Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Другие методич. материалы / Зачётные работы по геометрии (теория).
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Зачётные работы по геометрии (теория).

библиотека
материалов

Подготовка к сдаче ОГЭ и ЕГЭ по математике должна идти через приобретение и освоение конкретных математических знаний. Только это обеспечит выпускнику успешную сдачу экзамена. Подготовленность к чему-либо понимается как комплекс приобретённых знаний, навыков, умений, качеств, позволяющих успешно выполнять определённую деятельность.

Поэтому при изучении геометрии большое внимание уделяю теоретической подготовке учащихся – это один из моих принципов.


Вопросы к проверочной работе №1


1.Свойство вертикальных углов (с рисунком).

2 Свойство смежных углов (с рисунком).

3.Признаки равенства треугольников.

4.Определение равнобедренного треугольника и его сторон (с рисунком).

5. Свойства равнобедренного треугольника.

6. Признак равнобедренного треугольника.

7. Определение прямоугольного треугольника и его сторон (с рисунком).

8. Свойства прямоугольного треугольника.

9. Признаки равенства прямоугольных треугольников.

10. Определение параллельных прямых (рисунок и обозначение)

11.Аксиома параллельных прямых

12.Признаки параллельности прямых.

13. Свойства параллельных прямых.

14.Теорема о сумме углов треугольника.

15. Определение внешнего угла (с рисунком).

16. Свойство внешнего угла (с рисунком).

17.Расстояние от точки до прямой (с рисунком).

18. Расстояние между параллельными прямыми (с рисунком).

19.Соотношения между сторонами и углами треугольника.

20.Неравенство треугольника.

21.В тупоугольном треугольнике АВС с тупым углом А провести высоту ВН, медиану ВМ, биссектрису ВК (рисунки).

22. В прямоугольном треугольнике АВС с прямым углом А провести высоту АН, медиану ВМ, биссектрису СК (рисунки).

23. В остроугольном треугольнике АВС провести высоту ВН, медиану ВМ, биссектрису ВК (рисунки).

24.Свойство треугольника, у которого медиана равна половине стороны, к которой она проведена. (рисунок)

25. Каким является треугольник, если медиана равна половине стороны, к которой проведена? (рисунок)

26..Чему равен каждый угол равностороннего треугольника?

27.Каким может быть угол при основании равнобедренного треугольника: острым, прямым, тупым?

28.Каким может быть угол при вершине равнобедренного треугольника: острым, прямым, тупым?

29.Записать неравенство треугольника для треугольника ABC.

30.Записать неравенство треугольника для треугольника MNF.


Вопросы к проверочной работе№2


1.Определение параллелограмма, два основных свойства, свойство диагоналей.

2.Три признака параллелограмма, три формулы площади параллелограмма.

3. Определение ромба, свойства диагоналей, три формулы площади.

4. Определение прямоугольника, свойства диагоналей, две формулы площади.

5. Определение квадрата, свойства диагоналей, две формулы площади.

6. Определение трапеции, её сторон, равнобедренной трапеции, прямоугольной трапеции (с рисунком).

7.Свойства равнобедренной трапеции, две формулы площади.

8.Пять формул для площади любого треугольника.

9.Формула площади равностороннего треугольника, две формулы площади прямоугольного треугольника.

10.Теорема Пифагора ( прямая и обратная ).

11. Определение подобных треугольников, теоремы об отношении периметров и площадей подобных фигур.

12.Признаки подобия треугольников.

13. Определение и свойство средней линии треугольника (с рисунком).

14.Определение и свойство средней линии трапеции (с рисунком).

15.Свойство биссектрисы угла треугольника (с рисунком).

16.Пропорциональные отрезки в прямоугольном треугольнике (с рисунком).

17.Определения синуса, котангенса острого угла прямоугольного треугольника.

18. Определения косинуса, тангенса острого угла прямоугольного треугольника.

19.Значения синуса, котангенса для углов 30,45,60.

20.Значения косинуса, тангенса для углов 30,45,60.


Вопросы к проверочной работе №3


1.Теорема об отношении площадей треугольников, имеющих по равной высоте (с рисунком).

2. Теорема об отношении площадей треугольников, имеющих по равному углу (с рисунком).

3.Определение окружности, центр, радиус, диаметр, хорда, дуга окружности(с рисунком) .

4. Определение, свойство касательной к окружности.

5.Признак касательной к окружности.

6. Определение вписанного угла (с рисунком).

7. Определение центрального угла (с рисунком).

8.Теоремы об углах (с рисунком) :

а) о вписанном угле;

б) о центральном угле;

в) об угле, образованном касательной и хордой;

г) об угле, образованном двумя секущими, выходящими из одной точки;

д) об угле, образованном касательной и секущей, выходящими из одной точки;

е) об угле, образованном двумя касательными, выходящими из одной точки;

ж) об угле, образованном двумя пересекающимися хордами окружности.

9. Теоремы об отрезках (с рисунком) :

а) об отрезках касательных, проведённых из одной точки;

б) о пересекающихся хордах окружности;

в) об отрезках, расположенных на секущих, выходящих из одной точки;

г) об отрезках, расположенных на касательной и секущей, выходящих из одной точки.

10.Окружность, вписанная в треугольник, её центр и радиус.

11. Окружность, описанная около треугольника, её центр и радиус.

12.Свойство вписанного четырёхугольника (с рисунком).

13. Свойство описанного четырёхугольника (с рисунком).

14.Формулы длины окружности, длины дуги окружности (с рисунком).

15. .Формулы площади круга и площади сектора(с рисунком).


Вопросы к проверочной работе №4

1.Теорема синусов (рисунок).

2. Теорема косинусов (рисунок).

3 Свойство медианы прямоугольного треугольника, проведенной к гипотенузе (рисунок).

4. Центр окружности, описанной около прямоугольного треугольника (рисунок).

5. Свойство медиан треугольника (рисунок).

6. Уравнение прямой. Условия параллельности и перпендикулярности прямых.

7. Уравнения окружности.

8. Определение вектора, его длины, равных и противоположных векторов.

9. Умножение вектора на число.

10 Правило треугольника сложения двух векторов (рисунок).

11. Правило параллелограмма сложения двух векторов (рисунок).

12. Координаты вектора ® (формула).

АВ



13. Координаты середины отрезка АВ (формула).

14. Скалярное произведение векторов в координатах (формула).

15. Скалярное произведение векторов (определение).

16. Скалярное произведение векторов (свойства).

17. Угол между векторами (формула).

18. Правило вычитания векторов (рисунок).

19. Длина вектора (формула).

20. Расстояние между двумя точками (формула).

21. Определение и примеры правильных многоугольников.

22. Формулы для правильных многоугольников: an, r(R), S(r).

23. Формулы для правильных многоугольников: an(R, r), S(r).


Вопросы к проверочной работе №5.


1. Площадь поверхности прямоугольного параллелепипеда.

2. Объём прямоугольного параллелепипеда.

3.Свйство диагонали прямоугольного параллелепипеда.

4. Площадь поверхности куба.

5.Объём куба.

6.Свойство диагонали куба.

7.Объём призмы.

8.Объём пирамиды.

9.Определение правильной пирамиды.

10. Определение апофемы пирамиды.

11. Площадь боковой и полной поверхности цилиндра.

12. Площадь боковой и полной поверхности конуса.

13. Объём цилиндра.

14. Объём конуса.

15. Площадь поверхности сферы.

16. Площадь поверхности призмы.

17. Площадь поверхности пирамиды.

18. объём куба.




Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Автор
Дата добавления 10.11.2016
Раздел Математика
Подраздел Другие методич. материалы
Просмотров89
Номер материала ДБ-340255
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх