Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа по алгебре 11 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

Рабочая программа по алгебре 11 класс

библиотека
материалов

Муниципальное автономное общеобразовательное учреждение

Онохинская средняя общеобразовательная школа


Рассмотрено на заседании ШМО учителей естественно-математического цикла

№ протокола ______

«___»____________ 2012г.

Руководитель ШМО _______ И.Н.Митина


СОГЛАСОВАНО

Заместитель директора по УВР

________________ Н.А.Жилякова

«___» ________________ 2012г.


УТВЕРЖДАЮ

Директор ОУ

______________ Р.В.Бруцкая

«___»______________ 2012г.





РАБОЧАЯ ПРОГРАММА




Предмет

Алгебра и начала анализа

Учебный год

2012-2013

Класс

11 (общеобразовательный)

Количество часов в год

102

Количество часов в неделю

3









Учитель: Жилякова Н.А.








с.Онохино

2012-2013

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по алгебре и началам анализа для 11 класса составлена на основе примерной программы (полного) общего образования по математике (базовый уровень) и федерального компонента государственного стандарта общего образования, письма Минобрнауки РФ от 07.07.2005г № 03-1263 «О примерных программах по учебным предметам федерального базисного учебного плана» и методического письма о преподавании учебных предметов в условиях введения федерального компонента государственного стандарта общего образования. Приказа Министерства образования и науки Российской Федерации от 27.12.2011 № 2885 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию на 2012-2013 учебный год»;

Учебного плана МАОУ Онохинской СОШ, утвержденного директором МАОУ Онохинской СОШ Р.В.Бруцкой, 2 мая 2012г. приказ №97 и согласованного 2 мая 2012г. с Управляющим советом МАОУ Онохинской СОШ.

Рабочая программа составлена с учётом программы для общеобразовательных учреждений: Математика. 5-11 классы / авт.-сост. И.И. Зубарева, А.Г. Мордкович. – М.: Мнемозина, 2009, рекомендованная Департаментом образовательных программ и стандартов общего образования МО РФ.

Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для изучения математики на этапе среднего (полного) общего образования на базовом уровне отводится 3 часа в неделю 102 часа в год. В это количество часов включены 7 контрольных работ.


Распределение учебного времени в течение учебного года

Четверть

Количество

Контрольные мероприятия

недель в четверти

часов в неделю

часов в четверти

Контрольных работ

I четверть

8

3

24


II четверть

7,3

3

24


III четверть

10

3

30


IV четверть

8,4

3

24


Итого в год

34


102



Главной целью школьного образования является развитие ребенка как компетентностной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, личностное саморазвитие и т.д. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения алгебре и началам анализа.

Цели обучения:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также, последующего обучения в высшей школе;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественно-научных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

Задачи обучения:

  • приобретение математических знаний и умений;

  • овладение обобщенными способами мыслительной, творческой деятельности;

  • освоение компетенцией (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной) и профессионально-трудового выбора.

Требования к уровню подготовки учащихся 11 класса

В результате изучения математики на базовом уровне ученик должен знать/понимать:

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создание математического анализа, возникновение и развитие геометрии;

  • универсальный характер законов логики материальных рассуждений, их применимость во всех областях человеческой деятельности;

  • вероятностный характер различных процессов окружающего мира;

уметь:

  • выполнять арифметические действия, находить значения корня натуральной степени, степени с рациональным показателем, логарифм, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни;

  • для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Владеть компетенциями:

  • учебно- познавательной;

  • ценностно-ориентационной;

  • рефлексивной;

  • коммуникативной;

  • информационной;

  • социально-трудовой.

Система оценивания обучающихся: контрольные работы, самостоятельные работы, тесты, зачеты.

Тест. Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности учащихся, тренировки технике тестирования. Тесты предлагаются как в печатном так и в компьютерном варианте. Причем в компьютерном варианте всегда с ограничением времени.

Зачет. Устный опрос учащихся  по заранее составленным вопросам, а также решение задач разного уровня по изученной теме.

Самостоятельная работа.  Предлагаются разные виды самостоятельных работ:  двухуровневая – уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5»;  большой список заданий разного уровня, из которого учащийся решает их по своему выбору.

Контрольная работа. Проводится на двух уровнях:

уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5».


Компьютерное обеспечение уроков.

       В разделе рабочей программы «Компьютерное обеспечение» спланировано применение имеющихся компьютерных продуктов: демонстрационный материал, задания для устного опроса учащихся, тренировочные упражнения, а также различные электронные учебники.

Демонстрационный материал (слайды).

Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах учащихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает повышенное внимание и интерес у учащихся.

    Изучение многих тем в математике связано с знанием и пониманием свойств элементарных функций. Решение уравнений, неравенств, различных задач предполагает глубокое знание поведения элементарных функций. Научиться распознавать графики таких функций, суметь рассказать об их свойствах помогают компьютерные слайды .

   При решении любых задач использование графической интерпретации условия задачи, ее решения позволяет учащимся понять математическую идею решения, более глубоко осмыслить теоретический материал по данной теме.

 Задания для устного счета.

Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель – ученик, взаимопроверки, а также в виде тренировочных занятий.


Литература:

  1. Программы «Алгебра и начала анализа 10-11 кл», Мнемозина, 2007 г, авт.Зубарева И.И., Мордкович А.Г.

  2. Математика 10-11 класс. Развернутое тематическое планирование. Базовый уровень. Линия И.И. Зубаревой, А.Г. Мордкович, Волгоград, «Учитель» 2008г.

  3. Поурочные планы. Алгебра 11 класс по учебнику А.Г. Мордкович, Волгоград, «Учитель» 2005г.

  4. Ж-л «Математика в школе» №4 2008г


Графическое планирование учебного предмета алгебры и начала анализа 11 (общеобразовательный) на 2012 - 2013 учебный год

I четверть

сентябрь

октябрь

Канику лы

3 - 9

10 - 16

17 - 23

24 - 30

1 - 7

8 - 14

15 - 21

22 - 28

29.10-4.11


2





2





2





2





2





2





2





2






II четверть

ноябрь

декабрь

Канику лы

5 - 9

12 - 16

19 - 23

26 - 30

3 - 7

10- 14

17 - 21

24 - 27

28.12-13.01


2





2





2





2





2





2





2





2






III четверть

январь

февраль

14 - 18

21 - 25

28 - 1

4 - 8

11 - 15

18 - 22

25 - 1


2





2





2





2





2





2





2





март

Канику лы

4 - 8

11 - 15

18 - 22

25.03-31.03


2





2





2






IV четверть

апрель

май


1 - 5

8 - 12

15 - 19

22 - 26

29.04 – 3.05

6 - 10

13 - 17

20 - 24

27-29


2





2





2





2





2





2





2





2





2





Условные обозначения:


- каникулы




- учебный материал




- контрольная работа*


Тематический план


Тема

Кол-во часов

Повторение курса 10 класса

6

Степени и корни. Степенные функции

18

Показательная и логарифмическая функции

29

Первообразная и интеграл

8

Элементы математической статистики, комбинаторики и теории вероятностей

15

Уравнения и неравенства. Системы уравнений и неравенств

20

Обобщающее повторение

6

Итого

102


ОСНОВНАЯ  ЧАСТЬ

Тема 1. «Повторение курса алгебры и начал математического анализа 10 класса»
(6 часов)

Раздел математики. Сквозная линия

·        Числа и вычисления.

·        Уравнения и неравенства.

·        Функции.

Обязательный минимум содержания образовательной области математика

  • Числовые и буквенные выражения, преобразования и вычисление их значений.

  • Рациональные уравнения и неравенства и их системы.

  • Функции, их свойства и графики.

  • Производные элементарных функций.

Требования к математической подготовке (УУД)

Уровень обязательной подготовки обучающегося

  • Уметь выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем.

  • Уметь проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы и тригонометрические функции.

  • Уметь находить производные функций, пользуясь правилами дифференцирования.

  • Уметь применять производные для исследования функций и построения их графиков в несложных случаях.

Уровень возможной подготовки обучающегося

  • Освоить технику дифференцирования.

  • Уметь находить производную сложной функции.

  • Научиться применять дифференциальное исчисление для исследования элементарных и сложных функций и построения их графиков.

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.


Тема 2. «Степени и корни. Степенная функция» (18 часов)

Раздел математики. Сквозная линия

  • Числа и вычисления

  • Выражения и преобразования

  • Уравнения и неравенства

  • Функции.

Обязательный минимум содержания образовательной области математика

  • Определение арифметического корня n-й степени, свойства, применение в вычислениях.

  • Преобразование выражений, содержащих радикалы.

  • Степенные функции, их свойства и графики.


Требования к математической подготовке(УУД)

Уровень обязательной подготовки обучающегося

  • Уметь выполнять основные действия со степенями с целыми и рациональными показателями.

  • Уметь применять свойства корня n-й степени для вычисления значений и преобразований числовых выражений, содержащих корни n-й степени.

  • Знать свойства степенных функций и уметь применять их при решении практических задач.


Уровень возможной подготовки обучающегося

  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами.

  • Уметь выполнять основные действия со степенями с рациональными показателями.

  • Уметь применять на практике многообразие  свойств и графиков степенной функции в зависимости от значений оснований и показателей степени.

Тема 3. «Показательная и логарифмическая функции» (29 часов)

Раздел математики. Сквозная линия

  • Вычисления и преобразования

  • Функции

  • Уравнения и неравенства

Обязательный минимум содержания образовательной области математика

  • Показательная функция и ее свойства и график.

  • Показательные уравнения и неравенства и их системы.

  • Логарифмы.

  • Свойства логарифмов.

  • Десятичные и натуральные логарифмы.

  • Логарифмическая функция ее свойства и график.

  • Логарифмические уравнения и неравенства и их системы.

  • Дифференцирование показательной и логарифмической функций.

Требования к математической подготовке(УУД)

Уровень обязательной подготовки обучающегося

  • Иметь наглядное представления об основных свойствах показательных и логарифмических функций.

  • Уметь изображать графики показательных и логарифмических функций.

  • Описывать свойства показательных и логарифмических функций, опираясь на график.

  • Уметь решать показательные и логарифмические уравнения.

  • Уметь решать показательные и логарифмические неравенства.

Уровень возможной подготовки обучающегося

  • Иметь наглядное представления об основных свойствах показательных и логарифмических функций, уметь иллюстрировать их с помощью графических изображений.

  • Уметь изображать графики показательных и логарифмических функций. Описывать свойства этих функций, опираясь на график.

  • Уметь использовать свойства функции для сравнения и оценки ее значений.

  • Уметь решать показательные и логарифмические уравнения и неравенства, применяя различные методы их решения.

Тема 4. «Первообразная и интеграл» (8 часов)

Раздел математики. Сквозная линия

  • Функции

Обязательный минимум содержания образовательной области математика

  • Первообразная.

  • Основное свойство первообразной.

  • Правила нахождения первообразных.

  • Площадь криволинейной трапеции.

  • Вычисление интегралов.

Требования к математической подготовке(УУД)

Уровень обязательной подготовки обучающегося

  • ·        Уметь находить первообразные, пользуясь таблицей первообразных.

  • ·        Знать свойство первообразной.

  • ·        Знать правила нахождения первообразных.

  • ·        Уметь вычислять интегралы в простых случаях.

  • ·        Уметь находить площадь криволинейной трапеции.


Уровень возможной подготовки обучающегося

  • ·    Освоить технику нахождения первообразных.

  • ·    Усвоить геометрический смысл интеграла.

  • ·    Освоить технику вычисления интегралов.

  • ·    Научиться находить площади фигур в более сложных случаях. 

Тема 5 «Элементы математической статистики, комбинаторики и теории вероятностей» (15 ч)

Раздел математики. Сквозная линия

  • ·        Числа и вычисления.

  • ·        Множества и комбинаторика.

  • ·        Статистика.

  • ·        Вероятность.

Обязательный минимум содержания образовательной области математика

  • Статистическая обработка данных.

  • Сочетания и размещения в комбинаторике.

  • Случайные события и их вероятности.

Требования к математической подготовке(УУД)

Уровень обязательной подготовки обучающегося

  • ·       Уметь решать комбинаторные задачи.

  • Уметь извлекать информацию, представленную в таблицах, на диаграммах, графиках.

  • Уметь составлять таблицы, строить диаграммы, графики.

  • Уметь вычислять средние значения результатов измерений.

  • Уметь находить вероятности случайных событий в простейших случаях.

Уровень возможной подготовки обучающегося

  • Уметь находить частоту события, используя собственные наблюдения и готовые статистические данные.

  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения учебных и практических задач, требующих систематического перебора вариантов.

  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией.

  • Понимать различные статистические утверждения.


Тема 6. «Уравнения и неравенства.
Системы уравнений и неравенств» (20 часов)

Раздел математики. Сквозная линия

  • ·        Уравнения и неравенства

Обязательный минимум содержания образовательной области математика

  • ·        Уравнения с одной переменной.

  • ·        Равносильность уравнений.

  • ·        Общие методы решения уравнений.

  • ·        Системы уравнений.

  • ·        Неравенства с одной переменной.

Требования к математической подготовке(УУД)

Уровень обязательной подготовки обучающегося

  • ·        Уметь решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы.

  • ·        Уметь составлять уравнения и неравенства по условию задачи.

Уровень возможной подготовки обучающегося

  • Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для построения и исследования простейших математических моделей.

  • ·        Уметь решать уравнения и неравенства, используя различные методы их решения.

  • ·        Знать и понимать теоремы о равносильности уравнений, уметь использовать их на практике.


Тема 7. «Итоговое повторение курса алгебры и начал анализа» (6 часов)

Раздел математики. Сквозная линия

  • Вычисления и преобразования

  • Уравнения и неравенства

  • Функции

  • Множества и комбинаторика. Статистика. Вероятность.

Обязательный минимум содержания образовательной области математика

  • Корень степени n.

  • Степень с рациональным показателем.

  • Логарифм.

  • Синус, косинус, тангенс, котангенс. Прогрессии.

  • Общие приемы решения уравнений. Решение уравнений. Системы уравнений с двумя переменными. Неравенства с одной переменной.

  • Область определения функции.

  • Область значений функции.

  • Периодичность. Четность (нечетность). Возрастание (убывание).

  • Экстремумы. Наибольшее (наименьшее) значение.

  • Графики функций.

  • Производная.

  • Исследование функции с помощью производной.

  • Первообразная. Интеграл.

  • Площадь криволинейной трапеции.

  • Статистическая обработка данных.

  • Решение комбинаторных задач.

  • Случайные события и их вероятности.

Требования к математической подготовке (УУД)

Уровень обязательной подготовки обучающегося

Уметь:

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

  • вычислять производные и первообразные элементарных функций, используя справочные материалы;

  • исследовать в простейших случаях функции на монотонность, находить наибольшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

  • решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы.


Уровень возможной подготовки обучающегося

  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

  • вычислять площади с использованием первообразной;

  • использовать для приближенного решения уравнений и неравенств графический метод;

  • изображать на координатной плоскости множества решений простейших уравнений и их систем.

  • строить графики изученных функций;

  • описывать по графику и по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.

  • построения и исследования простейших математических моделей.


Учебно-методический комплекс


Учебник

  1. – М.:Мнемозина, 2010.

Пособие для учащихся

  1. – М.:Мнемозина, 2010.

  2. – М.:Мнемозина, 2010.

Пособие для учителя

  1. – М.:Мнемозина, 2007

  2. – М.:Мнемозина,2005.

  3. – М.:Мнемозина, 2008

  4. – М.:Мнемозина, 2007

  5. – М.: Русское слово, 2003г

Контрольно-измерительные материалы

  1. – М.:Мнемозина,2005.


Электронные образовательные ресурсы

  1. 1С: Репетитор. Математика (КиМ) (CD);

  2. АЛГЕБРА не для отличников (НИИ экономики авиационной промышленности) (CD);

  3. 1С: Математика. 5-11 кл. Практикум (2CD).

Интернет-ресурсы

  1. Министерство образования и науки РФ. - http://www.mon.gov.ra/

  2. Федеральное государственное учреждение «Государственный научно-исследовательский
    институт информационных технологий и телекоммуникаций». - http://www.informika.ru/

  3. Тестирование on-line: 5-11 классы. - http://www.kokch.kts.ru/cdo/

  4. Новые технологии в образовании. - http://edu.secna.ru/main/

  5. Путеводитель «В мире науки» для школьников. - http://www.uic. ssu.samara.ru/~nauka/

  6. Мегаэнциклопедия Кирилла и Мефодия. - http://mega.km.ru/

  7. Сайты энциклопедий. - http://www.rubricon.ru/; http://www. encyclopedia.ru/


КАЛЕНДАРНО-ТЕМАТИЧЕСКИЙ ПЛАН 11 КЛАСС (базовый уровень)



п/п

Дата по плану

Дата по факту

Наименование раздела, темы уроков

Кол-во часов

Основные понятия

Методы и формы работы

ЗУН, соответствующие КИМам ЕГЭ

Виды контроля

УУД

Компьютерное

обеспечение

урока

Повторение

1-6.

4.09

4.09

6.09

11.09

11.09

13.09


I ЧЕТВЕРТЬ

Повторение курса 10кл.


6




Тест 1

«Производная. Правила дифференцирования»

Обобщение и систематизация знаний

Задания для устного счета. Упр.1 «Выражения и их преобразования»

Задания для устного счета. Упр.2. «Алгебраические уравнения»

Задания для устного счета. Упр.3. «Правила дифференцирования»

Задания для устного счета. Упр.4. «Применения производной к исследованию функций»





Глава 6. Степени и корни. Степенные функции.

18








7-8

18.09

18.09


п. 33 Понятие коня n-ой степени из действительного числа








2

Арифметический квадратный корень – определение, обозначение, св-ва, понятие действительных чисел.

Групповая, с/р с учебником

hello_html_9fa6fe7.gif, св-ва hello_html_9fa6fe7.gif, корень из произведения и произведение корней, корень из частного и частное корней. hello_html_7ba67ce3.gifиз степени и степеньhello_html_7ba67ce3.gif, hello_html_m673ec9a1.gif, hello_html_7ba67ce3.gifиз произведения и частного степени, hello_html_7ba67ce3.gifиз произведения и частного корней

КБС карточки

Формирование понятий «Степень с рац. показателем», «корень n-ой степени из действительного числа и степенной функции». Уметь преобразовывать выражения с hello_html_7ba67ce3.gif

Демонстрационный материал (ДМ)

«Корень n-й степени из действительного числа»

Задания для устного счета. Упр.5

«Вычисление корня n-й степени из действительного числа»

Квадратный корень, степень числа, действительные числа

9-11

20.09

25.09

25.09


п.3 4Функция hello_html_m2dff24d3.gif, их свойства и графики.

3

График функции hello_html_m2dff24d3.gif, ООф, ОЗФ, построение. Свойства арифметического кв. корня

групповая

Тест по материалам КИМов ЕГЭ

ДМ «Функции вида hello_html_m7161656d.gif, их свойства и графики»

Функции hello_html_7f84a6.gifhello_html_m7ff8fc2c.gif, свойства степени

12-14

27.09

2.10

2.10


п. 35 Свойства корня n-ой степени

3

Свойства арифметического корня n-ой степени

групповая

С/Р 2.1

«Корень n-й степени и его свойства»

Таблица, тесты

Функции hello_html_7f84a6.gifhello_html_m7ff8fc2c.gif, свойства степени

15-17

4.10

9.10

9.10


п. 36 Преобразование выражений, содержащих радикалы

3

Свойства степени, определение корня и его свойства

групповая, разноуровневая

Другие комбинации свойств корней степени. Тождественные преобразования иррациональных уравнений

С/Р 2.2

«Преобразование выражений, содержащих радикалы»

Обобщение и систематизация знаний о степенной функции

У/С Упр.6

«Преобразование выражений с радикалами»

hello_html_45443a93.gif, hello_html_m5c9eef33.gif, свойства hello_html_7ba67ce3.gif

18

11.10


Контрольная работа №1 по теме «Степени и корни. Степенные функции.»

1


индивидуальная




Тексты контрольных работ


19-21

16.10

16.10

18.10


п. 37 Обобщающее понятие о показателе степени

3

Свойства степени, корня и его св-в, иррациональные уравнения и их методы решения

групповая, разноуровневая

Понятие степени с рациональным показателем и свойства. Сравнение степеней с различными основаниями. Тождественные преобразования степенных выражений; сравнение различных степеней с одинаковыми степенями

С/Р 2.3

«Степень с рациональным показателем»


Тексты,
карточки

Свойства корней

22-24

23.10

23.10

25.10


п. 38 Степенные функции, их свойства и графики

3

Понятие графика функции, умение преобразовывать графики, понятие производной, интеграла и правила их нахождения

групповая, разноуровневая, дифференцированная

Тест 2

«Степени и корни»


ДМ «Степенные функции, их свойства и графики»

Задания для устного счета. Упр.7

«Степенная функция»

Задания для устного счета. Упр.8

«Свойства и графики степенных функций»

Производная, правила дифференцирования

2 четверть (24ч)

Глава 7. Показательная и логарифмическая
функция

29








25-27

6.11

6.11

8.11


п. 39 Показательная функция, ее свойства и график

3

Понятие функции, ООФ, ОЗФ, свойств ф-ции, построение графика и его преобразование

групповая, разноуровневая, дифференцированная

ООФ, ОЗФ, периодичность функции, возрастание и убывание, наибольшее и наименьшее значение, сохранение знаков функции, связь между свойствами и графиком

Устный счет

Самостоятельная работа 3.1

«Показательная функция, ее свойства и график»

формирование представлений о показательной и логарифмической функциях, их графиках и свойствах. Овладение умением понимать и читать свойства и графики логарифмической функции,

ДМ «Показательная функция, ее свойства и график»

Задания для устного счета. Упр.9 «Показательная функция»


Свойства степени

28-31

13.11

13.11

15.11

20.11


п. 40 Показательные уравнения и неравенства

4

Что значит решить уравнение, корни уравнения Что такое неравенство, способы решения неравенств, запись с помощью промежутков и на координатной прямой

групповая, разноуровневая, дифференцированная

Самостоятельная работа 3.2

«Показательные уравнения и неравенства»

Тесты ЕГЭ тематические тесты

Уравнение, решение уравнений Неравенства, решение неравенств

32

20.11


Контрольная работа №2 по теме «Показательная функция»

1

Индивидуальная



Текст к/р


33-34

22.11

27.11



п. 41 Понятие логарифма

2


групповая, разноуровневая,

Логарифм (понятие). Свойства логарифма: логарифм произведения и сумма логарифмов, логарифм частного и разность логарифмов, логарифм степени и произведение числа и логарифма. Логарифм произведения и частного степеней


Сумма и разность логарифма с одинаковыми основаниями. Сумма и разность логарифма с разными основаниями.

Тест и карточки

решать показательные уравнения и неравенства. Создание условий для развития умения применять функционально-графические представления для описания и анализа закономерностей, существующих в окружающем мире и в смежных предметах.

ДМ «Определение логарифма»

показательные уравнения

35-37

27.11

29.11

4.12


п. 42 Логарифмическая функция, ее свойства и график

3

Определение функции, ОЗФ, ООФ, график, преобразование графиков функции

Семинар, групповая форма

проверочная работа

ДМ «Логарифмическая функция, ее свойства и график»

Задания для устного счета. Упр.10 «Логарифмическая функция»

показательные уравнения

38-40

4.12

6.12

11.12


П.43Свойства логарифмов

3

Определение логарифма и свойства показательной функции

групповая, разноуровневая, дифференцированная

С/Р 3.3

«Логарифмы. Свойства логарифмов»

ДМ «Число е. Натуральный логарифм»

Задания для устного счета. Упр.11 «Свойства логарифмов»



41-43

11.12

13.12

18.12


п. 44 Логарифмические уравнения

3

Определение логарифма и свойства показательной функции

групповая, разноуровневая, дифференцированная

С/Р3.4

«Логарифмические уравнения»

Задания для устного счета. Упр.12 «Логарифмическая функция, логарифмические уравнения»

Понятие логарифма

44

18.12



Контрольная работа №3 по теме «Логарифмическая функция»

1

индивидуальная




Уравнения, свойства логарифмов

45-47

20.12

25.12

25.12


п. 45 Логарифмические неравенства

3

Способы решения неравенств, изображение на координатном луче, ответ - промежутками

групповая


Тест 3

«Показательная и логарифмическая функции»

ДМ «Логарифмические неравенства»

Неравенства, решение неравенств

48-49

27.12

15.01



п. 46 Переход к новому основанию логарифма

2

Свойства логарифма и определение

Групповая, с/р с учебником

Формула перехода от одного основания к другому. Основное логарифмическое тождество

С/Р 3.5

«Логарифмические неравенства»


таблица

Свойства логарифма

50-52

15.01

17.01

22.01



п.47 Дифференцирование показательной и логарифмической функций

3

Понятие производной, правила нахождения производных понятие логарифма и правила интегрирования, число е

Объяснение учителя, групповая

Другие комбинации свойств логарифмов: lg и ln. тождественные преобразования логарифмических выражений

Тест 4

«Дифференцирование показательной и логарифмической функций»


Задания для устного счета. Упр.14 «Производная показательной функции»

Понятие производной, правила дифференцирования

53

24.01



Контрольная работа №4 по теме «Показательная и логарифмическая
функция»

1

индивидуальная



Тексты к/р





Глава 8. Первообразная и интеграл.

8








54-56

29.01

29.01

31.01


п. 48 Первообразная

3

Понятие производной, таблица производных

групповая

Первообразная суммы функций, первообразная произведения функции на число

С/Р 4.1

«Правила нахождения первообразных»

Формирование представлений о понятии первообразной, неопределенного интеграла, определенного интеграла. Овладение умением применять первообразную функции при решении задач на вычисление площади криволинейной трапеции

ДМ «Определение первообразной»

ДМ «Первообразная линейной функции»

Задания для устного счета. Упр.15 «Первообразная»


57-60

5.02

5.02

7.02

12.02


п. 49Определенный интеграл:

4

Понятие касательной, уравнение прямой, m, p, S, v – физика., площадь фигуры, формула Ньютона–Лейбница, геометрический и физический смысл определенного интеграла

групповая

С/Р 4.2

«Интеграл. Формула Ньютона – Лейбница»

С/Р 4.3

«Площадь криволинейной трапеции»

Задания для устного счета. Упр.16 «Нахождение первообразных»

ДМ «Площадь криволинейной трапеции»

Задания для устного счета. Упр.17 «Площадь криволинейной трапеции» Задания для устного счета. Упр.18 «Узнавание функции по графику ее производной»

неопределенный интеграл, m стержня, S точки касательной

61

12.02


Контрольная работа №5 по теме «Первообразная и интеграл.»

1


индивидуальная


к/р

Текст к/р





Глава 10. Уравнения и неравенства. Системы уравнений и неравенств.

20








77-78

14.02

19.02



п. 55 Равносильность уравнений

2

Что такое уравнение, что значит решить уравнение, корни уравнения

Групповая, с/р с учебником

Равносильность уравнений. Общие приемы решения уравнений. Разложение на множители. Замена переменной. Использование свойств функции и графиков. использование нескольких приемов при решении уравнений. Решение комбинированных уравнений (показательно-логарифм-ких), уравнения, содержащие модуль. Уравнения с параметрами. Системы с двумя переменными и способы их решения. использование графиков при решении систем. Решение нер-в с одной переменной: рациональных, показательных, логарифмических. Использование графиков при решении нер-в. Решение нер-в, содержащих переменную под знаком модуля и нер-в с параметрами

Решение тестов

формирование представлений об уравнениях, неравенствах и их системах. Познакомиться с общими решениями уравнений, неравенств и их систем. Овладеть умением решения уравнений и неравенств с параметрами, нахождение всевозможных решений, в зависимости от значения параметра

Задания для устного счета. Упр.21

«Решение показательных уравнений»

Уравнение, решение уравнения

79-81

19.02

21.02

26.02



п. 56 Общие методы решения уравнений

3

Преобразование уравнений, проверка корней, ОДЗ

Групповая

С/Р 6.1

«Общие методы решения уравнений»

ДМ «Решение уравнений методом Мини-максов»

ДМ «Применение свойств функций для решения уравнений» Задания для устного счета. Упр.22 «Решение логарифмических уравнений»

иррациональные уравнения, уравнения с модулем

82-85

26.02

28.02

5.03

5.03



п. 57 Решение неравенств с одной переменной

4

Способы решения неравенств. Запись ответа промежутком, изображение на координатном луче

Групповая

С/Р6.2

«Неравенства»

ДМ «Использование графиков при решении неравенств»

Неравенства, решение неравенств

86-87

7.03

12.03



П.58 Уравнения и неравенства с двумя переменными

2

Уравнения и неравенства с двумя переменными

Групповая

С/Р 6.3

«Уравнения и неравенства с двумя переменными»

ДМ «Неравенства с двумя переменными»

ДМ «Системы неравенств с двумя переменными»

Неравенства, решение неравенств

88-91

12.03

14.03

19.03

19.03



п. 59 Системы уравнений

4

Что такое система, способы решения системы, запись ответа в системе, проверка корней

Групповая

С/Р 6.4

«Системы уравнений»

ДМ «Графический способ решения систем уравнений» Задания для устного счета. Упр.23

«Системы уравнений с двумя переменными»

Различные способы решения систем уравнений

92-94

21.03

2.04

2.04



п. 60 Уравнения и неравенства с параметрами

3

Уравнения и неравенства с параметрами, приемы решения уравнений и неравенств с параметрами

Фронтальная взаимопроверка в парах

Группа С (КИМ)

Сборник задач

Уравнении, неравенства, параметр

95-96

4.04

4.04


Контрольная работа №7 по теме Уравнения и неравенства. Системы уравнений и неравенств»

2


индивидуальная


Текст к/р





Глава 9. Элементы математической статистики, комбинаторики и теории вероятности.

15








62-64

9.04

9.04

11.04


П. 50 Статистическая обработка данных

3

Статистика, Статистическая обработка данных



С/Р 5.1

«Статистическая обработка данных»

Решать простейшие комбинаторные задачи. Вычислять в простейших случаях вероятности событий на основе подсчета числа исходов. Создание условий для плодотворного участия в работе в группах. Формирование умения самостоятельно мотивированно организовать, использовать приобретенные знания для анализа реальных числовых данных, анализа информации статистического характера

ДМ «Статистическая обработка данных» Задания для устного счета. Упр.19

«Статистическая обработка данных»


65-67

16.04

16.04

18.04


П. 51 Простейшие вероятностные задачи

3

Теория вероятности, простейшие задачи на вероятности события



С/Р 5.2

«Простейшие вероятностные задачи»

Задания для устного счета. Упр.20

«Простейшие вероятностные задачи»


68-70

23.04

23.04

25.04


П.52 Сочетания и размещения

3

Сочетания, размещения и их формулы



Работа в группах, взаимопроверка

Тексты задач


71-72

30.04

30.04



П.53 Формула бинома Ньютона

2

Формула биномаНьютона



С/Р 5.3

«Сочетания и размещения. Формула бинома Ньютона »

Карточки с задачами


73-75

2.05

7.05

7.05


П.54 Случайные события и их вероятности

3

Понятие случайного события, вероятности события



Тест 5

«Элементы комбинаторики, статистики и теории вероятностей»

Тексты задач


76

14.05


Контрольная работа №6 по теме «Элементы математической статистики, комбинаторики и теории вероятности»

1




индивидуальная

Тексты к/р


96-102

14.05

16.05

21.05

21.05

23.05



Обобщающее повторение курса алгебры и начал анализа за 11 класс

6

Степень с рациональным показателем, тождественные преобразования, решение систем уравнений (логарифмических, иррациональных, тригонометрических), решение неравенств с одной переменной, нахождение производной, МЗФ, ОЗФ, четность, нечетность, графики функций, неравенства и уравнения с параметром, текстовые задачи, наибольшее и наименьшее значение величины.


Степень с рациональным показателем, тождественные преобразования, решение систем уравнений (логарифмических, иррациональных, тригонометрических), решение неравенств с одной переменной, нахождение производной, МЗФ, ОЗФ, четность, нечетность, графики функций, неравенства и уравнения с параметром, текстовые задачи, наибольшее и наименьшее значение величины.

Взаимопроверка в группах,
индивидуально

Обобщение и систематизация курса математики 11 класса с решением тестовых заданий ЕГЭ

Тесты ЕГЭ,
тематические тесты,
сборник Ф.Ф.Лысенко «Математика ЕГЭ – 2006 – 2008. Вступительные экзамены» и др.

Материал
11 класса



Критерии оценок по учебному предмету

Оценка устных ответов обучающихся по математике

 

Ответ оценивается «5», если обучающийся:

  полно раскрыл содержание материала в объёме, предусмотренном программой  учебников;

  изложил материал грамотным языком в определённой логической последовательности, точно используя математическую терминологию и  символику;

  правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

  показал умение иллюстрировать теоретические положения конк­ретными примерами применять их в новой ситуации при выполнении практического задания;

  продемонстрировал усвоение ранее изученных сопутствующих воп­росов, сформированность и устойчивость используемых при ответе навыков и умений;

  отвечал самостоятельно без наводящих вопросов учителя;

  возможны одна - две неточности при освещении второстепенных воп­росов или в выкладках, которые обучающийся легко исправил по замечанию учителя.

Ответ оценивается «4», если он удовлетворяет в основ­ном требованиям на оценку «5», но при этом имеет один из недостат­ков:

  в изложении допущены небольшие пробелы, не исказившие математи­ческое содержание ответа;

  допущены один - два недочета при освещении основного содержания ответа, исправленные по замечанию учителя;

 допущены ошибка или более двух недочётов при освещении второсте­пенных вопросов или в выкладках, легко исправленные по замечанию учителя.

Оценка «3» ставится в следующих случаях:

 неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, дос­таточные для дальнейшего усвоения программного материала (опреде­лённые «Требованиями к математической подготовке обучающихся»);

 имелись затруднения или допущены ошибки в определении понятия, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

 обучающийся не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательно­го уровня сложности по данной теме;

 при знании теоретического материала выявлена недостаточная сформированность основных умении и навыков.

Оценка "2" ставится в следующих случаях:

 не раскрыто основное содержание учебного материала;

 обнаружено незнание или непонимание обучающимся большей или наибо­лее важной части учебного материала;

 допущены ошибки в определении понятий, при использовании матема­тической терминологии, в рисунках, чертежах или графиках, в выклад­ках, которые не исправлены после нескольких наводящих вопросов учителя.


Оценка письменных контрольных работ обучающихся


Оценка «5»  ставится, если:

 работа выполнена полностью;

в логических рассуждениях и обосновании решения нет пробелов и ошибок;

 в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

Оценка «4» ставится, если:

 работа выполнена полностью, но обоснования шагов решения недос­таточны (если умение обосновывать рассуждения не являлось специаль­ным объектом проверки);

 допущена одна ошибка или два-три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки).

Оценка «3» ставится, если:

 допущены более одной ошибки или более двух-трёх недочётов в вык­ладках, чертежах или графиках, но обучающийся владеет обязательными умениями по проверяемой теме;

Оценка «2» ставится, если:

допущены существенные ошибки, показавшие, что обучающийся не владе­ет обязательными умениями по данной теме в полной мере.

hello_html_6811a19c.png

Краткое описание документа:

Рабочая программа составлена с учётом программы для общеобразовательных учреждений: Математика. 5-11 классы / авт.-сост. И.И. Зубарева, А.Г. Мордкович. – М.: Мнемозина, 2009, рекомендованная Департаментом образовательных программ и стандартов общего образования МО РФ.

Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для изучения математики на этапе среднего (полного) общего образования на базовом уровне отводится 3 часа в неделю 102 часа в год. В это количество часов включены 7 контрольных работ.

Автор
Дата добавления 17.01.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров308
Номер материала 312580
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх