Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Начальные классы / Другие методич. материалы / Методики для диагностики познавательных УУД
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 26 апреля.

Подать заявку на курс
  • Начальные классы

Методики для диагностики познавательных УУД

библиотека
материалов

Список методик для мониторинга познавательных УУД.

  1. Выделение существенных признаков (1 класс).

  2. Методика «Логические закономерности» (2 класс).

  3. Сформированность универсального действия общего приема решения задач (по А.Р.Лурия, Л.С.Цветковой) (3 класс).

  4. Методика «Нахождение схем к задачам» (по А.Н.Рябинкиной) (4 класс).


Методика «Выделение существенных признаков» (1 класс).

Цель: выявление уровня  развития  операции логического мышления – выделение существенных признаков.

Оцениваемое УУД: логические  универсальные   учебные   действия. 

Форма проведения: письменный опрос

Возраст: младшие школьники.

Критерии оценивания:

высокий уровень – 6-7 (правильных ответов).

средний уровень - 3-5 .

низкий уровень - 1-2 .

Один балл дается за два правильно выбранных слова, а 0,5 балла – за одно правильно выбранное слово.

Методика выявляет способность испытуемого отделять существенные признаки предметов или явлений от второ­степенных. Кроме того, наличие ряда заданий, одинако­вых по характеру выполнения, позволяет судить о после­довательности рассуждений испытуемого.

Для исследования пользуются либо специальным блан­ком, либо экспериментатор предлагает испытуемому зада­чи. Предварительно даются инструкции.

Инструкция: «В каждой строчке вы найдете одно сло­во, стоящее перед скобками, и далее 5 слов в скобках. Все слова, находящиеся в скобках, имеют какое-то отношение к слову стоящему перед скобками. Выберите только два и под­черкните их».

Слова в задачах подобраны таким образом, что обсле­дуемый должен продемонстрировать свою способность уло­вить абстрактное значение тех или иных понятий и отка­заться от более легкого, бросающегося в глаза, но невер­ного способа решения, при которых вместо существенных выделяются частные, конкретно-ситуационные признаки.

Стимульный материал:

  1. Сад (растение, садовник, собака, забор, земля).

  2. Река (берег, рыба, рыболов, тина, вода).

  3. Города (автомобиль, здание, толпа, улица, велосипед).

  4. Сарай (сеновал, лошади, крыша, скот, стены).

  5. Чтение (глаза, книга, картинка, печать, слово).

  6. Газета (правда, приложение, бумага, редактор).

  7. Игра (карты, игроки, штрафы, наказания, правила).


Ключ

    1. Растение, земля.

    2. Берег, вода.

    3. Здание, улица.

    4. Крыша, стены.

    5. Глаза, печать.

    6. Бумага, редактор.

    7. Игроки, правила.

Результаты стоит обсудить с испытуемым, выяснить, упорствует ли испытуемый в своих неправильных ответах, и чем объясняет свой выбор.


Методика «Логические закономерности» (2 класс).

Цель: выявление уровня  развития  логического мышления.

Оцениваемое УУД: логические  универсальные   учебные   действия .

Форма проведения: письменный опрос.

Возраст: младшие школьники.

Испытуемым предъявляют письменно ряды чисел. Им необходимо проанализировать каждый ряд и установить закономерность его построения. Испытуемый должен оп­ределить два числа, которые бы продолжили ряд. Время решения заданий фиксируется. Числовые ряды:






  1. 2, 3, 4, 5, 6, 7…

  2. 6, 9, 12, 15, 18, 21…

  3. 1, 2, 4, 8, 16, 32…

  4. 4, 5, 8, 9, 12, 13…

  5. 19, 16, 14, 11, 9, 6…

  6. 29, 28, 26, 23, 19, 14…

  7. 16, 8, 4, 2, 1, 0, 5…

  8. 1, 4, 9, 16, 25, 36…

  9. 21, 18, 16, 15, 12, 10…

  10. 3, 6, 8, 16, 18, 36…







Оценка результатов производится с помощью таблицы


Время выполнения задания (мин., сек.)

Кол-во ошибок

Баллы

Уровень развития логического мышления

2 мин. и менее

0

5

Очень высокий уровень логического мышления

2 мин. 10 сек. — 4 мин. 30 сек.

0

4

Хороший уровень, выше, чем у большинства людей

4 мин. 35 сек. — 9 мин. 50 сек.

0

3+

Хорошая норма большинства людей

4 мин. 35 сек. — 9 мин. 50 сек.

1

3

Средняя норма

2 мин. 10 сек. — 4 мин. 30 сек.

2-3

3-

Низкая норма

2 мин. 10 сек. — 15 мин. .

4-5

2

Ниже среднего уровня развития логического мышления

10-15 мин.

0-3

2+

Низкая скорость мышления, «тугодум»

Более 16 мин.

Более 5

1

Дефект логического мышления у человека, прошедшего обучение в объеме начальной школы, либо высокое переутомление

Обработка результатов

Предъявленные ряды

  1. 2, 3, 4, 5, 6, 7.

  2. 6, 9, 12, 15, 18, 21.

  3. 1, 2, 4, 8, 16, 32.

  4. 4, 5, 8, 9, 12, 13.

  5. 19, 16, 14, 11, 9, 6.

  6. 29, 28, 26, 23, 19, 14.

  7. 16, 8, 4, 2, 1, 0,5.

  8. 1, 4, 9, 16, 25, 36.

  9. 21, 18, 16, 15, 12, 10.

10. 3, 6, 8, 16, 18, 36.

Правильные ответы

8; 9

24; 27

64; 128

16; 17

4; 1

8; 1

0.25, 0.125

49; 64

9; 6

Сформированность универсального действия общего приема решения задач (по А.Р.Лурия, Л.С.Цветковой) (3 класс).

Цель: выявление сформированности общего приема решения задач.

Оцениваемые УУД: универсальное познавательное действие общего приема решения задач; логические действия.

Возраст: ступень начальной школы.

Известно, что процесс решения текстовых арифметических задач имеет сложное психологическое строение. Он начинается с анализа условия, в котором дана сформулированная в задаче цель, затем выделяются существенные связи, указанные в условии, и создается схема решения; после этого отыскиваются операции, необходимые для осуществления найденной схемы, и, наконец, полученный результат сличается с исходным условием задачи. Достижение нужного эффекта возможно лишь при постоянном контроле за выполняемыми операциями.

Трудности в решении задач учащимися в большинстве случаев связаны с недостаточно тщательным и планомерным анализом условий, с бесконтрольным построением неадекватных гипотез, с неоправданным применением стереотипных способов решения, которые нередко подменяют полноценный поиск нужной программы. Причиной ошибок нередко оказывается и недостаточное внимание к сличению хода решения с исходными условиями задачи и лишь иногда — затруднения в вычислениях.

Решение задачи является наиболее четко и полно выраженным интеллектуальной деятельностью. Внимательный анализ процесса решения задачи в различных условиях дает возможность описать структуру изменений этого процесса и выделить различные факторы, определяющие становление полноценной интеллектуальной деятельности.

Таким образом, анализ решения относительно элементарных арифметических задач является адекватным методом, позволяющим получить достаточно четкую информацию о структуре и особенностях интеллектуальной деятельности обучающихся и ее изменениях в ходе обучения.

А.Р.Лурия и Л.С.Цветкова предложили известный набор задач с постепенно усложняющейся структурой, который дает возможность последовательного изучения интеллектуальных процессов обучающихся.

  1. Наиболее элементарную группу составляют простые задачи, в которых условие однозначно определяет алгоритм решения, типа a + b = х или ab = х:

    1. У Маши 5 яблок, a y Пети 4 яблока. Сколько яблок у них обоих?

    2. Коля собрал 9 грибов, а Маша — на 4 гриба меньше, чем Коля. Сколько грибов собрала Маша?

    3. В мастерскую привезли 47 сосновых и липовых досок. Липовых было 5 досок. Сколько привезли в мастерскую сосновых досок?

  2. Простые инвертированные задачи типа a – х = a или x a = b, существенно отличающиеся от задач первой группы своей психологической структурой:

    1. У мальчика было 12 яблок; часть из них он отдал. У него осталось 8 яблок. Сколько яблок он отдал?

    2. На дереве сидели птички. 3 птички улетели; остапось 5 птичек. Сколько птичек сидело на дереве?

  3. Составные задачи, в которых само условие не определяет возможный ход решения, типа a + (a + b) = x или a + (ab) =x:

    1. У Маши 5 яблок, a y Кати на 2 яблока больше (меньше). Сколько яблок у них обеих?

    2. У Пети 3 яблока, a y Васи — в 2 раза больше. Сколько яблок у них обоих?

  4. Сложные составные задачи, алгоритм решения которых распадается на значительное число последовательных операций, каждая из которых вытекает из предыдущей, типа a + (a + b) + [(a + b) - c] = x или x = a b; y = x/n; z = xy:

    1. Сын собрал 15 грибов. Отец собрал на 25 грибов больше, чем сын. Мать собрала на 5 грибов меныие отца. Сколько всего грибов собрала вся семья?

    2. У фермера было 20 га земли. С каждого гектара он снял по 3 тонны зерна. 1/2 зерна он продал. Сколько зерна осталось у фермера?

  5. Сложные задачи с инвертированным ходом действий, одна из основных частей которых остается неизвестной и должна быть получена путем специальной серии операций и котрые включают в свой состав звено с инвертированным ходом действий, типа a + b = x; xm = y; y b = z:

    1. Сыну 5 лет. Через 15 лет отец будет в 3 раза старше сына. Сколько лет отцу сейчас?

  6. Задачи на сличение двух уравнений и выделение специальной вспомогательной операции, являющейся исходной для правильного решения задачи, типа x + y = а; nx + y = b или x + у + z = а; x + у - b; у + zb:

      1. Одна ручка и один букварь стоят 37 рублей. Две ручки и один букварь стоят 49 рублей. Сколько стоит отдельно одна ручка и один букварь?

      2. Три мальчика поймали 11 кг рыбы. Улов первого и второго был 7 кг; улов второго и третьего — 6 кг. Сколько рыбы поймал каждый из мальчиков?

  7. Конфликтные задачи, в которых алгоритм решения вступает в конфликт с каким-либо хорошо упроченным стереотипом решающего, и правильное решение которых возможно при условии преодоления этого стереотипа:

      1. Отцу 49 лет. Он старше сына на 20 лет. Сколько лет им обоим?

      2. Рабочий получал в получку 1200 рублей и отдавал жене 700 рублей. В сегодняшнюю получку он отдал жене на 100 рублей больше, чем всегда. Сколько денег у него осталось?

      3. Длина карандаша 15 см; Тень длиннее карандаша на 45 см. Во сколько раз тень длиннее карандаша?

  8. Типовые задачи, решение которых невозможно без применения какого-либо специального приема, носящего чисто вспомогательный характер. Это задачи на прямое (обратное) приведение к единице, на разность, на части, на пропорциональное деление:

      1. 5 фломастеров стоят 30 рублей. Купили 8 таких фломастеров. Сколько денег заплатили?

      2. Купили кисточек на 40 рублей. Сколько кисточек купили, если известно, что 3 таких кисточки стоят 24 рубля?

      3. На двух полках было 18 книг. На одной из них было на 2 книги больше. Сколько книг было на каждой полке?

      4. Пузырёк с пробкой стоят 11 копеек. Пузырёк на 10 копеек дороже пробки. Сколько стоит пузырёк и сколько стоит пробка?

      5. В двух карманах лежало 27 копеек. В левом кармане было в 8 раз больше денег, чем в другом. Сколько денег было в каждом кармане?

      6. Трое подростков получили за посадку деревьев 2500 рублей. Первый посадил 75 деревьев, второй — на 45 больше первого, а третий — на 65 меньше второго. Сколько денег получил каждый?

  9. Усложненные типовые задачи типа [(xa) + (xb) + m = x]; [nx + ky = b; xy = c]:

      1. Двое мальчиков хотели купить книгу. Одному не хватало для ее покупки 7 рублей, другому не хватало 5 рублей. Они сложили свои деньги, но им все равно не хватило 3 рублей. Сколько стоит книга?

      2. По двору бегали куры и кролики. Сколько было кур, если известно, что кроликов было на 6 больше, а у всех вместе было 66 лап?

Все задачи (в зависимости от ступени обучения испытуемых) предлагаются для устного решения арифметическим (не алгебраическим) способом. Допускаются записи плана (хода) решения, вычислений, графический анализ условия. Учащийся должен рассказать, как он решал задачу, доказать, что полученный ответ правилен.

Существенное место в исследовании особенностей развития интеллектуальной деятельности имеет анализ того, как испытуемый приступает к решению задачи, и в каком виде строится у него ориентировочная основа деятельности. Необходимо обратить внимание на то, как учащийся составляет план или общую схему решения задачи, как составление предварительного плана относится к дальнейшему ходу ее решения. Кроме того, важным является анализ осознания проделанного пути и коррекции допущенных ошибок. Также достаточно важным является фиксация обучающей помощи при затруднениях уроков учащегося и анализ того, как он пользуется помощью, насколько продуктивно взаимодействует со взрослым.




Результаты








Итого

Всего обследовано (чел.)









Низкий уровень сформированности универсального действия общего приема решения задач - правильно решены 5 задач и менее









Средний уровень - правильно решены от 6 до 10 задач









Высокий уровень - правильно решены 10 задач и более

















Методика «Нахождение схем к задачам»

(по А.Н.Рябинкиной) (4 класс).

Цель: методика позволяет определить умение ученика выделять тип задачи и способ ее решения.

Оцениваемые УУД: моделирование, познавательные логические и знаково-символические действия, регулятивное действие оценивания и планирования; сформированность учебно-познавательных мотивов (действие смыслообразования).

Возраст: ступень начального образования.

Форма и ситуация оценивания: фронтальный опрос или индивидуальная работа с детьми.


Результаты








Итого

Всего обследовано (чел.)









Низкий уровень развития познавательных логических и знаково-символических действий - правильно определил 1-3 схемы









Средний уровень- правильно определил 4-6 схем









Высокий уровень - правильно определил от 7 схем и более





















Приложение 1.

Инструкция: «Найди правильную схему к каждой задаче. В схемах числа обозначены буквами». Предлагаются следующие задачи.

  1. Миша сделал 6 флажков, а Коля на 3 флажка больше. Сколько флажков
    сделал Коля?

  2. На одной полке 4 книги, а на другой на 7 книг больше. Сколько книг на двух
    полках?

  3. На одной остановке из автобуса вышло 5 человек, а на другой вышли 4
    человека. Сколько человек вышли из автобуса на двух остановках?

  4. На велогонке стартовали 10 спортсменов. Во время соревнования со старта
    сошли 3 спортсмена. Сколько велосипедистов пришли к финишу?

  5. В первом альбоме 12 марок, во втором — 8 марок. Сколько марок в двух
    альбомах?

  6. Маша нашла 7 лисичек, а Таня — на 3 лисички больше. Сколько грибов
    нашла Таня?

  7. У зайчика было 11 морковок. Он съел 5 морковок утром. Сколько морковок
    осталось у зайчика на обед?

  8. На первой клумбе росло 5 тюльпанов, на второй — на 4 тюльпана больше,
    чем на первой. Сколько тюльпанов росло на двух клумбах?

  9. У Лены 15 тетрадей. Она отдала 3 тетради брату, и у них стало тетрадей
    поровну. Сколько тетрадей было у брата?

10.В первом гараже было 8 машин. Когда из него во второй гараж переехали две машины, в гаражах стало машин поровну. Сколько машин было во втором гараже?







hello_html_5126d906.jpg

hello_html_565fa4ea.jpg




Приложение 2.

Фамилия, имя _____________________

Класс ___________ Школа __________

Номер задачи

Номер схемы













Фамилия, имя _____________________

Класс ___________ Школа __________

Номер задачи

Номер схемы

1


2


3


4


5


6


7


8


9


10




Краткое описание документа:

Список методик для мониторинга познавательных УУД.

1.     Выделение существенных признаков (1 класс).

2.     Методика «Логические закономерности» (2 класс).

3.     Сформированность универсального действия общего приема решения задач (по А.Р.Лурия, Л.С.Цветковой) (3 класс).

 

4.     Методика «Нахождение схем к задачам» (по А.Н.Рябинкиной) (4 класс).

Методика «Выделение существенных признаков» (1 класс).

Цель: выявление уровня  развития  операции логического мышления – выделение существенных признаков.

Оцениваемое УУД: логические  универсальные   учебные   действия. 

Форма проведения: письменный опрос

 

Возраст: младшие школьники.

Автор
Дата добавления 14.01.2015
Раздел Начальные классы
Подраздел Другие методич. материалы
Просмотров7816
Номер материала 299197
Получить свидетельство о публикации

Идёт приём заявок на международный конкурс по математике "Весенний марафон" для учеников 1-11 классов и дошкольников

Уникальность конкурса в преимуществах для учителей и учеников:

1. Задания подходят для учеников с любым уровнем знаний;
2. Бесплатные наградные документы для учителей;
3. Невероятно низкий орг.взнос - всего 38 рублей;
4. Публикация рейтинга классов по итогам конкурса;
и многое другое...

Подайте заявку сейчас - https://urokimatematiki.ru


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ


"Инфоурок" приглашает всех педагогов и детей к участию в самой массовой интернет-олимпиаде «Весна 2017» с рекордно низкой оплатой за одного ученика - всего 45 рублей

В олимпиадах "Инфоурок" лучшие условия для учителей и учеников:

1. невероятно низкий размер орг.взноса — всего 58 рублей, из которых 13 рублей остаётся учителю на компенсацию расходов;
2. подходящие по сложности для большинства учеников задания;
3. призовой фонд 1.000.000 рублей для самых активных учителей;
4. официальные наградные документы для учителей бесплатно(от организатора - ООО "Инфоурок" - имеющего образовательную лицензию и свидетельство СМИ) - при участии от 10 учеников
5. бесплатный доступ ко всем видеоурокам проекта "Инфоурок";
6. легко подать заявку, не нужно отправлять ответы в бумажном виде;
7. родителям всех учеников - благодарственные письма от «Инфоурок».
и многое другое...

Подайте заявку сейчас - https://infourok.ru/konkurs

Комментарии:

10 дней назад

Спасибо за помощь в работе на практике студенту. Очень благодарна.

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх