Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Зачет по теме "Свойства функций" (10 класс)

Зачет по теме "Свойства функций" (10 класс)

  • Математика

Поделитесь материалом с коллегами:

Вариант 1. Зачет по теме «Свойства функций» 10 класс.

1.Что такое функция?

2.Что называется областью значений функции?

3.Дайте определение четной функции. Каким свойством обладает график этой функции?

4.Дорисуйте график функции y=f(x), если f(x) – нечетная функция.

hello_html_m6140b1c.gifу


hello_html_6e98fac0.gifhello_html_m2c6ded82.gif

hello_html_36db489b.gif .х

0


5.Дайте определение периодической функции.

6.Чему равен наименьший положительный период функции y = sin x?

7.Дайте определение функции, возрастающей на промежутке.

8.Дайте определение точки максимума функции.

9.Что такое точки экстремума функции?

10.Найдите область определения функции f(x) = 1 - 8x .

x - 8

11.Найдите область значений функции f(x) = x2-5.

12.Укажите наименьший положительный период функции f(x) = sin(2x+4).

13.Какая из функций является нечетной и почему:

hello_html_m682ac218.gif а) f(x) = 2cos2x; б) f(x) = (x+2)3; в) f(x) = 4x3; г) f(x) = √x .

14.Функция f(x) является периодической с периодом 5. Найдите f(3) + 2f(-15), если f(0) = -2, f(-2) = 6.

15.Функция f(x) = (5 – x)4 имеет a промежутков возрастания, b промежутков убывания, d – точек максимума, с – точек минимума. Найдите a + 2b +3c +4d .



Вариант 2. Зачет по теме «Свойства функций» 10 класс.

1.Что такое область определения функции?

2.Что называется графиком функции?

3.Дайте определение нечетной функции. Каким свойством обладает график этой функции?

4.Дорисуйте график функции y=f(x), если f(x) – четная функция.

hello_html_m73bdbab9.gifу

.hello_html_3640e19a.gifhello_html_m4bbfe6a3.gif

hello_html_4771b96b.gif 0 х


5.Дайте определение периодической функции.

6.Чему равен наименьший положительный период функции y = сos x?

7.Дайте определение функции, убывающей на промежутке.

8.Дайте определение точки минимума функции.

9.Что такое экстремумы функции?

10.Найдите область определения функции f(x) = 1+ 18x .

6+3x

11.Найдите область значений функции f(x) = - x2 + 4.

12.Укажите наименьший положительный период функции f(x) = ctg(0,5x + 1).

13.Какая из функций является четной и почему:

hello_html_m1ad00f9e.gif а) f(x) = 2cos2x; б) f(x) = (x+2)2; в) f(x) = tg 4x; г) f(x) = √ x .

14.Функция f(x) является периодической с периодом 4. Найдите3f(7) + 2f(- 4), если f(0) = -2, f(-1) = 5.

15.Функция f(x) = (x - 5)4 имеет a промежутков возрастания, b промежутков убывания, d – точек максимума, с – точек минимума. Найдите a + 2b +3c +4d .

Вариант 3. Зачет по теме «Свойства функций» 10 класс.

1.Что такое функция?

2.Что называется областью значений функции?

3.Дайте определение четной функции. Каким свойством обладает график этой функции?

4.Дорисуйте график функции y=f(x), если f(x) – нечетная функция.

hello_html_4606d46.gif у


hello_html_16bab5ef.gifhello_html_bd47bca.gif

0 х


5.Дайте определение периодической функции.

6.Чему равен наименьший положительный период функции y = tg x?

7.Дайте определение функции, возрастающей на промежутке.

8.Дайте определение точки максимума функции.

9hello_html_m32aa4b0b.gifhello_html_ee7edb4.gif.Что такое точки экстремума функции?

1hello_html_259f0e95.gif0.Найдите область определения функции f(x) = 8 .

√ 9 - x

11.Найдите область значений функции f(x) = - 3x2 +12х – 3.

12.Укажите наименьший положительный период функции f(x) = tg (2x+0,3п).

13.Какая из функций является нечетной и почему:

hello_html_m6aecf817.gif а) f(x) = 4 tg 2x; б) f(x) = (x+2)2; в) f(x) = x2 – 3; г) f(x) = √ x .

14.Функция f(x) является периодической с периодом 6. Найдите 2f(6) - f(-7), если f(0) =3, f(5) = 15.

15.Функция f(x) = х2 + 3х + 15 имеет a промежутков возрастания, b промежутков убывания, d – точек максимума, с – точек минимума. Найдите a + 2b +3c +4d .



Вариант 4. Зачет по теме «Свойства функций» 10 класс.

1.Что такое область определения функции?

2.Что называется графиком функции?

3.Дайте определение нечетной функции. Каким свойством обладает график этой функции?

4.Дорисуйте график функции y=f(x), если f(x) – четная функция.

hello_html_m338aaa18.gif у


hello_html_m24b3b99b.gifhello_html_796c601c.gifhello_html_2c8d4618.gif

.hello_html_322f5606.gif

0 х


5.Дайте определение периодической функции.

6.Чему равен наименьший положительный период функции y = ctg x?

7.Дайте определение функции, убывающей на промежутке.

8.Дайте определение точки минимума функции.

9hello_html_m1da9aa67.gifhello_html_m6d0cb589.gif.Что такое экстремумы функции?

10.Найдите область определения функции f(x) = 1+ 2x .

x - 8

11.Найдите область значений функции f(x) = 2x2 + 8x + 1.

12.Укажите наименьший положительный период функции f(x) = cos (0,5x + 0,5п).

1hello_html_4b411f8b.gif3.Какая из функций является нечетной и почему:

а) f(x) = cos3x; б) f(x) = (x+2)2; в) f(x) = сtg 5x; г) f(x) = √ x .

14.Функция f(x) является периодической с периодом 3. Найдитеf(- 3) - 3f(10), если f(0) = 6, f(- 2) = 4.

15.Функция f(x) = (5 - х)5 имеет a промежутков возрастания, b промежутков убывания, d – точек максимума, с – точек минимума. Найдите a + 2b +3c +4d .

Выберите курс повышения квалификации со скидкой 50%:

Краткое описание документа:

Вопросы зачета позволяют наиболее полно проверить усвоение пройденного материала; обучающиеся получают возможность оценить уровень своих знаний, произвести корректировку самостоятельно либо с помощью учителя; формируются регулятивные и познавательные УУД.

(при просмотре материала происходит сдвиг символов, поэтому, если Вас заинтересовал данный материал, рекомендую выполнить загрузку)

Автор
Дата добавления 24.03.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров456
Номер материала ДВ-552160
Получить свидетельство о публикации

Комментарии:

11 месяцев назад

Вопросы зачета позволяют наиболее полно проверить усвоение пройденного материала; обучающиеся получают возможность оценить уровень своих знаний; формируются регулятивные и познавательные УУД.

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх