Инфоурок Другое ПрезентацииЗадание №2 (Математика. Профиль)

Задание №2 (Математика. Профиль)

Скачать материал
Скачать тест к материалу



Задание №2.1

В    кармане    у    Миши    было четыре   конфеты —

«Грильяж», «Белочка», «Коровка» и «Ласточка», а также ключи от квартиры. Вынимая ключи, Миша случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Грильяж».

Задание №2.1. Решение

В кармане было 4 конфеты, а выпала одна конфета. Поэтому вероятность этого события    равна    одной четвертой.

Ответ: 0,25

Задание №2.2

На экзамен вынесено 60 вопросов, Андрей не выучил 3 из них. Найдите вероятность того, что ему попадется выученный вопрос.

Задание №2.2. Решение

Андрей выучил 60 – 3 = 57 вопросов. Поэтому вероятность того, что на экзамене ему попадется выученный вопрос равна 57 ÷ 60 = 0,95

Задание №2.3

В среднем из 1400 садовых насосов, поступивших в продажу, 7 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Задание №2.3. Решение

В среднем из 1400 садовых насосов, поступивших в продажу, 1400 − 7 = 1393 не подтекают. Значит, вероятность того, что один случайно выбранный для контроля насос не подтекает, равна 1393 ÷ 1400 = 0,995

Задание №2.4

Фабрика выпускает сумки. В среднем 8 сумок из 100  имеют скрытые  дефекты. Найдите вероятность того, что купленная сумка окажется без дефектов.

Задание №2.4. Решение

В среднем без дефектов выпускают 92 сумки из каждых 100, поэтому искомая вероятность равна 0,92.

Задание №2.5

На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии?

Результат округлите до сотых.

Задание №2.5. Решение

Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (Д — Дания, Ш — Швеция, Н — Норвегия):

ДШН, ДНШ, ШНД, ШДН, НДШ, НШД

Дания находится после Швеции и Норвегии в двух случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна

Задание №2.6

В некотором городе из 5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.

Задание №2.6. Решение

Из 5000 тысяч новорожденных 5000 − 2512 = 2488 девочек. Поэтому частота рождения девочек равна

Задание №2.7

На борту самолёта 12 кресел расположены рядом с запасными выходами и 18 — за перегородками, разделяющими салоны. Все эти места удобны для пассажира высокого роста. Остальные места неудобны. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

Задание №2.7. Решение

В самолете 12 + 18 = 30 мест удобны пассажиру В., а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В.

достанется удобное место равна 30 : 300 = 0,1

Задание №2.8

На олимпиаде по русскому языку 250 участников разместили в трёх аудиториях. В первых двух удалось разместить по 120 человек, оставшихся перевели в запасную аудиторию в другом корпусе. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.

Задание №2.8. Решение

Всего в запасную аудиторию направили 250 − 120 − 120 = 10 человек. Поэтому вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории, равна 10 : 250 = 0,04

Задание №2.9

В классе 26 учащихся, среди них два друга — Андрей и Сергей. Учащихся случайным образом разбивают на 2 равные группы. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.

Задание №2.9. Решение

Пусть один из друзей находится в некоторой группе. Вместе с ним в группе окажутся 12 человек из 25 оставшихся одноклассников. Вероятность того, что второй друг окажется среди этих 12 человек, равна 12 : 25 = 0,48

Задание №2.10

В фирме такси в наличии 50 легковых автомобилей; 27 из них чёрного цвета с жёлтыми надписями на бортах, остальные — жёлтого цвета с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.

Задание №2.10. Решение

Машин желтого цвета с черными надписями 23, всего машин 50. Поэтому вероятность того, что на случайный вызов приедет машина желтого цвета с черными надписями, равна:

 = 0,46

Задание №2.11

В группе туристов 30 человек. Их вертолётом в

несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

Задание №2.11. Решение

На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист П. полетит первым рейсом вертолёта, равна:

                                                                                                                             6       1

 =  = 0,2

                                                                                                                        30      5

Задание №2.12

Вероятность того, что новый DVD-проигрыватель в течение года поступит в гарантийный ремонт, равна 0,045. В некотором городе из 1000 проданных DVDпроигрывателей в течение года в гарантийную мастерскую поступила 51 штука. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Задание №2.12. Решение

Частота   (относительная  частота) события «гарантийный  ремонт» равна   51 : 1000 = 0,051. Она отличается от предсказанной вероятности на 0,006

Задание №2.13

Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 10, но не дойдя до отметки 1.

Задание №2.13. Решение

На циферблате между десятью часами и одним часом три часовых деления. Всего на циферблате 12 часовых  делений. Поэтому искомая вероятность равна:

                                                                                                                        3       1

 =  = 0,25 12 4

Задание №2.14

За круглый стол на 9 стульев в случайном

порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.

Задание №2.14. Решение

Пусть первой за стол сядет девочка, рядом с ней есть два места, на каждое из которых может сесть 8 человек, из которых только одна девочка. Таким образом, вероятность, что девочки будут сидеть рядом равна

2 1

 =  = 0,25

8 4

Задание №2.15

Проводится жеребьёвка Лиги Чемпионов. На первом этапе жеребьёвки восемь команд, среди которых команда «Барселона», распределились случайным образом по восьми игровым группам — по одной команде в группу. Затем по этим же группам случайным образом распределяются еще восемь команд, среди которых команда «Зенит». Найдите вероятность того, что команды «Барселона» и «Зенит» окажутся в одной игровой группе.

Задание №2.15. Решение

По результатам первой жеребьёвки команда «Барселона» находится в одной из 8 групп. Вероятность того, что команда «Зенит» окажется в той же игровой группе равна одной восьмой.

Ответ: 0,125

Задание №2.16

В соревновании по биатлону участвуют спортсмены из 25 стран, одна из которых ― Россия. Всего на старт вышло 60 участников, из которых 6 ― из России. Порядок старта определяется жребием, стартуют спортсмены друг за другом. Какова вероятность того, что десятым стартовал спортсмен из России?

Задание №2.16. Решение

В соревновании принимает участие 6 спортсменов из России, всего 60 участников. Тогда вероятность того, что спортсмен, выступающий десятым, окажется из

России, равна

 = 0,1

Задание №2.17

У Вити    в  копилке  лежит  12 рублёвых,    6 двухрублёвых,  4 пятирублёвых и  3 десятирублёвых монеты. Витя наугад достаёт из копилки одну монету. Найдите вероятность того, что оставшаяся в копилке сумма составит более 70 рублей.

Задание №2.17. Решение

У Вити в копилке лежит 12 + 6 + 4 + 3 = 25 монет на сумму 12 + 12 + 20 + 30 = 74 рубля. Больше 70 рублей останется, если достать из копилки либо рублёвую, либо двухрублёвую монету. Таких монет 12 + 6 = 18. Искомая вероятность равна 18 : 25 = 0,72

Задание №2.18

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Задание №2.18. Решение

Равновозможны 4 исхода эксперимента: орел-орел, орел-решка, решка-орел, решка-решка. Орел выпадает ровно один раз в двух случаях: орел-решка и решкаорел. Поэтому вероятность того, что орел выпадет ровно 1 раз, равна

 = 0,5

Задание №2.19

В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.

Задание №2.19. Решение

Обозначим выпадение орла буквой О, а выпадение решки буквой Р. Возможных восемь исходов:

OOO, OОР, ОРО, ОРР, РОО, РОР, РРО, РРР

Из них благоприятными являютсяOОР, ОРО и РОО. Поэтому искомая вероятность равна  = 0,375

(Этот подход затруднителен в случае большого числа бросаний монетки)

Задание №2.20

Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 76 бадминтонистов, среди которых 16 спортсменов из России, в том числе Игорь Чаев. Какова вероятность того, что в первом туре Игорь Чаев будет играть с каким-либо бадминтонистом из России.

Задание №2.20. Решение

В первом туре Игорь Чаев может сыграть с 76 − 1 = 75 бадминтонистами, из которых 16 − 1 = 15 из России. Значит, вероятность того, что в первом туре Игорь Чаев будет играть с каким-либо бадминтонистом из

России, равна

 = 0,2

Задание №2.21

В  случайном  эксперименте бросают  две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до

сотых.

Задание №2.21. Решение

Количество исходов, при которых в результате броска игральных костей выпадет 8 очков, равно 5: 2+6, 3+5, 4+4, 5+3, 6+2. Каждый из кубиков может выпасть шестью вариантами, поэтому общее число исходов равно 6·6 = 36. Следовательно, вероятность того, что в сумме выпадет 8 очков, равна

Задание №2.22

Научная конференция проводится в 5 дней. Всего запланировано 75 докладов — первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Задание №2.22. Решение

За первые три дня будет прочитан 51 доклад, на последние два дня планируется 24 доклада. Поэтому на последний день запланировано 12 докладов. Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна  = 0,16

Задание №2.23

Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны, участвующей в конкурсе. Исполнитель из России участвует в конкурсе. В первый день запланировано 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление исполнителя из России состоится в третий день конкурса?

Задание №2.23. Решение

На третий день запланировано  = 18 выступлений.

Значит, вероятность  того, что выступление представителя из России окажется запланированным на третий день конкурса, равна

 = 0,225

Задание №2.24

На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной?

Задание №2.24. Решение

На клавиатуре телефона 10 цифр, из них 5 четных: 0, 2, 4, 6, 8. Поэтому вероятность того, что случайно будет нажата четная цифра, равна 5 : 10 = 0,5

Задание №2.25

Из множества натуральных чисел от 10 до 19 наудачу выбирают одно число. Какова вероятность того, что оно делится на 3?

Задание №2.25. Решение

Натуральных чисел от 10 до 19 включительно десять, из них на три делятся три числа: 12, 15, 18.

Следовательно, искомая вероятность равна 3:10 = 0,3

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал
Скачать тест к материалу
Скачать материал
Скачать тест к материалу

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 898 157 материалов в базе

Материал подходит для УМК

Скачать материал
Скачать тест к материалу

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    Скачать тест к материалу
    • 12.01.2022 230
    • PDF 716.1 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Пименова Мария Юрьевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Пименова Мария Юрьевна
    Пименова Мария Юрьевна
    • На сайте: 4 года и 11 месяцев
    • Подписчики: 1
    • Всего просмотров: 16121
    • Всего материалов: 53

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой