Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Занятие на тему "Площади четырехугольников" (Подготовка к ОГЭ".

Занятие на тему "Площади четырехугольников" (Подготовка к ОГЭ".

  • Математика

Название документа Задачи.docx

Поделитесь материалом с коллегами:

Задачи по теме «Площадь».

1.

http://antiege.ru/uploads/%D0%93%D0%98%D0%90/NEW2014/%D0%93%D0%B5%D0%BE%D0%BC12/1.jpg

2.

http://antiege.ru/uploads/%D0%93%D0%98%D0%90/NEW2014/%D0%93%D0%B5%D0%BE%D0%BC12/2.jpg

3.

http://antiege.ru/uploads/%D0%93%D0%98%D0%90/NEW2014/%D0%93%D0%B5%D0%BE%D0%BC12/7.jpg

4.

http://antiege.ru/uploads/%D0%93%D0%98%D0%90/NEW2014/%D0%93%D0%B5%D0%BE%D0%BC12/10.jpg

5.

Площадь прямоугольного земельного участка равна 13 га, ширина участка равна 260 м. Найдите длину этого участка в метрах.



6.

Пол комнаты, имеющей форму прямоугольника со сторонами 4 м и 9 м, требуется покрыть паркетом из прямоугольных дощечек со сторонами 10 см и 25 см. Сколько потребуется таких дощечек?



Название документа Площадь четырехугольников.docx

Поделитесь материалом с коллегами:

Тема занятия:

Площадь четырехугольников.

Цели:

  1. Обобщить и систематизировать теоретические знания учащихся по теме “Площадь четырехугольников”.

  2. Совершенствовать навыки решения задач, развивать логическое мышление, память, познавательный интерес, продолжать формирование математической речи и графической культуры, способствовать развитию творческой деятельности, воображения.

  3. Прививать трудолюбие, настойчивость, доброжелательность, воспитывать честность в оценке своих знаний и знаний одноклассников.

Оборудование: ПК, презентация, опорные таблицы, карточки с задачами.

Ход занятия (краткое описание).

  1. Организационный этап.

Объявление темы, целей занятия.

  1. Актуализация знаний учащихся.

Повторение и систематизация теоретического материала по теме «Площадь четырехугольников» по плану:

  • вид четырехугольника,

  • чертеж,

  • формулы для вычисления площади

с использованием презентации (Слайды 2 – 7), при необходимости опорной таблицы для каждого ученика (Приложение 1)

  1. Решение задач.

  1. Самостоятельное решение задач из Открытого банка заданий ОГЭ (1 часть) по готовым чертежам с последующей самопроверкой (Слайды 8 – 16).

1. Площадь одной клетки равна 1. Найдите площадь фигуры, изображённой на рисунке.

http://opengia.ru/resources/84436B71307492DF4408A7118C6C6412-GMA2014120908-84436B71307492DF4408A7118C6C6412-1-1397891822/repr-0.png

2. Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.



http://opengia.ru/resources/32C05656D534B5614F1F144EA1BBFCF1-GIAMATHREP20121401-32C05656D534B5614F1F144EA1BBFCF1-1-1397892167/repr-0.png

3. Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=8 и HD=40. Диагональ параллелограмма BD равна 50. Найдите площадь параллелограмма.

http://opengia.ru/resources/5813713995BDA2444FF9F6951333CCAC-GMA2014111101-5813713995BDA2444FF9F6951333CCAC-1-1398683617/repr-0.png

4. Найдите площадь параллелограмма, изображённого на рисунке.

http://opengia.ru/resources/BC11FA8ADC288CEB4098B86401F054D5-G13I1101-BC11FA8ADC288CEB4098B86401F054D5-1-1396426915/repr-0.png

5. Периметр ромба равен 116, а один из углов равен 30. Найдите площадь ромба.

6. Площадь ромба равна 27, а периметр равен 36. Найдите высоту ромба.

7. Найдите площадь трапеции, изображённой на рисунке.

http://opengia.ru/resources/9BC5B8632624A1DA4749FA6D35E54FAC-G13III1101-9BC5B8632624A1DA4749FA6D35E54FAC-1-1398337233/repr-0.png



8. В равнобедренной трапеции основания равны 3 и 5, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.

http://opengia.ru/resources/A962267CB39BB5234290A1711F4D57FA-G121416-A962267CB39BB5234290A1711F4D57FA-1-1330521501/repr-0.gif


9. Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 7.


2)http://opengia.ru/resources/9B04D9DBC125A73D453D333AE83FE241-G121423-9B04D9DBC125A73D453D333AE83FE241-1-1330948477/repr-0.gif

  1. Коллективное решение задач из II части (Слайды 17 – 19).


1. Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 1.


2. Внутри параллелограмма ABCD выбрали произвольную точку E. Докажите, что сумма площадей треугольников BEC и AED равна половине площади параллелограмма.


3. В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°,сторона AB равна 4. Найдите площадь трапеции.



  1. Самостоятельная работа.

Тестирование по теме «Площадь» https://ege.yandex.ru/mathematics-gia/

  1. Рефлексия.


Продолжи фразу:

Мне было полезно …

Я сегодня разобрался …

Я сегодня понял, что …

Мне было трудно …

На следующем занятии я хочу …


  1. Задание на дом.

Карточки с задачами (Приложение 2).

Название документа Площадь четырехугольников.pptx

ПЛОЩАДЬ ЧЕТЫРЕХУГОЛЬНИКОВ
ПЛОЩАДЬ ПАРАЛЛЕЛОГРАММА Параллелограмм В С F АЕ Д S= AD * BE = CD * BF S= AB...
 ПЛОЩАДЬ ПРЯМОУГОЛЬНИКА Прямоугольник В С А Д S= AB*BC
ПЛОЩАДЬ КВАДРАТА Квадрат BC d AaD AC = d S = a2 S =½d2
ПЛОЩАДЬ РОМБА Ромб В Н А С Д S=AC* BD S=AB2sinA= AB2sinB S= AB*СH
ПЛОЩАДЬ ТРАПЕЦИИ Трапеция C B AD H S=(BC+ AD)*BH
ПЛОЩАДЬ ВЫПУКЛОГЛО ЧЕТЫРЕХУГОЛЬНИКА Выпуклый четырёхугольник C B AD S =AC*BD*...
Площадь одной клетки равна 1. Найдите площадь фигуры, изображённой на рисунке...
Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейс...
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=8 и HD=40....
Найдите площадь параллелограмма, изображённого на рисунке. S = a*h S = (3 + 7...
Периметр ромба равен 116, а один из углов равен 30∘. Найдите площадь ромба. S...
Площадь ромба равна 27, а периметр равен 36. Найдите высоту ромба. S = a*h h...
Найдите площадь трапеции, изображённой на рисунке. S = ½ (a + b) *h a b h S =...
В равнобедренной трапеции основания равны 3 и 5, а один из углов между боков...
Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен 30...
1. Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найди...
2. Внутри параллелограмма ABCD выбрали произвольную точку E. Докажите, что су...
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой...
Режим тренировки Задание 11 Тестирование по теме «Площадь» https://ege.yandex...
ПРОДОЛЖИ ФРАЗУ: Мне было полезно … Я сегодня разобрался … Я сегодня понял, чт...
ЗАДАНИЕ НА ДОМ: Карточки с задачами 1 части.
1 из 22

Описание презентации по отдельным слайдам:

№ слайда 1 ПЛОЩАДЬ ЧЕТЫРЕХУГОЛЬНИКОВ
Описание слайда:

ПЛОЩАДЬ ЧЕТЫРЕХУГОЛЬНИКОВ

№ слайда 2 ПЛОЩАДЬ ПАРАЛЛЕЛОГРАММА Параллелограмм В С F АЕ Д S= AD * BE = CD * BF S= AB
Описание слайда:

ПЛОЩАДЬ ПАРАЛЛЕЛОГРАММА Параллелограмм В С F АЕ Д S= AD * BE = CD * BF S= AB * AD* sinA= = BA* BC* sinB

№ слайда 3  ПЛОЩАДЬ ПРЯМОУГОЛЬНИКА Прямоугольник В С А Д S= AB*BC
Описание слайда:

ПЛОЩАДЬ ПРЯМОУГОЛЬНИКА Прямоугольник В С А Д S= AB*BC

№ слайда 4 ПЛОЩАДЬ КВАДРАТА Квадрат BC d AaD AC = d S = a2 S =½d2
Описание слайда:

ПЛОЩАДЬ КВАДРАТА Квадрат BC d AaD AC = d S = a2 S =½d2

№ слайда 5 ПЛОЩАДЬ РОМБА Ромб В Н А С Д S=AC* BD S=AB2sinA= AB2sinB S= AB*СH
Описание слайда:

ПЛОЩАДЬ РОМБА Ромб В Н А С Д S=AC* BD S=AB2sinA= AB2sinB S= AB*СH

№ слайда 6 ПЛОЩАДЬ ТРАПЕЦИИ Трапеция C B AD H S=(BC+ AD)*BH
Описание слайда:

ПЛОЩАДЬ ТРАПЕЦИИ Трапеция C B AD H S=(BC+ AD)*BH

№ слайда 7 ПЛОЩАДЬ ВЫПУКЛОГЛО ЧЕТЫРЕХУГОЛЬНИКА Выпуклый четырёхугольник C B AD S =AC*BD*
Описание слайда:

ПЛОЩАДЬ ВЫПУКЛОГЛО ЧЕТЫРЕХУГОЛЬНИКА Выпуклый четырёхугольник C B AD S =AC*BD*sin

№ слайда 8 Площадь одной клетки равна 1. Найдите площадь фигуры, изображённой на рисунке
Описание слайда:

Площадь одной клетки равна 1. Найдите площадь фигуры, изображённой на рисунке. А В С D Е F G M Выполним дополнительные построения. SABCD = SABEF – SCED – SADF SABEF = 36 кв.ед. SCED = ½ (1*5) = 2,5 кв.ед. SADF = ½ (1*6) = 3 кв.ед. SABCD = 36 – 2,5 – 3 = 30,5 (кв.ед.)

№ слайда 9 Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейс
Описание слайда:

Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры. S = 62 - 4*2 = 28(кв.ед.)

№ слайда 10 Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=8 и HD=40.
Описание слайда:

Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=8 и HD=40. Диагональ параллелограмма BD равна 50. Найдите площадь параллелограмма. SABCD = AD * BH AD = 8 + 40 =48 BH2 = BD2 – HD2 BH2 = 2500 – 1600 = 900 BH = 30 SABCD = 48 * 30 = 1440 (кв.ед.)

№ слайда 11 Найдите площадь параллелограмма, изображённого на рисунке. S = a*h S = (3 + 7
Описание слайда:

Найдите площадь параллелограмма, изображённого на рисунке. S = a*h S = (3 + 7) *4 = 40 (кв.ед.)

№ слайда 12 Периметр ромба равен 116, а один из углов равен 30∘. Найдите площадь ромба. S
Описание слайда:

Периметр ромба равен 116, а один из углов равен 30∘. Найдите площадь ромба. S = AB2 * Sin B AB = 116: 4 = 29 S = 292 * ½ = 420,5 (кв.ед.) A B C D 30°

№ слайда 13 Площадь ромба равна 27, а периметр равен 36. Найдите высоту ромба. S = a*h h
Описание слайда:

Площадь ромба равна 27, а периметр равен 36. Найдите высоту ромба. S = a*h h = S/a a = P/4 a = 9 h = 27/9 = 3 A B C D a h

№ слайда 14 Найдите площадь трапеции, изображённой на рисунке. S = ½ (a + b) *h a b h S =
Описание слайда:

Найдите площадь трапеции, изображённой на рисунке. S = ½ (a + b) *h a b h S = ½ ( 5+9) *4 = 28 (кв.ед.)

№ слайда 15 В равнобедренной трапеции основания равны 3 и 5, а один из углов между боков
Описание слайда:

В равнобедренной трапеции основания равны 3 и 5, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции. S = ½ (a + b)*h h = (5 – 3):2 = 1 S = ½ (3 + 5)*1 = 4

№ слайда 16 Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен 30
Описание слайда:

Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 7. S = ½ (a + b)*h h = ½*4 = 2 S = ½ (2 + 7)*2 = 9

№ слайда 17 1. Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найди
Описание слайда:

1. Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 1. Задачи II части Обозначим точки пересечения биссектрис со сторонами точками E и F соответственно. FAK =  BEK (т.к. накрест лежащие). FAK=BEK,  ΔABE – равнобедренный,  AB = BE. Δ ABK = Δ EBK по стороне и двум прилежащим углам,  высоты у этих треугольников тоже равны. Аналогично, ΔABK = ΔAFK,  высота параллелограмма равна 2h. SABCD = BC*2h; SABCD = 2*2*1= 4

№ слайда 18 2. Внутри параллелограмма ABCD выбрали произвольную точку E. Докажите, что су
Описание слайда:

2. Внутри параллелограмма ABCD выбрали произвольную точку E. Докажите, что сумма площадей треугольников BEC и AED равна половине площади параллелограмма. Проведем отрезок MN, перпендикулярный сторонам AD и BC, проходящий через точку Е. S ABCD = AD*MN; SAED = ½ AD*EM; SBEC = ½ BC*EN; AD = BC; SAED + SBEC = ½ AD*EM +½ BC*EN= ½ *AD (EM+EN) = ½*AD*MN = ½* S ABCD . M N E

№ слайда 19 В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой
Описание слайда:

В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°,сторона AB равна 4. Найдите площадь трапеции. Проведем высоты BE и CF. SABCD = ½ ( BC + AD)*CF Обозначим: ВС = СD = EF = x, AD = 2x по условию. ΔCDF - прямоугольный, т.к. CF-высота. FCD=180°-90°-60°=30°. FD = ½ CD по св-ву прямоугольного треугольника,  FD = 1/2x, AE = 2x – x – 1/2x = 1/2x ,  AE = FD. ΔABE =ΔDCF (по двум катетам),  A = D – трапеция равнобедренная. CD = 4; FD =2; AD = 8 CF = CD2 – FD2 (по теореме Пифагора); CF =  16 – 4 = 12 SABCD = ½ (8 + 16)* 12 = 24 3 Е F

№ слайда 20 Режим тренировки Задание 11 Тестирование по теме «Площадь» https://ege.yandex
Описание слайда:

Режим тренировки Задание 11 Тестирование по теме «Площадь» https://ege.yandex.ru/mathematics-gia/#training

№ слайда 21 ПРОДОЛЖИ ФРАЗУ: Мне было полезно … Я сегодня разобрался … Я сегодня понял, чт
Описание слайда:

ПРОДОЛЖИ ФРАЗУ: Мне было полезно … Я сегодня разобрался … Я сегодня понял, что … Мне было трудно … На следующем занятии я хочу …

№ слайда 22 ЗАДАНИЕ НА ДОМ: Карточки с задачами 1 части.
Описание слайда:

ЗАДАНИЕ НА ДОМ: Карточки с задачами 1 части.

Название документа Таблицы Площади четырехугольников.docx

Поделитесь материалом с коллегами:

hello_html_m6c3dd3ca.gifhello_html_m5be7b08d.gifhello_html_m4b88bce.gifhello_html_m1389dcc.gif
hello_html_m29235543.gifhello_html_m72f3bc2e.gifhello_html_77f0faf6.gifhello_html_1de0aa23.gifhello_html_m3debd4b.gifhello_html_m3458b781.gifhello_html_4d44125d.gifhello_html_64c8e744.gifhello_html_m4997afa6.gifПараллелограмм


В С


F



A E D


S = AD * BE =

CD * BF


S = AB * AD* sin A =

= BA* BC* sin B



Прямоугольник

B C




A D



S = AB * BC





Ромб

B

H


A C




D


S = hello_html_6eec8aff.gifAC * BD


S = AB2 sin A = AB2 sin B


S = AB * СH




Квадрат

B C


a



A D


AC = d


S = a2


S = 0,5d2




Трапеция


B C





A H D




S = hello_html_6eec8aff.gif(BC + AD)* BH




Выпуклый четырёхугольник

C

B




A D





S = hello_html_6eec8aff.gif AC * BD* sin


Автор
Дата добавления 24.01.2016
Раздел Математика
Подраздел Конспекты
Просмотров225
Номер материала ДВ-374023
Получить свидетельство о публикации

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх