Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Конспекты / Занятие элективного предмета «Решение иррациональных, показательных и логарифмических уравнений (по материалам ЕГЭ)»
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

Занятие элективного предмета «Решение иррациональных, показательных и логарифмических уравнений (по материалам ЕГЭ)»

библиотека
материалов

Лодыгин Владимир Дмитриевич,

заместитель директора по учебной работе,

учитель математики

высшей квалификационной категории

МБОУ «Средняя общеобразовательная школа №5»

г.Северодвинска

Архангельской области




10.10.2014г. Открытое занятие элективного предмета

(план – конспект)


Тема:

«Решение иррациональных, показательных и логарифмических уравнений (по материалам ЕГЭ)».


Тип занятия: занятие повторения и закрепления изученного материала.

Вид: консультация – практикум.


Основной метод: упражнений.

Организационная форма занятия: коллективно – групповая.

Цель:

1)через повторение и закрепление основных видов, принципов, способов решения уравнений формировать знания, умения, навыки решения типовых заданий ЕГЭ.

2)Способствовать развитию мышления, памяти у учащихся.

3)Воспитывать у учащихся настойчивость, умение доводить дело до завершения, способность к самоконтролю.


Оборудование:

1)Таблицы – памятки: «Свойства степени и корня», Логарифмы».

2)Дидактические материалы (из сборников заданий для подготовки к ЕГЭ по математике).

3)Учебные справочники - блокноты по математике.

4)Записи на доске.


Оформление доски.

Высказывание: «Смело вперед - разберетесь позже!»

(Ж.Л.Лагранж)

Тема занятия.

Цель: готовиться к успешной сдаче ЕГЭ.


ХОД ЗАНЯТИЯ

I. Организационный момент.

Приветствие. Сообщение темы, цели, задач, плана занятия.

Тема нашего элективного занятия: «Решение иррациональных, показательных и логарифмических уравнений (по материалам ЕГЭ)».

Еще раз обратим внимание на особенности решения данных уравнений. Вспомним некоторые формулы, потренируемся. В результате вы приобретете дополнительный опыт, который вам пригодится в дальнейшем.

В одном из сборников задач для подготовки к ЕГЭ нашел очень интересное уравнение:

hello_html_6e063f09.gif.(Задание типа С1). Попытаемся его решить.

Скажите, к какому виду можно отнести это уравнение (смешанное: иррационально – показательное). Почему вы так думаете? Обоснуйте.

(Есть квадратный корень, показательная функция). Это явно.

Оказывается в этом уравнении есть еще и полный квадрат, а также неявно присутствует и модуль, и даже логарифм.

Какие соображения будут по решению уравнения?

Как бы вы начали решать его? Спасибо, ваши версии мы проверим позднее. Чтобы всем был понятен ход решения данного уравнения, полезно будет вспомнить ряд формул и некоторые приемы решения уравнений. Каждое выполненное коллективно задание – шаг к решению данного уравнения.

Трудности есть.

Французский математик Лагранж говорил в свое время студентам, испытывающим затруднения в изучении математического анализа: «Смело вперед – разберетесь позже!». Пусть эти слова будут эпиграфом к нашему занятию.

Так что «вперед!».

Сначала поработаем коллективно, затем по группам.

В тетрадях - число, тема занятия. Все кратко записываем. Перед экзаменом записи еще раз посмотрите.



Задание 1.

Вспомним некоторые формулы (закончить запись):

1) hello_html_33817efe.gif ; 2) hello_html_m3c106ac4.gif ; 3) hello_html_m2fa6893e.gif ; 4) hello_html_m70038060.gif

Задание 2.

Представить в виде квадрата:

1)hello_html_3266f124.gif; 2) hello_html_41a199c6.gif; 3)hello_html_m109f37dd.gif; 4) hello_html_m1c0469bc.gif При каком условии это равенство выполняется? (При условии: hello_html_2394ca26.gif).Почему?

Задание 3.

Найти значение выражения, предварительно упростив его:

1) hello_html_31f4dba9.gif при Х >200;

2) hello_html_m7d86a758.gifпри Х=10.

Задание 4.

Решить уравнения:

1)hello_html_109b7175.gif; 2)hello_html_m1f9c004f.gif; 3) hello_html_m1c716d9d.gif; 4) hello_html_m104cfc3e.gif;

III.Работа в группах.


Итак, мы повторили необходимый материал (на примере несложных задач) для того, чтобы успешно справиться с задачами для работы в группах.

Вы знаете, что каждое сложное задание, оно в конечном счете, сводится к более простым.

Напоминаю, правила работы в группах:

(Внимательно изучите условие задания, определите вид уравнения, вспомните принципы и способы решения, необходимые формулы, в крайнем случае, можно воспользоваться блокнотом- справочником. Коллективно обсудите ход решения, запишите решение, сверьте ответы и направьте представителя от группы к доске записать и защитить свое решение).

Советы: устанавливайте связь с изученным, с тем, что повторили.

Будьте внимательны!

Задание, решение которого надо показать на доске, совпадает с № группы

Смело вперед!

Консультация учителя допускается, но только в экстренном случае.

Задания для решения в группах:

1) hello_html_7e95d6e2.gif;

2) hello_html_m2d6e4e15.gif;

3)hello_html_m22caf679.gif;


4) hello_html_6e063f09.gif.


IV.Защита решений, записанных на доске.

Какие вопросы к отвечающим?

V.Обсуждение решения первоначально предложенного уравнения:


hello_html_6e063f09.gif.


VI.Подведение итогов.


Сегодня мы продолжили подготовку к ЕГЭ. Думаю, что занятие было полезным для вас, вы приобрели дополнительный опыт решения иррациональных, показательных, логарифмических уравнений.

Трудности пока еще есть. Возможные причины:

- невнимательно почитали условие задания;

- забыли формулы.


Сделайте выводы для себя.

Дома повторите формулы, доведите решение первоначального уравнения до конца.

Не бойтесь решать. Пытайтесь решать задание, даже, если, в перспективе, не видите ход его решения. «Смело вперед - разберетесь позже!». Запомните эти слова. Если будет трудно, вспоминайте их. Они помогут вам организоваться.


Комментарий автора

С сентября 2013 года наша школа является пилотной площадкой по введению ФГОС ООО на региональном уровне. По новым стандартам организовано обучение в 5,6 классах.

Но это не означает, что принцип системно – деятельностного подхода, являющийся главным методологическим принципом ФГОС, не может быть осуществлен в классах, в которых реализуется Федеральный компонент государственного стандарта общего образования, утвержденный приказом Министерства образования от 05.03.2004 г. №1089. Системно – деятельностный подход предполагает использование таких организационных форм урока, в условиях которых ученик смог бы проявить и воспитать в себе самостоятельность в приобретении знаний, которые бы способствовали формированию у него так называемых универсальных учебных действий. Для уроков математики существенным является формирование у учащихся способности к самоконтролю. Учитель направляет познавательную деятельность учащихся. Перечисленные дидактические задачи можно и нужно решать во всех классах. Да они и решались всегда, еще задолго до появления ФГОС.

На мой взгляд, урок математики, учебное занятие по математике в контексте системно – деятельностного подхода должен содержать следующие структурные составляющие:

1.Постановка проблемного вопроса, задачи.

2.Изложение гипотез.

3.Актуализация необходимых знаний для решения проблемы.

4.Обсуждение хода решения проблемы в малых группах, каждый учащийся должен высказать свое мнение.

5.Организация контроля и самоконтроля.

6.Выстраивание новых образовательных перспектив. Ученик должен осознать, для чего ему нужны приобретенные знания, где они пригодятся.

7.Эмоциональный настрой, психологический комфорт на уроке.

(Использование эпиграфов к уроку, памятки успешной деятельности)


В соответствии с данной структурой построено открытое элективное занятие.


Приложение.


Решение заданий.


Задание 3

1) hello_html_31f4dba9.gif при Х >200;


hello_html_31f4dba9.gif=hello_html_m64494f5a.gif-2.

Пояснение.

При Х >200 2x-1>0 hello_html_m4386f2d7.gif, 2x+1>0 hello_html_20c8bc3e.gif

2) hello_html_m7d86a758.gifпри Х=10.

hello_html_m7d86a758.gif=hello_html_eab8f05.gif=hello_html_m7bc54bd.gif=hello_html_m5450362e.gif

При х =10 значение данного выражения равно 10

Ответ:10.

Задание 4.


Решить уравнения: 1) 1)hello_html_109b7175.gif; нет корней, т.к. hello_html_m3452794d.gif.

2)hello_html_m1f9c004f.gif. Ответ: х = -2. 3) hello_html_m1c716d9d.gif. Ответ: hello_html_67d1aaea.gif;

4). hello_html_m104cfc3e.gif;

По определению hello_html_m16ac110a.gif: hello_html_m7208f09f.gif; hello_html_mc761568.gif; hello_html_40a4d23e.gif , x= -1Ответ: х = -1.





Задания для решения в группах:

1) hello_html_7e95d6e2.gif;

Решение.

Применим свойства степени.

hello_html_3531d32c.gif

Введем новую переменную:

hello_html_m434d01ff.gif, получим уравнение: hello_html_306e53fc.gifD=0,01+0,08=0,09

hello_html_68de8718.gif. Значит, 1)hello_html_6c5cb11a.gif.Уравнение не имеет корней, т.к. hello_html_36d2cad5.gif >0.

2) hello_html_m3366ce60.gif. С учетом монотонности показательной функции: х = 1. Ответ: х=1.

2) hello_html_m2d6e4e15.gif;

Решение.

По определению hello_html_m16ac110a.gif: hello_html_m276403ce.gif; hello_html_b6392a8.gif; hello_html_234eb17e.gif

hello_html_m55861452.gif

Ответ:х=2.

3)hello_html_m22caf679.gif;

Решение.

а) Из условия следует, что hello_html_4995cb1.gif≥0.

б)hello_html_m416d9246.gif.

hello_html_e3bc259.gif

Равносильно совокупности: hello_html_5bbd9e1.gifилиhello_html_m54ac33b3.gif,

Отсюда:

hello_html_7230ad87.gif, hello_html_70f68f2b.gif. Ответ: hello_html_70f68f2b.gif.


4) hello_html_6e063f09.gif.

Решение.

а) Из условия следует, что hello_html_52fe6bfb.gif≥0.


б)hello_html_m3cde6318.gif;

hello_html_5c61da97.gif;

Отсюда, с учетом, что hello_html_52fe6bfb.gif≥0,

hello_html_m2e2fbd78.gif



hello_html_58fff2c2.gif


Введем новую переменную:

hello_html_m2296fb5d.gif, hello_html_m5a4ffafb.gif

Значит, hello_html_m2d653df0.gif, но hello_html_4968820d.gifне удовлетворяет условию: hello_html_52fe6bfb.gif≥0.



Ответ: х =hello_html_m7dbf4894.gif.



Краткое описание документа:

Тип занятия: занятие повторения и закрепления изученного материала.

Вид: консультация – практикум.

Основной метод: упражнений.

Организационная форма занятия: коллективно – групповая.

Цель:

1)через повторение и закрепление основных видов, принципов, способов решения уравнений формировать знания, умения, навыки решения типовых заданий ЕГЭ.

2)Способствовать развитию мышления, памяти у учащихся.

3)Воспитывать у учащихся настойчивость, умение доводить дело до завершения, способность к самоконтролю.

Необходимое оборудование:

1)Таблицы – памятки: «Свойства степени и корня», Логарифмы».

2)Дидактические материалы (из сборников заданий для подготовки к ЕГЭ по математике).

3)Учебные справочники - блокноты по математике.

4)Записи на доске.

 

Автор
Дата добавления 13.11.2014
Раздел Математика
Подраздел Конспекты
Просмотров394
Номер материала 112146
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх