Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Задачи по геометрии за курс 8 класса "Задача Наполеона"

Задачи по геометрии за курс 8 класса "Задача Наполеона"

  • Математика

Поделитесь материалом с коллегами:

hello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifhello_html_m65bf5964.gifФранцузский император Наполеон Бонапарт был любителем  математики. Он находил время заниматься ею для собственного удовольствия, чувствовал в ней красоту и объект, достойный приложения остроумия и изобретательности. Одно из  свидетельств тому - несколько  составленных им геометрических задач.

Вот как можно сформулировать одну из них:
На сторонах произвольного  треугольника АВС внешним образом построены как на основаниях  равносторонние треугольники (рис. 1). Доказать, что центры этих  треугольников также являются вершинами равностороннего треугольника.
Задача имеет довольно изящное решение.
http://matematikaiskusstvo.ru/images/nap1.jpghttp://matematikaiskusstvo.ru/images/nap2.jpghttp://matematikaiskusstvo.ru/images/nap3.jpg

http://matematikaiskusstvo.ru/images/napoleon.jpg











Задача 1. Известный бизнесмен Андрей Крутой пришел в Госбанк, чтобы обменять несколько 50- и 100- долларовых купюр старого образца. Ему было выдано 1999 купюр достоинством 1, 5 и 25 долларов. Докажите, что его обсчитали.


Задача 2. Три землекопа за два часа выкопали три ямы. Сколько ям выкопают шесть землекопов за пять часов?


Задача 3. Кот Матроскин и пес Шарик каждое утро бегают на речку умываться. Они выскакивают из дома одновременно и бегут по одной и той же тропинке. Скорость каждого из них постоянна, но Матроскин бежит в 3 раза быстрее Шарика, зато моется в 2 раза дольше, чем Шарик. Однажды Шарик, прибежав к речке, обнаружил, что не взял с собой полотенце. Он тут же побежал домой, схватил полотенце и прибежал к речке как раз в тот момент, когда Матроскин закончил умываться (бежал Шарик по той же тропинке и с той же скоростью, что и каждое утро). Кто обычно прибегает домой раньше – Шарик или Матроскин или они прибегают домой одновременно?


Задача 4. В Цветочном городе живет 14 коротышек. Они объединены в различные партии. По закону, партия должна состоять не менее чем из 3 коротышек, и две разные партии не могут состоять из одних и тех же членов. Кроме того, каждый коротышка может быть членом не более 2 партий. Какое наибольшее число партий может быть в Цветочном городе?


Задача 5. Во время шторма капитан корабля приказал выбросить за борт половину из 30 тюков с товарами, которые везли два купца. Купцы были в нерешительности: каждому было жаль выбрасывать свой груз. Видя это, капитан сказал: «Сделаем так: матросы расставят 30 тюков по кругу, а мы будем по кругу ходить и выбрасывать каждый девятый тюк, пока не выбросим половину тюков». Один из купцов подкупил матросов, и они сумели расставить тюки так, что 15 оставшихся на палубе тюков оказались с товарами одного купца. Как были расставлены тюки?


Задача 6. Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и черных пятиугольников. Каждый черный лоскуток граничит только с белыми, а каждый белый - с тремя черными и тремя белыми. Сколько лоскутков белого цвета?


Задача 7. Инженер ежедневно приезжал на станцию в одно и то же время, и в то же время за ним подъезжала машина, на которой он ехал на завод. Однажды инженер приехал на станцию на 55 мин раньше обычного. Сразу пошел навстречу машине и приехал на завод на 10 мин раньше, чем обычно. Во сколько раз скорость инженера меньше скорости машины?


Задача 8. В вагоне электропоезда ехали из города на дачу две подруги-школьницы.

  «Я замечаю, – сказала одна из подруг, – что обратные дачные поезда нам встречаются через каждые 5 мин. Как ты думаешь, сколько дачных поездов прибывает в город в течение одного часа, если скорости поездов в обоих направлениях одинаковы?» «Конечно, 12, так как 60 : 5 = 12», – сказала вторая подруга. Но школьница, задавшая вопрос, не согласилась с решением подруги и привела ей свои соображения. А что вы думаете по этому поводу?


Задача 9. В триседьмом царстве живут драконы. У каждого дракона одна, две или три головы, а) Может ли у 40 % драконов быть 60 % голов? б) Может ли у 40 % драконов быть 70 % голов?


Задача 10. У филателиста Бори большое количество марок. Однажды он решил разместить их в большом альбоме, состоящем из 1000 страниц, так, чтобы на всех заполненных страницах марок было поровну (какие-то страницы в конце альбома могут остаться пустыми). Но когда Боря попробовал раскладывать по 7 марок на странице, то у него 5 марок осталось (но не все страницы были заполнены). Тогда он стал раскладывать сначала по 11 марок на странице, затем – по 13 марок на странице. Но снова у него оба раза осталось 5 марок. Наконец, когда Боря решил разложить по 23 марки на странице, то на этот раз у него осталось 6 марок.

  Сколько марок в коллекции у Бори?



Решения


Задача 1. Для решения этой задачи необходимо воспользоваться следующим известным утверждением: сумма любого числа четных чисел – четная, а нечетного числа нечетных чисел – нечетная. В нашем случае исходная сумма денег (сумма какого-то числа 50-долларовых и 100-долларовых купюр) – четная, а полученная сумма денег (сумма 1999 купюр по 1, 5 и 25 долларов) – нечетная.


Задача 2. Шесть землекопов за 2 часа выкопают 3 · 2 = 6 ям. Шесть землекопов за 10 часов выкопают 6·5=30 ям. Тогда шесть землекопов за 5 часов выкопают 30 : 2 = 15 ям.


Задача 3.Разделим дорогу от дома к речке на три участка одинаковой длины (см. рисунок) и эту длину примем за 1.

http://mathem.hut1.ru/images/z_olimp573.gif

  Введем новую единицу измерения – «шарик»; по определению, 1 «шарик» – это время, нужное Шарику, чтобы утром по дороге на речку пробежать участок длины 1.

  По условию, когда Матроскин добегает до D (начинает умываться), Шарик как раз находится в точке B (ведь он бежит в 3 раза медленнее Матроскина). Следовательно, на дорогу от дома до речки (так же, как и на обратную дорогу) Матроскин затрачивает столько же времени, сколько нужно Шарику, чтобы пробежать отрезок длины 1, т. е. 1 «шарик».

  Матроскин умывается 8 «шариков» (действительно, в тот день, когда Шарик забыл полотенце, он, как всегда, добежал до точки B, а Матроскин в этот момент начал умываться, затем Шарик пробежал 8 раз отрезок длины 1: от B к D (два участка длины 1), от D к A(три участка длины 1) и, наконец, от A к D уже с полотенцем (три участка длины 1), - и как раз Матроскин в этот момент умываться закончил). Далее, так как по условию Матроскин моется в два раза дольше Шарика, то Шарик моется 4 «шарика».

  Остается подсчитать время, затраченное каждым из наших героев на дорогу от дома к речке, умывание и дорогу обратно, от речки к дому. Шарик: 3 + 4 + 3 = 10 «шариков»; Матроскин: 1+8+1=10 «шариков». Следовательно, Матроскин и Шарик прибегают домой после умывания одновременно.


Задача 4. Пусть в каждой партии выдают партийные билеты. Если в цветочном городе k партий, то на руках у населения не менее 3k партийных билетов (ведь в каждой партии по условию не менее 3-х членов). Но у каждого коротышки имеется не более 2-х партийных билетов (по условию каждый коротышка не может быть членом более 2-х партий). Следовательно, так как коротышек 14, всего партийных билетов не более 2 x 14 = 28 . Поэтому 3k 28, т. е. k [28/3] = 9.

  Остается привести пример вхождения 14 коротышек в 9 партий такой, чтобы:

  1) в каждой партии было не меньше 3 членов;

  2) каждый коротышка являлся бы членом не более 2-х партий;

  3) никакие две разные партии не состоят из одних и тех же членов (при выводе оценки k 9 мы использовали только условия 1) и 2)).

  Пронумеруем коротышек числами от 1 до 14. Условимся коротышек, входящих в какую-либо партию, заключать в фигурные скобки {}. Нужный пример иллюстрируют, например, партии: {1,2,3}, {4,5,6}, {7,8,9}, {10,11,12}, {13,14,1}, {2,3,4}, {5,6,7}, {8,9,10}, {11,12,13}.

  Всего 9 партий.


Задача 5. Начертим круг, отметим на нем 30 палочек и пронумеруем их от 1 до 30. Начиная счет с цифры 1, перечеркиваем девятую палочку, затем восемнадцатую, затем двадцать седьмую и продолжаем этот процесс, вычеркивая каждую девятую из не перечеркнутых ранее палочек. Таким образом, будут перечеркнуты палочки с номерами 5, 6, 7, 8, 9, 12, 16, 18, 19, 22, 23, 24, 26, 27, 30. Значит, купец просил матросов расставить тюки следующим образом: 4 своих, 5 чужих, 2 своих, 1 чужой, 3 своих, 1 чужой, 1 свой, 2 чужих, 2 своих, 3 чужих, 1 свой, 2 чужих, 2 своих, 1 чужой.


Задача 6. Обозначим искомое число лоскутков белого цвета через x. Тогда лоскутков черного цвета будет 32 - x. Чтобы составить уравнение, подсчитаем двумя способами количество границ белых лоскутков с черными. Каждый белый лоскут граничит с тремя черными, следовательно, число границ равно 3x. С другой стороны, каждый черный лоскут граничит с пятью белыми и число границ равно 5(32 – х). Получаем уравнение 3x = 5(32 – х), т.е. 8х = 160 и х = 20.


Задача 7. За 10 мин машина проходит путь, равный двойному расстоянию от станции до места встречи инженера с машиной. Значит, путь от станции до места встречи машина проходит за 5 мин. На месте встречи машина была за 5 мин до времени обычного приезда инженера на станцию, значит, путь от станции до места встречи инженер шел 55 мин - 5 мин = 50 мин. Следовательно, скорость инженера в 50 : 5 = 10 раз меньше скорости машины.


Задача 8. Скорости поездов одинаковы, поэтому за одно и тоже время они проходят одно и тоже расстояние. Из сказанного выше следует, что в город прибудут в течение одного часа только дачные поезда встречающиеся в первой половине часа (30 минут), а дачные поезда встречающиеся во второй половине часа не будут успевать доходить до города за оставшееся время.

  Значит, в течение одного часа в город прибывает 30 : 5 = 6 дачных поездов.


Задача 9. а) Покажем, что у 40% драконов может быть 60% голов. Пусть в этом царстве живет 100 драконов: 40 драконов с одной головой, 20 – с двумя головами и 40 – с тремя. Тогда число голов у всех драконов равно 40 • 1 + 20 • 2 + 40 • 3 = 200. При этом все 40 трехглавых драконов, что составляет 40% от общего числа драконов, имеют 40 • 3 = 120 голов, что составляет 120/200 • 100% = 60% от общего числа голов.

  б) Пусть число драконов равно х, а общее число голов у них равно у. Предположим, что какие-то 40% драконов имеют 70% голов. Тогда, поскольку каждый из этих драконов имеет не более трех голов, то 0,7у 3 • 0,4х. С другой стороны, поскольку остальные 60% драконов имеют 30% голов и у каждого из них не менее одной головы, то 0,6х 0,3y. Но эти неравенства не могут выполняться одновременно, так как они равносильны соответственно 7у 12х и 12x 6у. Поэтому у 40% драконов не может быть 70% голов.


Задача 10. Пусть у Бори х марок. Согласно условию х – 5 делится на 7, на 11 и на 13. Следовательно, поскольку 7,11 и 13 – простые числа, то х – 5 делится на их произведение, т. е. на 7 • 11 • 13 = 1001. Поэтому х – 5 = 1001k для некоторого натурального k, откуда х = 1001k +5 .

  Далее, согласно условию х – 6 делится на 23. Поэтому х – 6 = 23m для некоторого натурального m. В результате, получим   1001k – 1 =23m. (*)

  Остается только найти натуральные k и m, удовлетворяющие этому равенству. При этом, поскольку согласно условию х/7<1000 и, значит, х<7000, то достаточно рассмотреть k = 1,2,..., 6. Нетрудно убедиться, что только при k = 2 из уравнения (*) получится натуральное значение m = 87.

  Поэтому находим единственное значение х = 1001•2 + 5 = 2007.

 



Автор
Дата добавления 22.12.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров346
Номер материала ДВ-278088
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх