a)Закон распределения случайной величины X имеет вид:

X

1

0

1

2

P

0,1

0,15

0,3

0,45

Вычислить Dx и Ϭx . б) Закон распределения случайной величины X имеет вид:

X

0

1

2

P

0,2

0,3

x

Найти x. Составить функцию распределения. Вычислить: P{X > 0,7} , Mx , Dx и Ϭx .

  1. a)Известно, что случайная величина X, принимающая два значения  x1 = 2 и x2 = 3 , имеет математическое ожидание, равное 2,4. Построить ряд распределения случайной величины X, найти дисперсию, среднее квадратическое отклонение и составить функцию распределения.

б) Возможные значения случайной величины X таковы: x1 = 2 , x2 = 3, x3 = 3 . Известно, что Mx = 2,5 ,α2 = 6,7 . Найти вероятности, соответствующие возможным значениям X, и записать ряд распределения.

  1. Имеется боезапас 4 патрона. Ведётся независимая стрельба по мишени с вероятностью попадания при каждом выстреле 0.2. Построить ряд распределения с.в. --- числа выстрелов, если стрельба ведётся: до двух попаданий подряд или окончания боезапаса.

  2. Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,2. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.


2 вариант.

  1. a)В партии из 100 деталей имеется 6 бракованных. Определить вероятность того, что, взятая наугад, деталь окажется стандартной.

б) Из 3 букв разрезной азбуки составлено слово «сон». Ребенок, не умеющий читать, рассыпал эти буквы, а затем собрал их в произвольном порядке. Найти вероятность того, что у него снова получится слово «сон».


  1. a)В коробке лежат 7 зеленых, 2 синих и 11 красных карандашей. Вычислить вероятность того, что взятый наугад карандаш будет, синим или зеленым.

б) В урне лежат шары, двузначные номера которых составлены из цифр 1,2,3,4. Какова вероятность вынуть шар с номером 42?

  1. a)Набирая номер телефона, абонент забыл последние 4 цифры и, помня лишь, что эти цифры различны, набрал их наугад. Найти вероятность того, что набраны нужные цифры.

б) Устройство содержит два независимо работающих элемента. Вероятности отказа элементов равны соответственно 0,03 и 0,07. Найти вероятности отказа устройства, если для этого достаточно, чтобы отказал хотя бы один элемент. 

  1. a)Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9744. Найти вероятность попадания в цель при одном выстреле.

б)На полке в случайном порядке расставлено 34 книга, среди которых находится трехтомник Пушкина. Найти вероятность того, что эти тома стоят в порядке возрастания номера слева направо, но не обязательно рядом.

  1. a)В коробке имеется 400 лампочек, из них 280 по 90Вт,40 - по 60Вт, 40 - по 25Вт и 40 – по 15Вт. Определить вероятность того, что мощность любой наугад взятой лампочки не превысит 60Вт.

б) Вероятность поражения цели первым стрелком при одном выстреле равна 0,5, а вторым стрелком – 0,8. Найти вероятность того, что 

1) цель будет поражена только одним стрелком;

2) цель будет поражена хотя бы одним стрелком.

  1. Выпущено 200 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 15 – выигрыш в 100 рублей, на 30 – выигрыш в 50 рублей, на 60 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

  1. a)Закон распределения случайной величины X имеет вид:

X

1

0

1

2

P

0,1

0,25

0,3

0,35

Вычислить Dx и Ϭx . б) Закон распределения случайной величины X имеет вид:

X

0

1

2

P

0,1

0,3