Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Задачи на проценты(Методические рекомендации)
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Задачи на проценты(Методические рекомендации)

библиотека
материалов

ЗАДАЧИ НА ПРОЦЕНТЫ

(по тестам ЕГЭ)


I. Сплавы; смеси

Часто в задачах В14 встречаются текстовые задачи с процентами. Приведу примеры таких задач и рекомендации по их решениям.

Задача №1. Смешаем 2 кг 15%-го водного раствора некоторого вещества с 8 кг 10%-го водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Решение

  1. 2 · 0,15 = 0,3 (кг) – вещество в I растворе;

  2. 8 · 0,1 = 0,8 (кг) – вещество во II растворе;

  3. 2 + 8 = 10 (кг) – I + II растворы;

  4. 0,3 + 0,8 = 1,1 (кг) – вещество вместе из I и II растворов;

  5. hello_html_m52a7bfae.gifконцентрация нового раствора.

Ответ: 11.

Пятое действие можно сделать по-другому. Составить пропорцию:

1,1 кг – х %

10 кг – 100 %

hello_html_m3973edad.gif.


Задача №2. Эту задачу решим с помощью системы уравнений с двумя переменными.

Имеется два сосуда. Первый содержит 7,5 кг, а второй – 50 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 42% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 50% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Решение

  1. 75 + 50 = 125 (кг) –раствор, содержащий 42% кислоты

  2. 125 · 0,42 = 52,5 (кг) – вещество в новом растворе

  3. Пусть х % – концентрация I раствора;

Тогда y % – концентрация II раствора;

В I растворе вещества 0,75x кг, а во II растворе 0,5y кг. Имеем первое уравнение 0,75x + 0,5y = 52,5.

Пусть во второй раз смешали одинаковые массы этих растворов 50 кг I-го раствора и 50 кг II-го раствора. Тогда имеем второе уравнение 0,5x + 0,5y = 50.

Решим систему уравнений способом сложения.

hello_html_7c85a33e.gif

hello_html_m7dd85184.gif

hello_html_5f74898d.gif

hello_html_m3d1010ea.gif

hello_html_m61231b4d.gif

10% концентрация I раствора, тогда найдем кислоту в I растворе.

75 · 0,1 = 7,5 кг

Ответ: 7,5.


Задача №3. Имеется два сплава. Первый содержит 15% золота, а второй – 2% золота. Масса первого сплава 3 кг, масса второго – 7 кг. Из этих двух сплавов получили третий сплав. Найдите процентное содержание золота в полученном сплаве.

Решение

  1. 3 · 0,15 = 0,45 (кг) золота в I сплаве;

  2. 7 · 0,02 = 0,14 (кг) – золота во II сплаве;

  3. 3 + 7 = 10 (кг) – III сплав;

  4. 0,45 + 0,14 = 0,59 (кг) золота в III сплаве;

  5. hello_html_2b02f5c4.gifпроцентное содержание золота в III сплаве.

Ответ: 5,9.


Задача №4. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 54 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?

Решение

  1. Найдем сначала сколько кг в изюме совсем без воды.

54 кг – 100 %

х кг – 95 %

hello_html_m7166889b.gif(кг)

  1. Теперь найдем вес винограда

51,3 кг – 10 %, т.к. воды 90%

х кг – 100 %

hello_html_m30535d5c.gif

Ответ: 513 кг винограда.


II. Вклады; банки


Задача №1. Клиент А сделал вклад в банке в размере 8800 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал клиент Б. Еще ровно через год клиенты А и Б закрыли вклады и забрали все накопившиеся деньги. При этом клиент А получил на 968 рублей больше клиента Б. Какой процент годовых начислял банк по этим вкладам?

Решение

Пусть р % годовых начислял банк. Тогда через два года клиент А получил 8800 (1 + 0,01 р)2 , а клиент Б через год получил 8800 (1 + 0,01 р). Разница равна 968 рублей.

8800 (1 + 0,01 р)2 – 8800 (1 + 0,01 р) = 968

1 + 0,01 р = х

8800 х2 – 8800 х – 968 = 0

100 х2 – 100 х – 11 = 0

D1 = 2500 + 1100 = 3600

hello_html_m75c9f079.gif

hello_html_75f30061.gif

1 + 0,01 р = 1,1

р = 10

Ответ: 10 %.


Задача №2. В понедельник акции компании подешевели на некоторое число процентов, а во вторник подорожали на то же самое число процентов. В результате они стали стоить на 9% дешевле, чем при открытии торгов в понедельник. На сколько процентов подешевели акции компании в понедельник?

Решение

Пусть при открытии торгов в понедельник акции стоили х руб. К вечеру понедельника они подешевели на р % и стали стоить hello_html_m6b503640.gif. К вечеру вторника акции подорожали на р % и стали стоить hello_html_46449190.gif. По условию, акции подешевели на 9%. Имеем уравнение

hello_html_5e2b4ac1.gif

hello_html_m70022b20.gif;

hello_html_35026aa5.gif; р2 = 30.

Ответ: 30.


Задача №3. Компания «Дельта» начала инвестировать средства в перспективную отрасль в 2008 году, имея капитал в размере 8000 долларов. Каждый год, начиная с 2009 года, она получала прибыль, которая составляла 200% от капитала предыдущего года. А компания «Омега» начала инвестировать средства в другую отрасль в 2010 году, имея капитал в размере 10000 долларов, и, начиная с 2011 года, ежегодно получала прибыль, составляющую 300% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2013 года, если прибыль из оборота не изымалась?

Решение

Если вкладчик не снимет со счета сумму начисленных процентов, то эта сумма присоединяется к основному вкладу, а в конце следующего года банк будет начислять р % уже на новую увеличенную сумму. Это означает, что банк станет теперь начислять проценты не только на основной вклад Sо, но и на проценты, которые на него полагаются

hello_html_aadd7ec.gif.

Тогда получаем hello_html_2614f7b9.gif

hello_html_m20f6cd11.gif

Разница 1 944 000 – 640 000 = 1 304 000


Ответ: 1 304 000.




Задача №4. Акционерное общество израсходовало 20% своей годовой прибыли на реконструкцию производственной базы, 25% оставшихся денег потратило на строительство спортивного комплекса, выплатило 4 200 000 рублей дивидендов по акциям. После всех этих расходов осталось нераспределенной 0,1 прибыли. Сколько рублей составляла прибыль акционерного общества?

Решение

  1. 100% – 20% = 80% оставшиеся

  2. 80 · 0,25 = 20% от всей прибыли на строительство спортивного комплекса

  3. 20% + 20% = 40% на реконструкцию + на спортивный комплекс

  4. 100% – 40% = 60% осталась прибыль

  5. Пусть х рублей годовая прибыль

0,6х = 4 200 000 + 0,1х

0,5х = 4 200 000

х = 8 400 000

Ответ: 8 400 000.


Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

ЗАДАЧИ НА ПРОЦЕНТЫ

(по тестам ЕГЭ)

 

I. Сплавы; смеси

Часто в задачах В14 встречаются текстовые задачи с процентами. Приведу примеры таких задач и рекомендации по их решениям.

Задача №1.   Смешаем 2 кг 15%-го водного раствора некоторого вещества с 8 кг 10%-го водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Решение

1)    2 · 0,15 = 0,3 (кг) – вещество в I растворе;

2)    8 · 0,1 = 0,8 (кг) – вещество во II растворе;

3)    2 + 8 = 10 (кг) – I + II растворы;

4)    0,3 + 0,8 = 1,1 (кг) – вещество вместе из Iи II растворов;

5)     – концентрация нового раствора.

Ответ: 11.

Пятое действие можно сделать по-другому. Составить пропорцию:

1,1 кг – х %

10 кг – 100 %

.

 

Задача №2.   Эту задачу решим с помощью системы уравнений с двумя переменными.

Имеется два сосуда. Первый содержит 7,5 кг, а второй – 50 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 42% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 50% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Решение

1)    75 + 50 = 125 (кг) –раствор, содержащий 42% кислоты

2)    125 · 0,42 = 52,5 (кг) – вещество в новом растворе

3)    Пусть х % – концентрация I раствора;

Тогда y % – концентрация II раствора;

В I растворе вещества 0,75x кг, а во II растворе 0,5y кг. Имеем первое уравнение 0,75x + 0,5y = 52,5.

Пусть во второй раз смешали одинаковые массы этих растворов 50 кг  I-го раствора и 50 кг II-го раствора. Тогда имеем второе уравнение    0,5x + 0,5y = 50.

Решим систему уравнений способом сложения.

10% концентрация I раствора, тогда найдем кислоту в I растворе.

75 · 0,1 = 7,5 кг

Ответ: 7,5.

 

Задача №3.   Имеется два сплава. Первый содержит 15% золота, а второй – 2% золота. Масса первого сплава 3 кг, масса второго – 7 кг. Из этих двух сплавов получили третий сплав. Найдите процентное содержание золота в полученном сплаве.

Решение

1)    3 · 0,15 = 0,45 (кг) золота в Iсплаве;

2)    7 · 0,02 = 0,14 (кг) – золота во IIсплаве;

3)    3 + 7 = 10 (кг) – IIIсплав;

4)    0,45 + 0,14 = 0,59 (кг) золота в III сплаве;

5)     – процентное содержание золота в III сплаве.

Ответ: 5,9.

 

Задача №4.   Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 54 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?

Решение

1)    Найдем сначала сколько кг в изюме совсем без воды.

54 кг – 100 %

х кг – 95 %

 (кг)

2)    Теперь найдем вес винограда

51,3 кг – 10 %, т.к. воды 90%

х кг – 100 %

 

Ответ: 513 кг винограда.

 

II. Вклады; банки

 

Задача №1.   Клиент А сделал вклад в банке в размере 8800 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Ровно через год на тех же условиях такой же вклад в том же банке сделал клиент Б. Еще ровно через год клиенты А и Б закрыли вклады и забрали все накопившиеся деньги. При этом клиент А получил на 968 рублей больше клиента Б. Какой процент годовых начислял банк по этим вкладам?

Решение

Пусть р % годовых начислял банк. Тогда через два года клиент А получил 8800 (1 + 0,01 р)2 , а клиент Б через год получил 8800 (1 + 0,01 р). Разница равна 968 рублей.

8800 (1 + 0,01 р)2 – 8800 (1 + 0,01 р) = 968

1 + 0,01 р = х

8800 х2 – 8800 х – 968 = 0

100 х2 – 100 х – 11 = 0

D1 = 2500 + 1100 = 3600

1 + 0,01 р = 1,1

р = 10

Ответ: 10 %.

 

Задача №2.   В понедельник акции компании подешевели на некоторое число процентов, а во вторник подорожали на то же самое число процентов. В результате они стали стоить на 9% дешевле, чем при открытии торгов в понедельник. На сколько процентов подешевели акции компании в понедельник?

Решение

Пусть при открытии торгов в понедельник акции стоили х руб. К вечеру понедельника они подешевели на р % и стали стоить . К вечеру вторника акции подорожали на р % и стали стоить . По условию, акции подешевели на 9%. Имеем уравнение

 

;

;            р2 = 30.

Ответ: 30.

 

Задача №3.   Компания «Дельта» начала инвестировать средства в перспективную отрасль в 2008 году, имея капитал в размере 8000 долларов. Каждый год, начиная с 2009 года, она получала прибыль, которая составляла 200% от капитала предыдущего года. А компания «Омега» начала инвестировать средства в другую отрасль в 2010 году, имея капитал в размере 10000 долларов, и, начиная с 2011 года, ежегодно получала прибыль, составляющую 300% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2013 года, если прибыль из оборота не изымалась?

Решение

Если вкладчик не снимет со счета сумму начисленных процентов, то эта сумма присоединяется к основному вкладу, а в конце следующего года банк будет начислять р % уже на новую увеличенную сумму. Это означает, что банк станет теперь начислять проценты не только на основной вклад Sо, но и на проценты, которые на него полагаются

.

Тогда получаем

Автор
Дата добавления 14.01.2015
Раздел Математика
Подраздел Конспекты
Просмотров2001
Номер материала 300313
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх