Инфоурок Другое Другие методич. материалыМетодические указания для студентов по проведению практических работ по дисциплине "Автоматическое регулирование"

Методические указания для студентов по проведению практических работ по дисциплине "Автоматическое регулирование"

Скачать материал

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Методические указания

для студентов по проведению

практических  работ

 

 

 

для специальности

1302000«Автоматизация и уравление»

 

по дисциплине

«Автоматическое регулирование»

 

 

                            

                                         

                                              

                              

 

 


Методические указания для студентов по проведению практических работ для специальности 2201 «Вычислительные машины, комплексы, системы и сети» по дисциплине «ОСНОВЫ АВТОМАТИКИ»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Составитель:

Фридман Г.М.

(Фамилия И.О.)

Преподаватель УГКР

(Занимаемая должность и место работы)

Рецензенты:

Бронштейн М.Е.

(Фамилия И.О.)

Председатель ПЦК спец.дисциплин специальности 2201 УГКР

(Занимаемая должность и место работы)

 

Фрид А.И.

(Фамилия И.О.)

Д.т.н, профессор кафедры ВТ и ЗИ УГАТУ

(Занимаемая должность и место работы)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Содержание

 

          Предисловие

          Правила выполнения практических работ                   3

Практическая работа №1                                                 6

Практическая работа №2                                                 12

Практическая работа №3                                                 18

Практическая работа №4                                                 24

Практическая работа №5                                                 30

Практическая работа №6                                                 36

Практическая работа №7                                                 42

Практическая работа №8                                                 48

       Практическая работа №9                                                52

       Практическая работа №10                                                55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

58

Предисловие

 

Назначение методических указаний

 

Данные методические указания для студентов по выполнению практических работ согласно программе дисциплины "Основы автоматики" предназначены для реализации государственных требований к минимуму содержания и уровню подготовки выпускников специальности 2201 «Вычислительные машины, комплексы, системы и сети»  с целью закрепления теоретических знаний и практических умений.

В сборнике содержатся методические указания по выполнению следующих практических работ:

 

№1 Определение основных параметров потенциометрического и термоэлектрического датчиков.

№2      Определение основных параметров индуктивного датчика.

№3     Определение основных параметров емкостного и пьезоэлектрического датчиков.

№4      Определение основных параметров электромагнитного реле.

№5  Определение основных параметров исполнительного устройства и простейшего магнитного усилителя.

№6     Определение основных параметров магнитного усилителя с обратными связями.

№7   Определение основных параметров многокаскадного и реверсивного магнитных усилителей.

№8      Определение основных параметров феррорезонансного стабилизатора.

№9      Определение основных параметров следящей системы автоматики.

№10 Определение основных параметров аналогового цифрового преобразователя.

 

Требования к знаниям и умениям при выполнении практических работ

 

При выполнении практических работ студент должен

 

знать:

 -     типы электромеханических и магнитных устройств автоматики;

 

 

 

3

-     разновидности систем автоматики;

-          конструктивные разновидности устройств автоматики;

-          схемные решения устройств и систем автоматики;

-          основные характеристики и параметры устройств автоматики;

-          классификацию систем автоматики;

 

уметь:

-          пользоваться специальной и справочной литературой;

-          строить характеристики устройств автоматики;

-          рассчитывать основные параметры устройств и систем автоматики;

-          различать системы стабилизации, следящие, автоматические измерительные системы;

-          производить сравнительный анализ основных параметров устройств автоматики.

 

 

               Правила выполнения практических работ

 

 

1.       Студент должен придти на практическое занятие подготовленным к выполнению практической работы.

 

2.       После проведения практической работы студент должен представить отчет о проделанной работе с таблицей результатов расчета.

 

3.       Отчет о проделанной работе следует выполнять в журнале практических работ на листах формата А4 с одной стороны листа. Содержание отчета указано в описании практической работы.

 

4.       Расчет следует производить с точностью до двух значащих цифр.

 

5.       Вспомогательные расчеты можно выполнять на отдельных листах, а при необходимости на листах отчета.

 

6.       Оценку по практической работе студент получает, если:

- расчеты выполнены правильно и в полном объеме;

- результаты сведены в таблицы;

 

 

 

4

 

 К =

 

 

 U =

 

 U =

 

 U =

 

 

3.3    Результаты расчета свести в таблицу 2 

                                                                                Таблица  2

К

К

К

U (В)

U (В)

U (В)

 

 

 

 

 

 

 

1.       Контрольные вопросы к практической работе № 10

 

1. Для каких целей предназначен цифро-аналоговый преобразователь (ЦАП)?

2.  В каком виде представляются входные величины в ЦАП?

3.  Что составляет основу схемы ЦАП?

4.  Для чего в схеме ЦАП используются переключатели?

5.  Какие элементы могут использоваться в качестве переключателей?

 

                                   Список литературы

        1. Келим Ю.М. Типовые элементы систем автоматического управления.

-М,: «Форум - Инфра - М», 2002 г., -383с.

 

 

 

 

 

 

 

 

 

 

 

 

57

2.2 Пример расчета:

     Исходные данные даны для кодовых комбинаций 0001 и 1111:

1.        Переключатель А установлен в положение, соответствующее логической 1

2.        Переключатели А, В, С, D, установлены в положения, соответствующие логическим 1

      Uвх. = 6 В; R0 = 13,3 кОм; R1 = 200 кОм; R2 = 100 кОм;

      R3 =  50 кОм; R4 =  25 кОм.

 

Решение:

2.       К1 = 13,3/200 = 0,065

2.   Uвых.1 = 0,065*6 = 0,4 (В)

3.  К1234 = 13,3 : (200*100*50*25/(200*100*50 + 200*100*25 + 100*50*25 + 200*50*25))= 1

4.   Uвых.1234 = 1*6 = 6 (В)

 

3.   Задание:

3.1 Определить коэффициенты усиления по напряжению ОУ и напряжения на выходе ЦАП при Uвх. = 6 В для различных  положений переключателей А, В, С, D, имитирующих кодовые комбинации «0» и «1». Исходные данные взять из таблицы 1, согласно варианту.

Таблица 1

 

варианта

 

Кодовые

Комбинации

R0

(кОм)

R1

(кОм)

R2

(кОм)

R3

(кОм)

R4 (кОм)

1

2

3

4

5

1001    

0010 0100

1000 0001   

0011

0110    0101   

1010

1100     

0111

1011 1101

1110    1111  

10

10

10

10

10

150

150

150

150

150

75

75

75

75

75

37,5

37,5

37,5

37,5

37,5

18,75

18,75

18,75

18,75

18,75

 

3.2 Произвести расчет:

К  =

 

 

 К =

 

 

56

- может пояснить выполнение любого этапа работы;

- отчет выполнен в соответствии с требованиями к выполнению работы,

- отвечает на контрольные вопросы на удовлетворительную оценку и выше.

 

 

Зачет по практическим работам студент получает при условии

    выполнения всех  предусмотренных программой практических работ после  сдачи журнала  с отчетами по работам и  оценками по каждой из них.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Практическая работа №1

 

Определение основных параметров  потенциометрического и термоэлектрического  датчиков

 

   1  Цель работы

    1.1  Научиться рассчитывать параметры  потенциометрического датчика.

    1.2  Научиться рассчитывать параметры термоэлектрического датчика.

 

Задача №1. Рассчитать параметры потенциометрического датчика 

2          Пояснения к работе

 2.1  Краткие теоретические сведения

           Потенциометрический датчик представляет собой реостат, включенный по схеме потенциометра. Потенциометрический датчик преобразует механические перемещения в изменения сопротивления реостата. Расчет потенциометра сводится к расчету сопротивлений: определяются размеры каркаса для намотки, диаметр провода обмотки, количество витков, шаг намотки.

 

1) рабочая длина каркаса:

(мм),             (1)

где L - рабочая длина каскада;

      a - угол поворота;

      D - средний диаметр каркаса.

2) минимальное число витков:

                                 (витков),        (2)                                                    

где n- минимальное число витков %;

      dр - разрешающая способность.

3) шаг намотки:

                                (мм),                              (3)

где t- шаг намотки.                                                                                                   

4) диаметр провода с изоляцией:

                              (мм),                      (4)                                                                                  

где dи - диаметр провода с изоляцией.

5) коэффициент нагрузки:

 

 

6

Практическая работа №10.

 

Определение основных параметров цифро – аналогового                               преобразователя (ЦАП)

 

1    Цель работы

              Изучить работу ЦАП с весовыми резисторами и рассчитать

        коэффициент усиления и выходное напряжение ЦАП  при подаче 

        различных двоичных комбинаций на входы ЦАП .

 

       2    Пояснения к работе.

       2.1 Краткие теоретические сведения:

            ЦАП используются для преобразования цифрового кода в аналоговый     сигнал. ЦАП с весовыми резисторами относится к устройствам прямого преобразования и состоит  из двух узлов: резистивной  схемы (матрицы)  на резисторах R1R4 и суммирующего операционного усилителя (ОУ) с резистором обратной связи R0. Опорное напряжение Uоп подключается к резисторам матрицы переключателями А, В, С, D, имитирующими преобразуемый код.

                                                     

1. Коэффициент усиления по напряжению (КU), когда только один переключатель установлен в положение, соответствующее логической 1:

      Кi = Ro/Ri                                                                                                    (1)                 

2. Кu, когда два переключателя установлены в положения, соответствующие логическим 1:

      Кij  = Ro : Ri*Rj/(Ri + Rj)                                                                         (2)

3. Ku, когда три переключателя установлены в положения, соответствующие логическим 1:

      Кijn  = Ro : Ri*Rj*Rn/(Ri*Rj + Ri*Rn + Rj*Rn)                                        (3)

4. Ku, когда четыре переключателя установлены в положения, соответствующие логическим 1:

   Кijnm = Ro : Ri*Rj*Rn*Rm/(Ri*Rj*Rn+Ri*Rj*Rm+Rj*Rn*Rm+ Ri*Rn*Rm) (4)                                                                                                                      

5. Выходное напряжение ЦАП:

   Uвых. = Кu*Uоп (В),                                                                                     (5)

где Ku для различных  положений переключателей, имитирующих кодовые комбинации «0» и «1».

 

 

 

 

55

3.2 Произвести расчет

iм=_____________________________________________________________________________________________________________________

Мс.пр=__________________________________________________________________________________________________________________

Рм=_________________________________________________________

____________________________________________________________

Кд=________________________________________________________

____________________________________________________________

Ку=____________________________________________________________________________________________________________________

Км=________________________________________________________

____________________________________________________________

К0=____________________________________________________________________________________________________________________

 

3.3 Результаты расчета свести в таблицу 2.

                                                                                                      Таблица 2

№ варианта

iм

Мс.пр(н*м)

Рм(Вт)

Кд

Ку

Км

Ко

 

 

 

 

 

 

 

 

 

4. Контрольные вопросы к практической работе №9

1.Чем отличаются следящие системы от систем стабилизации и систем программного управления?

2. Как делятся следящие системы по назначению?

3. Какая характеристика следящей системы является основной?

4. Чем определяется точность следящей системы?

5. Что вызывает увеличение добротности следящей системы? 

 

                                Список литературы

        1. Келим Ю.М. Типовые элементы систем автоматического управления.

-М,: «Форум - Инфра - М», 2002 г., -383с.

                                 

 

 

 

 

 

 

 

54

,                                                     (5)

где b- коэффициент нагрузки;

      d max – максимальная погрешность.

6) сопротивление потенциометра:

(Ом),                                                                      (6)                                            

где R- сопротивление потенциометра,.

7) высота каркаса:

             (мм),                                              (7)                                                           

где Н- высота каркаса

       r - удельное сопротивление,

       b - толщина каркаса.

 

2.2 Пример расчета:

Исходные данные:

Rн = 4400 Ом, d max = 2,5 %, U = 26 B, D = 45 мм, a = 330, b = 2 мм,  dр = 0,25 %, r = 0,49 * 10-6 Ом × м.

 

Решение:

1)    L = 330 * 45 * 3,14 / 360 = 129,5 (мм);

2)    n = 100 / 0,25 = 400 (витков);

3)    t = 129,5 / 400 = 0, 324 (мм);

4)    dи = 0,324 – 0,015 = 0,309 (мм) (с учетом изоляции);

5)    Выбираем d » 0,3 (мм) = 0,3 * 10-3 (м);

6)    b = (1 – 0,025) / (4 * 0,025) = 9,75;

7)    R = 4400 / 9,75 = 451,3 (Ом);

8)    H = {[3,14 * 451,3 * (0,3 * 10-3)2] / (8 * 0,49 * 10-6 * 400)} – 0,002 =  0,0793 (м) = 79,3 (мм).

 

3 Задание:

3.1 Рассчитать параметры потенциометрического датчика. Исходные данные для расчета взять из таблицы 1, согласно варианту.

 

 

 

 

 

7

 

Таблица 1

 

варианта

Rн (Ом)

dmax (%)

U (B)

D (мм)

a

B (мм)

dр (%)

r × 10-6

(Ом×м)

1

4400

2,0

26

50

330

1,8

0,2

0,49

2

4400

3,0

26

55

330

2,5

0,2

0,42

3

4400

2,7

26

47

330

1,5

0,23

0,49

4

4400

2,3

26

52

330

2,3

0,25

0,42

5

4400

2,1

26

49

330

2,0

0,21

0,42

 

3.2  Произвести расчет

 

L=     _____________________________________________

__________________________________________________

n=     _____________________________________________

__________________________________________________

τ=      _____________________________________________

__________________________________________________

dи=    _____________________________________________

__________________________________________________

β=   ______________________________________________

__________________________________________________

R=     _____________________________________________

__________________________________________________

H=     _____________________________________________

__________________________________________________

3.3 Результаты расчета свести в таблицу 2.

                                                                                                             Таблица 2

L (мм)

n (вит)

t (мм)

dи (мм)

b

R (Oм)

Н (мм)

 

 

 

 

 

 

 

 

 

8

5) коэффициент усиления усилителя по напряжению:

                           ,                            (5)

где Δд- допустимое значение динамической ошибки;

       i- придаточное число между сельсинами точного и грубого отчетов.

6) общий коэффициент усиления системы:

К0=К*Кудм,                              (6)

где Км=iм*i.-коэффициент механической передачи к сельсину точного

отсчета.

 

2.2 Пример расчета

Исходные данные:

Мс=50Н*м; nmax=3,3 об/мин; Δд≤0,1°; i=30;  К=0,5 В/град; Uy.max= 240В, nн=6000 об/мин; η= 0,6

 

Решение:

1) iм=333/6000=1/1800;

2) Мс.пр=50/(0,6*1800)=4,63*10-2 (н*м);

3) Рм=(4,63*10-2*6000)/97,5=2,86*10-2 (кВт);

4) Кд=6000/240=150 (град/(в*сек));

5) Ку=240/(0,1*30*0,5)=160;

6) Км=30/1800=1/60;

7) К0=0,5*160*150*(1/60)=200 (1/сек).

 

3. Задание:

3.1 Рассчитать общий коэффициент усиления системы. Исходные данные для расчета взять из таблицы 1, согласно варианту.

                                                                                                             Таблица 1

№ варианта

Мс (н*м)

nmax (об/мин)

Δд

i

К

(В/град)

nн (об/мин)

η

Uy.max (В)

1

45

3,3

0,1

25

0,5

5500

0,58

240

2

55

3,3

0,1

30

0,5

5700

0,5

240

3

60

3,3

0,1

35

0,5

5800

0,6

240

4

50

3,3

0,1

25

0,5

5900

0,62

240

5

48

3,3

0,1

29

0,5

6000

0,65

240

 

 

 

53

Практическая работа №9

 

Определение основных параметров следящего привода

                    

         1  Цель работы

             Научиться рассчитывать параметры исполнительного устройства и

         коэффициента усиления системы для следящего привода

 

2 Пояснения к работе.

2.1 Краткие теоретические сведения:

Системы автоматики делятся на системы стабилизации, системы программного управления и следящие системы. Следящие системы – это такие системы, которые с той или иной степенью точности воспроизводят изменения входных величин, происходящие по произвольному закону.

           По назначению следящие системы делятся на следящие электроприводы, системы дистанционного управления, измерительные системы.       

          

1) передаточное число редуктора:

,                                                                       (1)

где nmax- максимальная скорость загрузки;

      nн- число оборотов двигателя.

2) момент сопротивления, приведенный к валу:

          (Н/м),                                                   (2)

где Мс- момент сопротивления нагрузки;

      η- КПД механическая передача.

3) мощность двигателя:

 (Вт),                                                   (3)

4) коэффициент усиления двигателя по скорости относительно напряжения управления;

 ,                                                                 (4)

 

52

Задача №2: Определить параметры термоэлектрического датчика.

 

2     Пояснения к работе

2.1 Краткие теоретические сведения:

 

Термоэлектрический датчик – датчик генераторного типа. Термоэлектрический датчик представляет собой цепь, состоящую из двух разнородных металлов. Проводники называются термоэлектродами, стыки – спаями, а возникающая при нагреве спая ЭДС – термо ЭДС. Спай, температура которого поддерживается постоянной, называется холодным, а спай, соприкасающийся с измеряемой средой, – горячим. По величине термо – ЭДС можно судить о разности температур горячего и холодного спаев, и если известна температура холодного спая, то можно определить температуру горячего спая.

 

1) величина термо – ЭДС:

(мВ),                                   (8)                                                               

где Етп– термо– ЭДС,

 

2) перепад температуры:

(град.),                                              (9)                                                                            

где tпер- перепад температуры.

 

3) температура горячего конца термопары:

(град.),                                                           (10)                                                                                      

где - температура холодного конца термопары.

 

4) при точном расчете термо - ЭДС вводится поправка на температуру холодного конца термопары:    

      (мВ)                                                    (11)                                                                                                                                                                                                                                                      

5) расчетная термо - ЭДС:

 

(мВ)                                                            (12)                

 

 

9

 

2.2 Пример расчета:

Исходные данные:

Rм = 130 Ом; Rвн = 10 Ом; t = 15 оC;

Uм = 24 мВ; Етабл. = 6,95 мВ;

 

Решение:

1) мВ;

2) ;

3) ;

4) ;

5) .

3         Задание:
3.1 Определить параметры термоэлектрического датчика. Исходные данные для расчета взять из таблицы 1, согласно варианту.

 

                                                                                                             Таблица 1

 

№ варианта

Rм (Ом)

Rвн (Ом)

t (град)

Uм (мв)

Етабл. (мв)

1

120

10

5

24

6,95

2

130

10

10

24

6,95

3

140

9

15

24

6,95

4

150

8

20

24

6,95

5

160

10

25

24

6,95

 

3.2 Произвести расчет

 

Етп= _______________________________________________________

___________________________________________________________

 

 

10

I1 =

 

I3 =

 

Iк =

 

I2 =

 

d1 =

 

d2 =

 

d3 =

 

dк =

         3.3   Результаты расчета свести в таблицу 2

 Таблица 2

 

S1

(см2)

S2

(см2)

ео

(В)

Uc

(В)

С

(Ф)

W1

W2

W3

Wк

 

 

 

 

 

 

 

 

 

 

I1

(А)

I2

(А)

I3

(А)

Iк

(А)

d1

(мм)

d2

(мм)

d3

(мм)

dк

(мм)

 

 

 

 

 

 

 

 

 

4. Контрольные вопросы к практической работе №8

                  1. В каких контурах  можно получить резонансы тока и напряжения?

                  2. В каких контурах  можно получить стабилизацию тока и напряжения?

                   3. Что является основным недостатком феррорезонансного стабилизатора?

               4.Какие возможны допущения при исследовании феррорезонансного стабилизатора?

                  5.  Какие бывают феррорезонансные стабилизаторы?

 

                                       Список литературы

        1. Келим Ю.М. Типовые элементы систем автоматического управления.

-М,: «Форум - Инфра - М», 2002 г., -383с.

 

 

51

3. Задание:

 

3.1 Определить основные параметры феррорезонансного стабилизатора напряжения. Исходные данные  для расчета взять из таблицы 1 согласно варианту.

 

Таблица 1

 

№ варианта

 

 Рн

 (Вт)

Uн

(В)

Uвх

(В)

Uр

(В)

J

(А/мм)

1

2

3

4

5

60

70

80

90

100

170

180

190

200

220

180

160

180

170

200

500

600

500

600

500

1,6

1,6

1,6

1,6

1,6

 

3.2. Произвести расчет

 

Sст1 =

 

Sст2 =

 

е о =

 

Uc =

 

 

C =

 

W1 =

 

W2 =

 

Wк =

 

W3 =

 

 

 

 

 

50

tпер=___________________________________________________________________________________________________________________

t1= _________________________________________________________ ____________________________________________________________

Еп=_________________________________________________________ ____________________________________________________________

Ер= ________________________________________________________

____________________________________________________________

 

 

3.3 Результаты расчета свести в таблицу 2.

                                                                                                           Таблица 2

 

Етп(В)

(град)

(град)

Еп(В)

Ер(В)

 

 

 

 

 

 

5.       Контрольные вопросы по практической работе №1

 

1.       Изменением какого параметра можно уменьшить погрешность от ступенчатости выходного напряжения в потенциометрическом датчике?

2.       Что показывает разрешающая способность потенциометра ?

3.       От чего зависит ЭДС термоэлектрического датчика?

4.       Какие бывают схемы включения термоэлектрического датчика?

5.       Укажите области применения потенциометрического и

   термоэлектрического датчиков.

 

 

                                            Список литературы

        1. Келим Ю.М. Типовые элементы систем автоматического управления.

-М,: «Форум - Инфра - М», 2002 г., -383с.

 

 

 

 

 

 

 

11

Практическая работа №2

 

Определение основных параметров индуктивного датчика

 

               1  Цель работы

    1.1  Научиться рассчитывать индуктивность индуктивного датчика.

    1.2  Научиться рассчитывать параметры обмотки индуктивного датчика.

 

Задача №1. Рассчитать индуктивность индуктивного датчика 

    2    Пояснения к работе

2.1 Краткие теоретические сведения.

 

Индуктивные датчики преобразуют механическое перемещение в изменение параметров магнитной и электрической цепей. Принцип действия индуктивных датчиков основан на изменении индуктивности L или взаимоиндуктивности M обмотки с сердечником вследствие изменения магнитного сопротивления Rм магнитной цепи, в которую входит сердечник.

 

1) последовательность преобразований:

F ® dв ® Rм ® L ® XL ® Z ® I,

где F - усилие;

      dв - длина воздушного зазора;

      Rм - магнитное сопротивление;

      L - индуктивность;

      XL - индуктивное сопротивление;

      Z - полное сопротивление;

      I - ток.

 

2) индуктивность датчика вычисляется по формуле:

(Гн)                                               (1)

где L - индуктивность датчика,

      dв - длина воздушного зазора;

      n - число витков;

      Sм - площадь поперечного сечения магнитопровода.

 

 

 

12

7)  Ток в обмотках:

              а) I1 = 2*Pн/Uвх. (А)                                                               (10)                                                                                                                                     

              б) I3 = 1,5*Pн/Uн (А)                                                              (11)

              в) Iк = Iн = Рн/Uн (А)                                                               (12)

              г)  I2 = (А)                                                       (13)

      

       8) Диаметр провода обмоток:

d1 = 4*I1/3,14*J (мм)                                                              (14)

d3 = 4*I3/3,1                                                                            (15)

dк = 4*Iк/3,14*J (мм)                                                             (16)

      d2 = 4*I2/3,14*J (мм)                                                              (17)

где J – допустимая плотность тока

 

2.2 Пример расчета:

 

Исходные данные.

Рн = 70 Вт; Uн = 170 В; Uвх = 170 В; Uр = 500 В; J = 1,6 А/мм

 

Решение:

1.  Sст1 = 1,1* = 1.1 = 9,2 (см2)

2.  Sст2 = 0,6*Sст1 = 0,6*9,2 = 5,5(см2)

3.  eo = 0,022*Sст1 = 0,022*9,2 = 0,2 (В)

4.  Uc = 0,65Uр = 0,65*500 = 325 (В)

5.  С = 13000*Рн/Uс2 = 13000*70/325*325 = 9 (Ф)

6.  W1 = Uвх/eо = 170/0,2 = 850 

     W2 = 1,43*Uн/eо = 1,43*170/0,2 = 1215

     Wк = 0,25*W2 = 0,25*1215 = 304

     W3 = Uc/eoW2 = 325/0,2 – 1215 = 410

      7.   I1 = 2*Pн/Uвх = 2*70/170 = 0,8 (А)

                    I3 = 1,5*Рн/Uн = 1,5*70/170 = 0,6 (А)

                    Iк = Iн = Рн/Uн = 70/170 = 0,4 (А)

                    I2 == =0,76 (А)

8.       d1 = 4*I1/3,14*J = 4*0,8/3,14*1,6 = 0,63 (мм)

d2 = 4*I2/3,14*J = 4*0,76/3,14*1,6 = 0,6 (мм)

d3 = 4*I3/3,14*J = 4*0,6/3,14*1,6 = 0,47 (мм)

dк = 4*Iк/3,14*J = 4*0,4/3,14*1,6 = 0,31 (мм)

 

 

 

49

Практическая работа №8

                                 Определение основных параметров

                        феррорезонансного стабилизатора напряжения

                           

          1  Цель работы

    1.1  Научиться рассчитывать параметры феррорезонансного стабилизатора напряжения.  

    

2 Пояснения к работе.

2.1 Краткие теоретические сведения:

Феррорезонансный стабилизатор напряжения служит для стабилизации переменного напряжения. Исследование стабилизатора основано на следующих допущениях: искажение кривой напряжения и фазовый сдвиг напряжений на ненасыщенном и насыщенном стержнях не учитываются; расчет производится по приближенным  формулам для заданного среднего значения входного напряжения.                                                                                                                                                                             

 

 1) Активное сечение стали ненасыщенного стержня:

Sст1 = 1,1*       (см2)                                                                                                    (1)

 

 2)  Активное сечение стали насыщенного стержня:

Sст2 = 0,6*Sст1               (см2)                                                                                                     (2)

 

      3) Число вольт на один виток первичной обмотки:

eо = 0,022*Sст1 (B)                                                                          (3)

 

       4) Напряжение на конденсаторе

      Uc~0,65*Uр(В)                                                                                 (4)

где Uр – допустимое рабочее напряжение

 

       5) Емкость конденсатора

С = 13000*Рн/ Uc2 (Ф)                                                                    (5)

 

       6)   Число витков обмоток стабилизатора:

             а) первичная обмотка  W1 =Uвх/eо                                                                            (6)

             б) вторичная обмотка  W2 = 1,43Uн/eо                                                                 (7)

             в) компенсационная обмотка Wк = 0,25*W2                                                  (8)

             г) обмотка W3 = Uc/eoW2                                                                                              (9)

 

48

2.2 Пример расчета

Исходные данные:

dв1 = 0,4 мм = 0,0004 м = 4 * 10-4 м; dв2 = 0,6 мм = 0,0006 м = 6 * 10-4 м; dв3 = 0,8 мм = 0,0008 м = 8 * 10-4 м; Sм = 40 мм2 = 0,00004 м2 =

= 4 * 10-5 м2; n = 16000 витков.

 

Решение:

 (Гн)

 (Гн)

 (Гн)

 

Построить график L = f(dв)

            L(Гн)

 

dв  (мм)

 

 

 

 

 

 

 

 

13

3 Задание:       

         3.1 Определить индуктивность датчика в зависимости от длины воздушного зазора. Исходные данные для расчета взять из таблицы 1, согласно варианту.

                                                                                                             Таблица 1

№ варианта

dв1, (мм)

dв2, (мм)

dв3, (мм)

Sм, (мм2)

n

1

0,3

0,5

0,7

40

16000

2

0,4

0,6

0,8

50

16000

3

0,3

0,5

0,7

60

15500

4

0,4

0,6

0,8

30

16500

5

0,5

0,7

0,9

30

16500

 

 

3.2 Произвести расчет

 

L1=_________________________________________________________                __________________________________________________________

L2=_________________________________________________________                __________________________________________________________

L3=________________________________________________________

____________________________________________________________

 

3.3 Результаты расчета свести в таблицу 2.

                                                                                                            Таблица 2

L1 (Гн)

 

L2 (Гн)

L3 (Гн)

 

 

 

 

 

Построить график L = f(dв)

 

 

 

 

14

I1=

 

 

Рн =

 

 

Р вых.=

 

Рб =

 

Ру =

 

       

     3.3 Результаты расчета свести в таблицу 2

                                                                                                    Таблица  2

 

Rб

(Ом)

Rэ

(Ом)

I1

(А)

Рн

(Вт)

Рвых. (Вт)

Рб

(Вт)

Ру

(Вт)

 

 

 

 

 

 

 

 

            4.  Контрольные вопросы к практической работе №7
         1.  Как определить коэффициент усиления многокаскадного МУ, если известны коэффициенты усиления отдельных каскадов?

           2.  Как определить постоянную времени многокаскадного МУ, если известны постоянные времени отдельных каскадов?

           3.  Какие виды реверсивных МУ существуют?

           4.  Как получить реверсивный магнитный усилитель?

           5.  В чем основные различия реверсивных и нереверсивных МУ?

 

                                   Список литературы

        1. Келим Ю.М. Типовые элементы систем автоматического управления.

-М,: «Форум - Инфра - М», 2002 г., -383с.

 

 

 

47

8)   Мощность, выделяемая в обмотке управления

                       Ру = Iу2*Rу   (Вт)                                                           (8)     

 

2.  Пример расчета

 

                            Исходные данные:

 Rн =5625 Ом;  Iн = 5 мА;  Iу = 0,25 мА;  Rу = 1000 Ом

 

 Решение

1.       Rб = *5625 = 8000 (Ом)

2.       Rэ = 2*5625 = 11250 (Ом)

3.       I1 = 1,7*5 = 8,5 (мА)

4.       Рн = (5*10 -3 )2*5625 = 0,014 (Вт)

5.       Рвых. = 0,014/0,175 = 2,45 (Вт)

6.       Рб = 2,45 – 0,014 = 2,436 (Вт)

7.       Ру = (0,25*10-3 )2  *1000 = 0,625*10-3 (Вт)

 

            3. Задание:              

3.1.   Рассчитать основные параметры реверсивного МУ.

Исходные данные для расчета взять из таблицы 1, согласно варианту.

Таблица 1

                                                      №

 

Rн Ом

 Iн

 мА

Iу

мА

Rу

Ом

1

2

3

4

5

5000

5500

5400

5650

5300

   5,0

   4,5

   5,5

   5,2

   6,0

0,35

0,25

0,4

0,3

0,2

1250

1300

1150

1400

1500

 

3.2 Произвести расчет:

Rб =

 

Rэ =

 

I1=

 

46

 

Задача №2 Определить параметры обмотки индуктивного

           датчика.

 

           2   Пояснения к работе

           2.1 Краткие теоретические сведения:

 

1.       Угловая частота переменного тока определяется по формуле:

     ,                                               (2)

где f - частота.

 

2.       Индуктивность датчика:

      ,                                  (3)                                              

где U~ - переменное напряжение,

I~ - переменный ток,

w - угловая частота.

 

3.       Число витков:

      ,                            (4)

где Sм - площадь поперечного сечения  магнитопровода,

dв - длина воздушного зазора.

 

4.       Диаметр провода:

                              (5)

где - допустимая плотность тока

 

2.2 Пример расчета

 

Исходные данные:

Sм = 200 мм2 = 2*10-4 м2, dв = 2 мм = 2*10-2 м, I = 10 мA =    0,01 А, Dдоп = 3 А/мм, U = 220 B, f = 400 Гц

 

 

 

 

 

 

15

Решение:

 

1.

2.

3.

4.

 

 

3 Задание:

3.1 Определить параметры обмотки  датчика. Исходные данные для расчета взять из таблицы 1, согласно варианту.

 

                                                                                             Таблица 1

 

№ варианта

Sм (мм2)

dв (мм)

I A)

Dдоп (А/мм)

U (B)

f (Гц)

1

2

3

4

5

500

300

400

550

550

3

3

3

9

7

10

10

20

15

25

4

3.5

3.5

3.5

4

220

220

220

220

220

400

400

400

400

400

 

3.2. Произвести расчет

 

W =

 

L =

 

n =

 

d =

 

 

 

 

 

16

 Задача №2: Определить основные параметры реверсивного МУ с балластными сопротивлениями и выходом на постоянном токе.

 

 2.  Пояснения к работе

2.1 Краткие теоретические сведения:

 

         Реверсивные  МУ – это усилители, в которых при изменении полярности управляющего сигнала изменяется полярность тока нагрузки. Если на выходе реверсивного МУ включается одно сопротивление нагрузки, в котором ток нагрузки может менять  полярность при изменении полярности тока управления, применяются  схемы с балластными сопротивлениями.

          При максимальном токе управления один из МУ, входящих в реверсивный МУ, в котором напряженности смещения и управления вычитаются, работает в режиме близком к холостому ходу, поэтому током на выходе другого МУ можно пренебречь. При этом схему реверсивного МУ можно привести к схеме замещения, в которой сопротивления обмоток Wпос и сопротивления вентилей можно считать включенными в сопротивление Rб, а расчет параметров реверсивного МУ - вести по эквивалентной схеме.                                                                                              

 

1)  Балластное сопротивление

                 Rб = Rн (Ом)                                                                                (1)                                                               

              2)  Ток нагрузки

     Iн = I1*Rб/(Rн+Rб )(А)                                                                      (2)

              3)  Эквивалентное сопротивление

Rэ = 2Rб(Rн+Rб2)/(Rб+Rн )= 2*Rн2+2Rн2/ (Rн+Rн )=2Rн        (3)

                               4)  Ток I1

         I1= Iн(Rн+*Rн)/V2Rн=Iн(1+)/~ 1,700Iн (А)                (4)

                               5)  Мощность, выделяемая в нагрузке

                                 Рн=Iн2*Rн(Вт)                                                                                                                 (5)

           6)  Выходная мощность

                                  Рвыхн/0,175(Вт) (получено из Рн=0,175*I12*Rэ=0,175*Р1)            (6)

           7)  Мощность, выделяемая на балластном сопротивлении

                                  Рбн– Р(Вт)                                                                                                                                    (7)

 

 

 

45

Таблица 1

 

варианта

 

Кос

Кр ому

Кр1 мму

Кр2 мму

 

f

Гц

h

1

2

3

4

5

0.96

0,96

0,97

0,97

0,98

3600

3600

3600

6400

6400

60

40

30

80

40

60

90

120

80

160

50

50

50

50

50

1

1

1

1

1

 

 

3.2 Произвести расчет:

 

Крмму =

 

Тому =

 

Тмму =

 

Тому/Тмму =

 

 

Вывод:

 

 

3.3 Результаты расчета свести в таблицу 2

                                                                                      Таблица  2     

 

Крмму

Тому (С)

Тмму (С)

Тому/ Тмму

 

 

 

 

 

 

 

 

 

 

 

 

 

44

 

  3.3 Результаты расчета свести в таблицу 2

Таблица 2

 

W (1/сек)

L (Гн)

n (витков)

d (мм)

 

 

 

 

 

 

 

                 4. Контрольные вопросы к практической работе №2

 

1.       Какие типы индуктивных датчиков существуют?

2.       Укажите реверсивен или нереверсивен одинарный индуктивный датчик?

3.       Объясните цепь преобразований в индуктивном датчике.

4.       Как можно получить дифференциальный индуктивный датчик?

5.       Укажите достоинства и недостатки индуктивных датчиков.

 

 

Список литературы

        1. Келим Ю.М. Типовые элементы систем автоматического управления.

-М,: «Форум - Инфра - М», 2002 г., -383с.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17

Практическая работа №3

 

Определение основных параметров          пьезоэлектрического   и емкостного датчиков.

 

          1  Цель работы

    1.1  Научиться рассчитывать параметры пьезоэлектрического датчика.

    1.2  Научиться рассчитывать параметры емкостного датчика.

 

           Задача №1   Рассчитать параметры пьезоэлектрического датчика.

 2 Пояснения к работе.

 2.1 Краткие теоретические сведения:

 Пьезоэлектрические датчики относятся к датчикам генераторного типа, в которых входной величиной является сила, а выходной – количество электричества. Работа пьезоэлектрического датчика основана на пьезоэффекте, сущность которого заключается в том, что на гранях некоторых кристаллов при их сжатии или растяжении появляются электрические заряды.

 

1)       величина заряда:

    (К/Н),                                                                                      (1)

где Ко – пьезоэлектрическая постоянная (модуль),;

      Fx – усилие, направленное вдоль электрической оси.

 

2)       емкость одной пластины:

    ,  (пФ)        (2)

где Со - емкость одной пластины,;

       - относительная диэлектрическая проницаемость;

      D - диаметр пластины (диска);

      a и b - стороны пластины (прямоугольника);

      d - толщина пластины.

 

 

 

 

 

 

 

18

Т1мму  и Т2мму - постоянные времени отдельных каскадов

        многокаскадного магнитного усилителя;

         f – частота;

                         h= Rн/R – КПД рабочей цепи

         Кос – коэффициент ОС

 

             3)   Постоянная времени ММУ (двухкаскадного МУ)

      Тмму = Т1мму + Т2мму (c),                                                            (3)

 

                                  

2.2 Пример расчета

 

Исходные данные:

 

Кос = 0,97; f = 50 Гц; n = 1; Крому = 3600; Кр1мму = 60; Кр2мму = 60

 

 

Решение

 

1.       Крмму = 60*60 = 3600

2.       Тому = 3600*(1 - 0,97)/4*50*1 = 0,54 (с)

3.       Тмму = 60*(1–0,97)/4*50*1+60*(1– 0,97)4*50*1=0,009+0,009= 0,018(с)

4.       Тому/Тмму = 0,54/0,018 = 30

5.       Крому/Крмму = 3600/3600 = 1

 

Вывод: Коэффициенты усиления однокаскадного и двухкаскадного МУ равны, а  инерционность двухкаскадного МУ в 30 раз меньше, чем у однокаскадного.

 

 

3. Задание:

 

3.1 Определить основные параметры МУ и сравнить коэффициенты усиления и инерционности ОМУ и ММУ. Исходные данные для расчета взять из таблицы 1, согласно варианту.

 

 

 

43

Практическая работа №7.

Определение основных параметров многокаскадного  и реверсивного    магнитных усилителей

                           

          1  Цель работы

    1.1  Научиться рассчитывать параметры многокаскадного магнитного усилителя.

    1.2  Научиться рассчитывать параметры реверсивного магнитного усилителя.

 

 Задача №1: Сравнить постоянные времени однокаскадного  и многокаскадного  магнитных усилителей (ОМУ и ММУ).

    

2 Пояснения к работе.

2.1 Краткие теоретические сведения:

 

            Коэффициент усиления ММУ равен произведению коэффициентов усиления отдельных каскадов. Постоянная времени ММУ равна сумме постоянных времени отдельных каскадов. Инерционность ММУ определяется, в основном, инерционностью первого каскада, поэтому его выбирают с небольшим коэффициентом усиления, а необходимый коэффициент усиления набирается за счет остальных каскадов. Обычно ММУ включает пять, шесть каскадов

 

1)   Коэффициент усиления по мощности  ММУ

                Крмму = Кр1мму*Кр2мму,                                                         (1)

             где  Кр1мму -  коэффициент усиления по мощности первого каскада,

                    Кр2мму – коэффициент усиления по мощности второго каскада

 

            2)    Постоянные времени ОМУ и первого и второго каскадов ММУ

    Тому = Крому*(1- Кос)/4*f*n (c),                                          (2)

    T1мму = Кр1мму *(1 – Кос)/4*f*n (c),

    T2мму = Кр2мму* (1 – Кос)/4*f*n (c),

 где  Крому, Кр1мму, Кр2мму – коэффициенты  усиления по мощности

                    однокаскадного, первого и второго каскадов магнитных

                    усилителей;

      

 

 

42

3)       напряжение между обкладками:

    (пФ),                                     (3)

где Свх - емкость измеряемой цепи,;

      n - количество пластин.

 

4)       чувствительность датчика:

     (В/Н),                                                                             (4)    

где Sд – чувствительность датчика,.

 

2.2 Пример расчета

 

Исходные данные:

Материал – Кварц,  = 4,5 * 10-11, Ko = 2,5 * 10-12 К/Н; n = 1;

D = 1 см = 1 * 10-2 м; d = 1 мм = 1 * 10-3 м; Fx = 15 Н; Cвx = 17 пФ.

 

Решение:

 

1) qx = 2,5 * 10-12 * 15 = 37,5 * 10-12 (К);

2) ;

3) (В);

4) .

 

 3 Задание:

 3.1 Определить параметры пьезоэлектрического датчика, выполненного в виде прямоугольника (диска) со сторонами a и b (диаметр D), толщиной d, с параллельно соединенными пластинами в количестве “n” штук.

 

 

19

 Исходные данные для расчета взять из таблицы 1, согласно варианту.

                                                                                                       Таблица 1

 

варианта

Материал

* 10-11

Ko * 10-12 К/Н

а*b, (см2)

D, (см)

d

(мм)

Fx

(Н)

Свх

(пФ)

n

(шт)

1

Кварц

4,5

2,7

D=1

1

20

16,8

1

2

сегн. Соль

205

150

2 х 1

1

30

13,1

1

3

Кварц

4,5

2,7

1 х 1

2

15

20

2

4

тит. Бария

1500

100

2 х 2

3

40

20

2

5

тит. Бария

1500

100

D=1

1

20

52

1

 

 

3.2 Произвести расчет

 

qх=______________________________________________________________  _________________________________________________________________

Cо=______________________________________________________________  _________________________________________________________________

U=________________________________________________________________________________________________________________________________

Sд=______________________________________________________________  _________________________________________________________________

 

 

3.3 Результаты расчета свести в таблицу 2.

                                                                                                            Таблица 2

 

qx, (К/Н)

Со, (пФ)

U, (В)

Sд, (В/Н)

 

 

 

 

  

 

 

 

 

 

20

G =

 

q =

 

Wр =

 

Qр =

       

       3.3 Результаты расчета свести в таблицу 2

      Таблица  2

Кз

Uс

(В)

Нмах

 (А/см)

Вст

(Тл)

G

(г)

q

(мм)

Wр

 

Qр

(мм2)

 

 

 

 

 

 

 

 

 

5.       Контрольные вопросы к практической работе №6

1.       Для чего в схему магнитного усилителя (МУ) вводится обмотка смещения?

2.       Чем отличаются МУ с внешней и внутренней обратными связями

3.       С помощью чего в МУ с внутренней ОС создается эффект обратной связи?

4.       Как осуществляется регулировка коэффициента обратной связи в МУ с внутренней ОС?

5.       Чему равен коэффициент обратной связи в МУ с внутренней ОС?

 

Список литературы

        1. Келим Ю.М. Типовые элементы систем автоматического управления.

-М,: «Форум - Инфра - М», 2002 г., -383с.

 

 

 

 

 

 

 

 

41

Решение

 

1         Кз = 2,8/2,3 = 1,2

2         Uc = 1,11*1,2*0,68*130 = 115 (В)

3         Нмах = 50*2*0,48 = 48 (А/см)

4     Вст = 2,8/2 = 1,4 (Тл)

5     V = 115*0,68*104/4,44*400*48*1,4 = 6,54 (см3)

6         G = 7,8*6,54 = 51 (г)

7         q = 0,68/4 = 0.27 (мм2)

8         Wр = 115*104/4,44*400*0,49*1,4 = 943

9         Qр = 0,27*943/0,325 = 783 (мм2)

 

3.   Задание:

3.1 Рассчитать основные параметры МУ с внутренней ОС, если приращения индукций составляют: D Вумах = 2,8 Тл и D Вун = 2,3 Тл, а напряженность поля Нс = 0,48 А/cм. Исходные данные для расчета взять из таблицы 1 согласно варианту.

Таблица 1

 

                                                      № варианта

 

Rн (Ом)

Iнмах

  ( А)

Ккр

g

(г/см2)

J

(А/мм)

S

(см2)

 

Кзап

f

(Гц)

1

2

3

4

5

120

130

140

125

135

0,62

0,64

0,68

0,66

0,60

50

52

54

52

54

7,8

7,8

7,8

7,8

7,8

4,0

4,0

4,0

4,0

4,0

0,49

0,49

0,49

0,49

0,49

0,325

0,325

0,325

0,325

0,325

400

400

400

400

400

3.2.   Произвести расчет:

Кз =

 

Uс =

 

Нмах =

 

Вст =

 

V =

40

 Задача №2. Рассчитать основные параметры емкостного датчика угловых перемещений

 

     2   Пояснения к работе

2.1 Краткие теоретические сведения.

Емкостной датчик угловых перемещений имеет вид:

 

 

1-подвижная пластина;

2-вал;

3-неподвижная пластина.

 

1) максимальная емкость датчика при а = 180 равна:

(Ф),    (5)

где   Sмах - площадь взаимодействия между подвижной и одной из

неподвижных пластин,

              Сmaх - максимальная емкость,

              d-расстояние между пластинами,

              ег=1 (диэлектрик-воздух).

     отсюда общее количество подвижных и неподвижных пластин

(штук),                                                     (6)

     полученное количество округляем до целого числа.

 

2) чувствительность датчика определяем по формуле:

                                                         (7)

 

 

21

2.2 Пример расчета

Исходные данные:

 Smax=15см 2; Сmaх=400; d=0,8; ег=1.;

 

Решение:

 =22(штук);

 =2

 

 

3 Задание:

3.1 Определить основные параметры емкостного датчика. Исходные данные для расчета взять из таблицы 1.

 

Таблица 1.

 

№ варианта

Smax, (см2)

Cmax (пФ)

d (мм)

1

 

12

 

400

 

0,5

 

2

 

10

 

200

 

0,6

 

3

 

15

 

600

 

0,4

 

4

 

18

 

830

 

0,8

 

5

 

15

 

440

 

0,6

 

 

3.2 Произвести расчет

 

n=________________________________________________________

__________________________________________________

 

Sд=________________________________________________________

____________________________________________________________

 

22

Задача №2  Определить параметры МУ с внутренней ОС.

 

2.   Пояснения к работе       

2.1 Краткие теоретические сведения:

 

1)  Коэффициент запаса

      Кз = DВумах /DВун,                                                    (6)

    где   DВ – приращение индукции                   

 2)  Напряжение, питающее схему

      Uс = 1,11*(1,2 ¸ 2,0)*Iнмах*Rн(В)                           (7) 

 3)  Максимальная напряженность

                  Hмах = Ккр*2Нс (А/см),                                              (8)

    где Ккр – коэффициент кратности

   4)  Индукция

                  Вст = DВумах/2 (Тл)                                                    (9)

   5)  Объем сердечника

        V = Uc*Iнмах*104/4,44*f*Hмахст (cм3)               (10)

      6)  Масса сердечника

                  G =g*V (г),                                                              (11)

                где g – удельная масса магнитного материала

       7)  Сечение провода

             q = Iнмах/j  (мм2),                                                   (12)

               где j – допустимая плотность тока          

             8)  Число витков рабочей обмотки

                   Wp = Uc*104/4,44*f*Sст,                                   (13)

   где  S -  сечение сердечника    

    9)  Площадь окна

         Qр = q*Wр/Kзап. (см2),                                      (14)

   где   Кзап. – коэффициент заполнения

 

2.2 Пример расчета

Исходные данные:

 

Rн =130 Ом, Iнмах = 0,68 А, f = 400 Гц, Ккр = 50, D Вумах = 2,8 Тл,

D Вун = 2,3 Тл, Нс = 0,48 А/ cм, g = 7,8 г/см2 , j = 4,0 А/мм, S = 0,49 см2 , Кзап. = 0,325.

 

 

 

 

39

3.Задание:

 

3.1 Рассчитать параметры обмотки смещения. Исходные данные для 

расчета взять из таблицы 1, согласно варианту

Таблица 1

 

№ варианта

Ну/м)

k

а(м)

Iсм(А)

qсм(К)

lсм(мм)

Uc(В)

ρ

1

0,05

25

0,9

0,006

0,012

0,055

220

1/57

2

0,04

25

0,8

0,005

0,013

0,055

130

1/57

3

0,03

30

0,6

0,004

0,0113

0,045

130

1/57

4

0,07

35

0,7

0,005

0,013

0,055

220

1/57

5

0,06

40

0,7

0,003

0,0113

0,035

130

1/57

 

3.2 Произвести расчет

 

l=______________________________________________________________________________________________________________________

Fсм=________________________________________________________                            ____________________________________________________________

ωсм=________________________________________________________ ____________________________________________________________

Rсм=________________________________________________________  ____________________________________________________________

Rрег=_______________________________________________________  ____________________________________________________________

 

 

3.3 Результаты расчета свести в таблицу 2.

Таблица 2.

 

l (м)

Fсм (Н)

ωcм

Rсм(Ом)

Rрег(Ом)

 

 

 

 

 

 

 

 

 

38

3.3 Результаты расчета свести в таблицу 2.

 

                                                       Таблица 2

 

n (шт)

Sд

 

 

 

 

 

   4.   Контрольные вопросы к практической работе №3

 

          1.  Какие материалы используются для пьезоэлектрических датчиков?

          2. В чем суть пьезоэффекта?

          3.  Где находят применение датчики, основанные на прямом и обратном пьезоэффектах?

          4. Как определить чувствительность емкостного датчика, зная его емкость?

          5. Какие виды емкостных датчиков существуют?

 

 

                               Список литературы

        1. Келим Ю.М. Типовые элементы систем автоматического управления.

-М,: «Форум - Инфра - М», 2002 г., -383с.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23

Практическая работа № 4

 

Определение основных параметров

электромагнитного реле постоянного тока

                  

               1  Цель работы

    1.1  Научиться рассчитывать параметры электромагнитного реле.

    1.2  Научиться рассчитывать параметры обмотки электромагнитного реле.

 

          Задача №1.   Рассчитать параметры электромагнитного реле.

2 Пояснения к работе.

2.1 Краткие теоретические сведения:

 

Реле – это устройство, которое автоматически осуществляет скачкообразное переключение выходного сигнала под воздействием управляющего сигнала, изменяющегося непрерывно в определенных пределах. Электромагнитные реле по роду используемого тока делятся на реле постоянного и переменного тока. Реле постоянного тока делятся на нейтральные и поляризованные. Рассмотрим основные параметры,  характеризующие работу, нейтрального электромагнитного реле постоянного тока.

 

1)       площадь воздушного зазора:

 ,                                                                   (1)

где Sδ - площадь воздушного зазора, (мм2);

      D - диаметр катушки.

 

2)       величина магнитного потока:

(Вб),                                                                           (2)                                                                                  

где F – намагничивающая сила.

 

 

 

 

 

 

 

 

24

3) число витков обмотки смещения:

,                                                  (3)

где Iсм – ток смещения.

 

4) сопротивление провода обмотки смещения:

*ρ(Ом)                              (4)

 

5) добавочное регулировочное сопротивление в цепи смещения:

(Ом).          (5)                                             

 

 

2.2     Пример расчета

 

Исходные данные:

k = 20; а = 0,7; Ну = 0,06А/м; Iсм = 0,005А; ρ = 1/57; qсм = 0,0113К;

lсм = 0,055мм; Uс = 130 В.

 

Решение:

 

1) l = 20*0,7=14 (м);

2) Fсм = 0,06*14=0,084 (Н);

3) ωсм = 0,84/0,005=170 (витков);

4) Rсм = 170*0,055/57*0,0113=14,5 (Ом);

5) Rрег = (130/1,11*0,005)-14,5=23400 (Ом).

 

 

 

 

 

 

 

 

 

 

 

 

37

Практическая работа №6.

 

            Определение основных параметров магнитного усилителя с внешней и внутренней обратными  связями.

                     

          1  Цель работы

    1.1  Научиться рассчитывать параметры обмотки смещения магнитного усилителя с внешней обратной связью.

   1.2  Научиться рассчитывать параметры магнитного усилителя с внутренней обратной связью.

 

          Задача №1. Определить параметры обмотки смещения магнитного усилителя с внешней обратной связью.

 

2 Пояснения к работе.

 

2.1 Краткие теоретические сведения:

 

В МУ для осуществления внешней обратной связи предусматривается  специальная обмотка обратной связи, которая располагается на сердечниках так же как и обмотка управления.  В МУ с внутренней ОС постоянное магнитное поле создается за счет постоянной оставляющей тока нагрузки, протекающей по рабочим обмоткам усилителя, т.е., нет необходимости в специальных обмотках ОС. Другое название МУ с внутренней ОС - МУ с самоподмагничиванием или с самонасыщением.

 

1)       длина обмотки:

  l=k*а(м),                                               (1)

где k - коэффициент кратности;

 

2)  сила смещения:

  Fсм = Ну*l (Н),                                       (2)

 

 

 

 

 

 

 

 

36

3)       магнитная индукция:

(Тл),            (3)                                                                                          

4)       магнитное напряжение, приходящееся на воздушный зазор:

(А),      (4)                                                                                            

где магнитная проницаемость.

 

 

2.2 Пример расчета

 

Исходные данные:

 

FK = 80 Н; D = 14 мм = 14× 10-3 м; d = 0,15 мм = 1,5× 10-4 м

 

Решение:

1) ;

2) ;

3) ;

4) (А).

 

3. Задание:

3.1 Рассчитать параметры электромагнитного реле. Исходные данные для расчета взять в таблице 1, согласно варианту.

 

 

 

 

 

 

 

 

 

25

Таблица 1

 

№ варианта

F (Н)

D (мм)

d (мм)

1

50

20

0,2

2

90

12

0,9

3

40

17

0,1

4

100

29

1,2

5

130

30

1,5

 

 

3.2 Произвести расчет:

 

Sδ=_____________________________________________________________________________________________________________________

Фδ=____________________________________________________________________________________________________________________

Вδ=_____________________________________________________________________________________________________________________

I*ωδ=_______________________________________________________

____________________________________________________________

 

 

3.3 Результаты расчета свести в таблицу 2.

                                                                                                           Таблица 2

 

S δ2)

Фδ (Вб)

Вδ(Тл)

I ·ωδ(А)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

3.2 Произвести расчет

Рн=_______________________________________________

Рy =______________________________________________

Кр=______________________________________________

Uc=______________________________________________

 = __________________________________________

а=_______________________________________________

 

3.3 Результаты расчета свести в таблицу 2.

Таблица 2

 

Рн (Вт)

Ру (Вт)

Кр

Uc (В)

Wp/Lcp

а

 

 

 

 

 

 

 

4. Контрольные вопросы к практической работе №5

 

   1. На какие типы делятся электромагниты по конструктивному исполнению?

   2. Почему клапанные электромагниты развивают большое тяговое усилие?

   3.  На чем основан принцип действия магнитного усилителя?

   4.  Для чего в схемы магнитных усилителей вводится обратная связь?

   5.  Какие бывают магнитные усилители с внешней обратной связью?

Список литературы

        1. Келим Ю.М. Типовые элементы систем автоматического управления.

-М,: «Форум - Инфра - М», 2002 г., -383с.

 

 

 

 

 

 

 

 

 

 

 

 

35

2.2 Пример расчета

Исходные данные:

Iн = 6 * А; Rн = 650 Ом; Ry = 660 Ом; Iy = 3 * А; f = 50 Гц; KB = 1; H~мах = 0,75; Kср = 20; B = 0,45 Тл.

 

Решение:

1) ;

2) ;

3) ;

4) ;

5) ;

6) .

 

3.Задание: Определить основные размеры сердечника МУ с внешней ОС.

3.1 Исходные данные для расчета взять из таблицы 1, согласно варианту.

Таблица 1

 

№ варианта

 

Iн

10-3 (A)

Rн (Ом)

Ry (Ом)

Iy

10-4 (A)

f

(Гц)

H~

max (В)

Kв

Кср

Вст

(Тл)

1

6

650

650

3

50

0,75

1

20

0,45

2

6

680

670

4

50

0,75

1

20

0,45

3

7

660

680

3

50

0,75

1

25

0,45

4

8

750

660

5

50

0,75

1

20

0,45

5

8

630

650

3

50

0,75

1

20

0,45

 

34

Задача №2 Определить параметры обмотки электромагнитного реле.

 

2    Пояснения к работе

2.1 Краткие теоретические сведения:

 

1) длина окна намотки:

LK = b - a ¢ - b ¢ (мм),                                                              (5)                                                                                     

где LК – длина окна обмотки;

       b - наружный размер обмотки;

       a' и b' – толщина щек катушки.

2) внутренний диаметр намотки:

(мм),                                                   (6)                                                                                   

где ДВН - внутренний диаметр обмотки;

      dс - диаметр сердечника;

      h - высота окна.

3)       наружный диаметр:

(мм),                                           (7)                                                                        

где ДНАР - наружный диаметр,

 (мм2),                                                        (8)                                                                                              

где Q0 - площадь окна,

5)  средняя длина витка:

(мм),                                 (9)                                                                         

где LСР - средняя длина витка.

6)  диаметр обмотки провода равен:

(мм),                                                (10)                                                                     

где d - диаметр обмотки провода,;

      - удельное сопротивление материала провода;

      F - намагничивающая сила;

      U - напряжение в обмотке.

 

2.2 Пример расчета:

Исходные данные:

b = 90 мм; dc = 8 мм; U = 12 В; a ¢ = 2 мм; b ¢ = 4 мм; r = 0,0175 Ом * м; F = 307,6 Н; h = 0,25 мм.

27

Решение:

1) ;

2) ;

3) ;

4) ;

5) ;

6) .

 

3.    Задание:

3.1 Рассчитать параметры обмотки реле. Исходные данные для расчета взять из таблицы 1, согласно варианту.

                                                                                                   Таблица 1

№ варианта

b (мм)

dс (мм)

U (В)

a ¢ (мм)

b ¢  (мм)

r   (Ом*м)

F (Н)

h (мм)

1

100

10

14

4

6

0,0275

97,035

0,35

2

70

15

16

6

8

0,0375

955,895

0,45

3

60

20

18

8

1

0,0475

500,123

0,55

4

110

25

20

10

12

0,0575

569,176

0,65

5

130

30

22

12

14

0,0675

718,264

0,75

 

3.2 Произвести расчет

 

LK=___________________________________________________________________________________________________________________

ДВН=_______________________________________________________

___________________________________________________________

ДН=______________________________________________

___________________________________________________________

___________________________________________________________

 

 

28

Задача №2: Определить основные параметры магнитного усилителя с внешней ОС.

   2    Пояснения к работе.

2.1 Краткие теоретические сведения:

 

Магнитный усилитель (МУ) – это статическое электромагнитное устройство, состоящее из сердечника и наложенных на него обмоток. Принцип действия МУ основан на использовании зависимости индуктивности катушки с ферромагнитным сердечником от величины подмагничевающего тока, создаваемого управляющим входным сигналом.

 Для повышения коэффициента усиления и быстродействия в МУ вводится обратная связь (ОС). ОС может быть внешней и внутренней.

1) мощность нагрузки:

   (Вт).                                                   (7)

2) мощность управления:

             (Вт),                                                     (8)

где  - токи на входе и на выходе;

       - сопротивления нагрузки и цепи управления;

3) коэффициент усиления по мощности:

             .                                                             (9)

4) величина напряжения питания схемы:

    (В).                                (10)

5)       удельное количество витков рабочей обмотки:

    ,                                              (11)

где H~мах - максимальная напряженность поля;

       IH - максимальный ток нагрузки.

6) основной размер сердечника:

  (12)

где f - частота переменного тока;

      KB, Kср - постоянные для данного сердечника;

      B - индукция.

 

 

33

3. Задание:

         3.1 Определить основные параметры клапанного электромагнита. Исходные   данные для расчета взять из таблицы 1, согласно варианту:

Таблица 1

 

Fэ

(Н)

d

(мм)

Вст

 (Тл)

s

a

m0

1

2

3

4

5

155

195

325

225

155

0,5

0,7

1,2

1,5

2,5

1,2

1,25

1,3

1,35

1,4

1,5

1,5

1,75

1,75

2,0

0,2

0,3

0,4

0,5

0,6

4π10-7

4 π 10-7

4 π 10-7

4 π 10-7

4 π 10-7

 

      3.2.  Произвести расчет: 

 

А =

 

S =

 

Sc =

 

Sя =

 

Sяк =

 

I*w =

 

 

 

3.3  Результаты расчета свести в таблицу 2    

                                                                       Таблица 2

А     (H/см)

Вd

(Тл)

S

(мм2)

Sc

(мм2)

Sя

(мм2)

Sяк

(мм2)

I*w

 (А)

 

 

 

 

 

 

 

 

 

 

 

 

32

 

Q0=_______________________________________________________

__________________________________________________________

Lср=_______________________________________________________

___________________________________________________________

d=_____________________________________________________________________________________________________________________

 

 

3.3 Результаты расчета свести в таблицу 2.

                                                                                                          Таблица 2

LК (мм)

ДВН (мм)

ДН (мм)

Q0

Lср (м)

d (мм)

 

 

 

 

 

 

 

            4.   Контрольные вопросы к практической работе №4

1.  В чем различие нейтральных и поляризованных электромагнитных реле?

2. Как должны располагаться тяговая и механическая характеристики электромагнитного реле друг относительно друга?

3.  Какие этапы работы электромагнитного реле существуют?

4.  Какие бывают типы нейтральных электромагнитных реле?

5. Какие существуют виды настройки контактов поляризованного реле?

 

                               Список литературы

        1. Келим Ю.М. Типовые элементы систем автоматического управления.

-М,: «Форум - Инфра - М», 2002 г., -383с.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29

Практическая работа №5

                 Определение основных параметров исполнительного

       электромагнитного устройства  автоматики и магнитного усилителя

 

          1  Цель работы

    1.1  Научиться рассчитывать параметры клапанного электромагнита.

    1.2  Научиться рассчитывать параметры магнитного усилителя с внешней обратной связью.

 

          Задача №1. Определить основные параметры клапанного электромагнита

  

2    Пояснения к работе.

2.1 Краткие теоретические сведения:

 

Электромагниты  бывают:

 по виду тока в обмотке - постоянного и переменного токов;

 по скорости  срабатывания –   быстродействующие, нормальные и       замедленного действия;

 по назначению -  приводные и удерживающие;

 по конструктивному   исполнению - клапанные (поворотные), прямоходные и   с поперечным движением якоря.

 

         Клапанные электромагниты имеют небольшое перемещение якоря

 (несколько мм) и развивают большое тяговое усилие.

 

1.   Конструктивный фактор

      А =   (Н/Ом),                                           (1)

где Fэ – тяговое усилие,

       d – ход якоря

     2.   Индукция в зазоре Вd (Тл)

(выбирается по зависимости Вd = f (А))                         

     3   Площадь сечения полюсного наконечника

S = Fэ/4*Вd2*105(мм2),                                                    (2)                          

           (получено из формулы Fэ = 4*Вd2*S*105 )     

  30

 

       4.    Сечения сердечника  магнитопровода

       Sc= Sя = s* Вd*Sст(мм2),                    (3)

где  Вст – индукция в стали

где  s – коэффициент рассеяния магнитной системы

5.   Сечение ярма магнитопровода

       Sя = Sяр (мм2),                                                      (4)

6.   Сечение якоря магнитопровода

       Sяк = Sс/s  (мм2),                                     (5)

      7.   Полная МДС катушки

       I*wd*d/m0(1 – a) (А)                         (6)

где  a – коэффициент, характеризующий отношение МДС, не участвующей в создании тягового усилия к общей МДС катушки

 

 

      2.2 Пример расчета

       Исходные данные:

        Fэ = 256 Н ,      d=16 мм = 1,6 см = 1,6*10-2 м,   Bст = 1,2 Тл,  s = 2,

a= 0,15,   m0 = 4*3,14*10-7 Гн/м,  Вd = 1,1 Тл

 

    Решение:

          1.  А==10 (Н/см)                                               

2.   = 250/4*1,1*1,1*105 = 5,2*10-42) = 5,2 (см2)                                      

3.   Sc = 2*1,1*5,2/1,2 = 9,7 (см2)                    

4.   Sя = 9,7 (см2)                               

          5.   Sяк = 9,7/2 = 4,85 (см2

          6.  I*w = 1,1*1,6 *10-2/4*3,14*10-7 (1 – 0,15) =16*103  (А)                                                         

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Методические указания для студентов по проведению практических работ по дисциплине "Автоматическое регулирование""

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Дефектоскопист

Получите профессию

Менеджер по туризму

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 666 396 материалов в базе

Скачать материал

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 23.03.2017 1174
    • DOCX 632 кбайт
    • 20 скачиваний
    • Оцените материал:
  • Настоящий материал опубликован пользователем Мусалимова Анара Жанабаевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Мусалимова Анара Жанабаевна
    Мусалимова Анара Жанабаевна
    • На сайте: 7 лет и 10 месяцев
    • Подписчики: 0
    • Всего просмотров: 28076
    • Всего материалов: 12

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Экскурсовод

Экскурсовод (гид)

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Специалист в области охраны труда

72/180 ч.

от 1750 руб. от 1050 руб.
Подать заявку О курсе
  • Сейчас обучается 35 человек из 21 региона
  • Этот курс уже прошли 155 человек

Курс профессиональной переподготовки

Руководство электронной службой архивов, библиотек и информационно-библиотечных центров

Начальник отдела (заведующий отделом) архива

600 ч.

9840 руб. 5600 руб.
Подать заявку О курсе
  • Этот курс уже прошли 25 человек

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

Педагог-библиотекарь

300/600 ч.

от 7900 руб. от 3650 руб.
Подать заявку О курсе
  • Сейчас обучается 493 человека из 71 региона
  • Этот курс уже прошли 2 330 человек

Мини-курс

Основы налогообложения и формирования налогооблагаемых показателей

2 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Договоры и их правовое регулирование

8 ч.

1180 руб. 590 руб.
Подать заявку О курсе
  • Сейчас обучается 25 человек из 13 регионов

Мини-курс

Проектный подход к рекламе: эффективные стратегии и инструменты

8 ч.

1180 руб. 590 руб.
Подать заявку О курсе