Инфоурок / Русский язык / Другие методич. материалы / Это интересно "Удивительный мир чисел"

Это интересно "Удивительный мир чисел"

Курсы профессиональной переподготовки
124 курса

Выдаем дипломы установленного образца

Заочное обучение - на сайте «Инфоурок»
(в дипломе форма обучения не указывается)

Начало обучения: 29 ноября
(набор групп каждую неделю)

Лицензия на образовательную деятельность
(№5201 выдана ООО «Инфоурок» 20.05.2016)


Скидка 50%

от 13 800  6 900 руб. / 300 часов

от 17 800  8 900 руб. / 600 часов

Выберите квалификацию, которая должна быть указана в Вашем дипломе:
... и ещё 87 других квалификаций, которые Вы можете получить

Получите наградные документы сразу с 38 конкурсов за один орг.взнос: Подробнее ->>

библиотека
материалов

Римские цифры — цифры, использовавшиеся древними римлянами в своей непозиционной системе счисления.

Натуральные числа записываются при помощи повторения этих цифр. При этом если большая цифра стоит перед меньшей, то они складываются (принцип сложения), если же меньшая — перед большей, то меньшая вычитается из большей (принцип вычитания). Последнее правило применяется только во избежание четырёхкратного повторения одной и той же цифры.

Например:

 I

1

VIII

8

LXXV

75

D

500

II

2

IX

9

XCII

92

DCXCV

695

III

3

X

10

IC

99

DCCIL

749

IV

4

XVIII

18

C

100

M

1000

V

5

XXXI

31

CCCII

302

MCMIX

1909

VI

6

XLVI

46

CDXLI

441

MCMLXXXIV

1984

VII

7

L

50

ID

499

MIM

1999



Арабские цифры - традиционное название десяти математических знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, с помощью которых по десятичной системе счисления записываются любые числа. Эти цифры возникли в Индии (не позднее 5 в.), в Европе стали известны в 10—13 вв. по арабским сочинениям (отсюда название).

Первые арабские цифры выглядели так:

٠ ١ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩

0 1 2 3 4 5 6 7 8 9





Совершенное число́ (др.-греч. ἀριθμὸς τέλειος) — натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого́ числа). По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже.



Совершенные числа образуют последовательность:

6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, …

Примеры:

1-ое совершенное число6 имеет следующие собственные делители: 1, 2, 3; их сумма 1 + 2 + 3 равна 6.

2-ое совершенное число28 имеет следующие собственные делители: 1, 2, 4, 7, 14; их сумма 1 + 2 + 4 + 7 + 14 равна 28.

3-ое совершенное число 496 имеет следующие собственные делители: 1, 2, 4, 8, 16, 31, 62, 124, 248; их сумма 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 равна 496.

4-ое совершенное число8128 имеет следующие собственные делители: 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064; их сумма 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 равна 8128.

И т.д.



Обращённое число – натуральное число, записанное теми же цифрами, но в обратном порядке.

Например: 5204 и 4025.



Палиндромическое число – натуральное число равное обращённому.

Например: 121, 5995, 66,…

Палиндромические числа не просто красивы, у них есть еще ряд замечательных свойств. Например, возьмем любое число и запишем его в обратном порядке. Если мы начнем эти два числа складывать, в сумме рано или поздно получим палиндромическое число. Например:

Пример 1

3724 + 4273 = 7997.

Пример 2

865 + 658 = 1433. Не палиндромическое число, продолжим процесс сложения .

1433 + 3341 = 4774.




Дружественные числадва различных натуральных числа, для которых сумма всех собственных делителей первого числа равна второму числу и сумма всех собственных делителей второго числа равна первому числу.


История

Дружественные числа были открыты последователями Пифагора, которые однако знали только одну пару дружественных чисел — 220 и 284.

Формулу для нахождения некоторых пар дружественных чисел предложил примерно в 850 году арабский астроном и математик Сабит ибн Курра (826—901). Его формула позволила найти две новые пары дружественных чисел. Много столетий спустя Эйлер нашёл ещё 65 пар дружественных чисел.


Примеры

Ниже приведены все пары дружественных чисел, меньших 100 000.

1. 220 и 284 (Пифагор, около 500 до н. э.)

2. 1184 и 1210 (Паганини, 1860)

3. 2620 и 2924 (Эйлер, 1747)

4. 5020 и 5564 (Эйлер, 1747)

5. 6232 и 6368 (Эйлер, 1750)

6. 10744 и 10856 (Эйлер, 1747)

7. 12285 и 14595 (Браун, 1939)

8. 17296 и 18416 (Ибн ал-Банна, около 1300, Фариси, около 1300, Ферма, Пьер, 1636)

9. 63020 и 76084 (Эйлер, 1747) 10.66928 и 66992 (Эйлер, 1750) 11.67095 и 71145 (Эйлер, 1747) 12.69615 и 87633 (Эйлер, 1747) 13.79750 и 88730 (Рольф, 1964)



hello_html_7469cf1.jpgЧи́сла Фибона́ччи — элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (известного как Фибоначчи).


Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?


Можете убедиться, что число пар в каждый из двенадцати последующих месяцев будет соответственно


1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...


С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них — филлотаксис (листорасположение) — правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против.




Число π - математическая константа, выражающая отношение длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи». Старое название — лудольфово число.


π – первая буква слова «периферия» (от греч. «окружность»). Общеупотребительным такое обозначение стало с середины XVIIIв. Число выражается бесконечной непериодической десятичной дробью и приближённо равно

3,141592653589…





Неперово числоэто основание натурального логарифма logех=lnx и названо в честь шотландского математика Д.Непера, изобретателя логарифмов

(1614 г.). Но обозначение этого числа ввёл Л.Эйлер в 1736г., который вычислял пределы последовательностей. Поэтому число е ещё называют эйлеровым числом, которое нашло широкое применение в высшей математике. Приблизительно равное:

е ≈ 2,7182818…

hello_html_710a0d7f.jpghello_html_m6522fabc.jpg

Дж. Непер Л. Эйлер



Красота математики

Вот несколько удивительных простых чисел, которые были открыты в XVIII веке.

31

331

3331

33331

333331

3333331

33333331

Удивительно, но следующее число 333333331 не является простым! Оно делится на 17: 17 * 19607843 = 333333331.

Перемножая ряды шестерок 6 x 7 = 42

66 x 67 = 4422

666 x 667 = 444222

6666 x 6667 = 44442222

66666 x 66667 = 4444422222

666666 x 666667 = 444444222222

6666666 x 6666667 = 44444442222222

66666666 x 66666667 = 4444444422222222

666666666 x 666666667 = 444444444222222222

Числовой палиндром из единиц 1 x 1 = 1

11 x 11 = 121

111 x 111 = 12321

1111 x 1111 = 1234321

11111 x 11111 = 123454321

111111 x 111111 = 12345654321

1111111 x 1111111 = 1234567654321

Стихи в цифрах

Прочтите то, что написано ниже с выражением. Так, будто читаете стихи.



А.С. Пушкин:

17 30 48

140 10 01

126 138

140 3 501

В. Маяковский:

2 46 38 1

116 14 20!

15 14 21

14 0 17

С. Есенин:

14 126 14

132 17 43.

16 42... 511

704 83.

170! 16 39

514 700 142

612 349

17 114 02

Веселые:

2 15 42

42 15

37 08 5

20 20 20!

7 14 105

2 00 13

37 08 5

20 20 20!

Грустные:

511 16

5 20 337

712 19

2247

Частушки:

117 117

19 9 5!

117 117

48 35!

Самые низкие цены на курсы переподготовки

Специально для учителей, воспитателей и других работников системы образования действуют 50% скидки при обучении на курсах профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца с присвоением квалификации (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок", но в дипломе форма обучения не указывается.

Начало обучения ближайшей группы: 29 ноября. Оплата возможна в беспроцентную рассрочку (10% в начале обучения и 90% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru


Краткое описание документа:

 

Римские цифры-цифры, использовавшиеся древними римлянами в своей непозиционной системе счисления.Натуральные числа записываются при помощи повторения этих цифр. При этом если большая цифра стоит перед меньшей, то они складываются(принцип сложения), если же меньшая — перед большей, то меньшая вычитается из большей (принцип вычитания). Последнее правило применяется только во избежание четырёхкратного повторения одной и той же цифры.

Арабские цифры- традиционное название десяти математических знаков: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, с помощью которых по десятичной системе счисления записываются любые числа. Эти цифры возникли в Индии (не позднее 5 в.), в Европе стали известны в 10—13 вв. по арабским сочинениям (отсюда название).

Общая информация

Номер материала: 453694
Курсы профессиональной переподготовки
124 курса

Выдаем дипломы установленного образца

Заочное обучение - на сайте «Инфоурок»
(в дипломе форма обучения не указывается)

Начало обучения: 29 ноября
(набор групп каждую неделю)

Лицензия на образовательную деятельность
(№5201 выдана ООО «Инфоурок» 20.05.2016)


Скидка 50%

от 13 800  6 900 руб. / 300 часов

от 17 800  8 900 руб. / 600 часов

Выберите квалификацию, которая должна быть указана в Вашем дипломе:
... и ещё 87 других квалификаций, которые Вы можете получить

Похожие материалы

Получите наградные документы сразу с 38 конкурсов за один орг.взнос: Подробнее ->>