Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Зачет №1 по теме

Зачет №1 по теме


  • Математика

Поделитесь материалом с коллегами:

Зачет № 1. Параллельность прямой и плоскости.

Карточка 1.

1. Сформулируйте аксиомы стереометрии.

2. Сформулируйте признак параллельности прямой и плоскости.

3 . Прямые а и b лежат в параллельных плоскостях α и β. Могут ли эти прямые быть: а) параллельными; б) скрещивающимися? Сделайте рисунок для каждого возможного случая.

4. Плоскость α пересекает стороны А В и АС треугольника ABC соответственно в точках B1 и С1 Известно, что ВС|| α, AB:B1 B = 5:3, АС=15 см. Найдите АС1.

5. Построить сечение плоскостью MNK.

hello_html_m61f40b1b.gif


Зачет № 1. Параллельность прямой и плоскости.

Карточка 2.

1. Назовите способы задания плоскостей.

2. Сформулируйте признак параллельности плоскостей, свойства параллельных плоскостей.

3. Пусть О- точка пересечения высот треугольника АВС, D – середина стороны АС; точка К не принадлежит плоскости АВС. При каких условиях можно провести плоскость через прямую КВ и точки О и D?

4. Через точку О, лежащую между параллельными плоскостями α и β, проведены прямые l и т. Прямая l пересекает плоскости α и β в точках A1 и A2 соответственно, прямая т в точках В1 и В2. Найдите длину отрезка А2В2, если A1 В1 = 12 см, В1O : ОВ2 = 3:4.

5. Каждое ребро тетраэдра DABC равно 2 см. Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и середину ребра AD. Вычислите периметр сечения.



Зачет № 1. Параллельность прямой и плоскости.

Карточка 3.

1. Дать определение прямой, параллельной плоскости

2. Сформулировать определение и признак скрещивающихся прямых.

3. Прямые а и b лежат в пересекающихся плоскостях α и β. Могут ли эти прямые быть: а) параллельными; б) скрещивающимися? Сделайте рисунок для каждого возможного случая.

4. Через точку О, не лежащую между параллельными плоскостями α и β, проведены прямые l и т. Прямая l пересекает плоскости α и β в точках A1 и А2 соответственно, прямая т точках В1 и В2. Найдите длину отрезка А1В1 если А2В2= 15 см, OB1 :OB2 = 3:5.

5. Построить сечение параллелепипеда АВСDA1B1C1D1 плоскостью BKL. Точки K и L – середины ребер. Докажите, что построенное сечение – параллелограмм.

hello_html_m34c36460.gif



Зачет № 1. Параллельность прямой и плоскости.

Карточка 4.

1Дать определение параллельных прямых в пространстве. Сформулировать лемму параллельных прямых.

2. Дать определение тетраэдра. Назвать его элементы.

3. Дан квадрат АВСD и точка ,не лежащая в его плоскости. По какой прямой пересекаются плоскость (ABD) и плоскость (ВОС)?

4. Плоскость α проходит через середины боковых сторон АВ и СD трапеции ABCD – точки M и N. Докажите, что AD|| α. Найдите ВС, если AD = 10см, MN =8 см.

5. ABCDA1B1C1D1 — куб, ребро которого 4 см. Постройте сечение куба плоскостью, проходящей через точки A, D1 и М, где М — середина ребра ВС. Вычислите периметр сечения.



Зачет № 1. Параллельность прямой и плоскости.

Карточка 5.

1. Сформулировать признак параллельности прямых в пространстве. Сформулировать алгоритм нахождения угла между скрещивающимися прямыми.

2. Дать определение параллелепипеда. Назвать его элементы.

3. Стороны АВ и АС треугольника АВС лежат в плоскости α. Докажите, что и медиана АМ этого треугольника лежит в плоскости α.

4. Параллельные плоскости α и β пересекают сторону АВ угла ВАС соответственно в точках A1 и А2 , а сторону АС этого угла соответственно в точках В1 и В2. Найдите АА1, если А1А2 = 6 см, АВ2:АВ1 = 3:2.

5. Построить сечение параллелепипеда АВСDA1B1C1D1 плоскостью KPT.


hello_html_7d80dd6c.gif



Зачет № 1. Параллельность прямой и плоскости.

Карточка 6.

1. Сформулируйте признак и два следствия признака параллельности прямой и плоскости.

2. Сформулируйте свойства параллелепипеда.

3. Даны пересекающиеся прямые a и b . Прямая с параллельна прямой а и пересекает прямую b. Докажите, что прямые a, b и c лежат в одной плоскости.

4. Точка С лежит на отрезке АВ. Через точку А проведена плоскость, а через точки В и С — параллельные прямые, пересекающие эту плоскость соответственно в точках В1 и С1. Найдите длину отрезка ВВ1, если АС:СВ = 4:3, СС1 = 8 см.

5. Постройте сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки А, С и М, где М — середина ребра A1D1.



Краткое описание документа:

Зачетная работа по геометрии для учащихся 10 класса по учебнику "Геометрия 10-11 класс" автор Атанасян Л.С.  Задания зачета  представлены в виде карточек шесть вариантов. Карточка включает в себя  пять заданий. Два задания охватывают вопросы  теории ,одно задание на доказательство, одно задание на решение. Ещё одно (пятое задание) на построение сечения. Зачетная работа охватывает материал главы первой учебника, а именно: "Параллельность прямой и плоскости", "Взаимное расположение прямых в пространстве. Угол между двумя прямыми","Параллельность плоскостей","Тетраэдр и параллелепипед".

Автор
Дата добавления 27.03.2015
Раздел Математика
Подраздел Конспекты
Просмотров1524
Номер материала 462528
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх