444829
столько раз учителя, ученики и родители
посетили сайт «Инфоурок»
за прошедшие 24 часа
+Добавить материал
и получить бесплатное
свидетельство о публикации
в СМИ №ФС77-60625 от 20.01.2015
Дистанционные курсы профессиональной переподготовки и повышения квалификации для педагогов

Дистанционные курсы для педагогов - курсы профессиональной переподготовки от 5.520 руб.;
- курсы повышения квалификации от 1.200 руб.
Престижные документы для аттестации

ВЫБРАТЬ КУРС СО СКИДКОЙ ДО 70%

ВНИМАНИЕ: Скидка действует ТОЛЬКО сейчас!

(Лицензия на осуществление образовательной деятельности № 5201 выдана ООО "Инфоурок")

ИнфоурокМатематикаПрезентацииПрезентация: Процентные вычисления в жизненных ситуациях. Тема: Задачи на смеси, растворы и сплавы.

Презентация: Процентные вычисления в жизненных ситуациях. Тема: Задачи на смеси, растворы и сплавы.

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов
Процентные вычисления в жизненных ситуациях. Тема: Задачи на смеси, растворы...
Теоретические основы решения задач «на смеси, сплавы» Масса раствора равна су...
Задача №1. Морская вода содержит 5% (по массе) соли. Сколько килограммов прес...
Задача №2. Арбуз массой 20 кг содержал 99% воды. Когда он немного усох, содер...
Задача №3. Виноград содержит 90% влаги, а изюм  — 5%. Сколько килограммов вин...
Задача №4. Первоначально влажность зерна составляла 25%. После того как 200 к...
Задача № 5.  Сухие грибы содержат 12% воды, а свежие - 90% воды. Сколько полу...
Домашняя работа Если высушить свежие груши, то их масса уменьшится на 80%. Ск...
Если высушить свежие груши, то их масса уменьшится на 80%. Сколько понадобитс...
Если высушить свежие груши, то их масса уменьшится на 80%. Сколько понадобитс...
Грибы теряют при сушке 75% своей массы. Сколько понадобится свежих грибов для...

Описание презентации по отдельным слайдам:

1 слайд Процентные вычисления в жизненных ситуациях. Тема: Задачи на смеси, растворы
Описание слайда:

Процентные вычисления в жизненных ситуациях. Тема: Задачи на смеси, растворы и сплавы.

2 слайд Теоретические основы решения задач «на смеси, сплавы» Масса раствора равна су
Описание слайда:

Теоретические основы решения задач «на смеси, сплавы» Масса раствора равна сумме масс воды и соли. Масса сплава равна сумме масс металлов, входящих в этот сплав. Масса смеси равна сумме масс компонентов этой смеси. Концентрация соли или процентное содержание соли в растворе - это отношение массы соли к массе раствора, записанное в виде процентов.

3 слайд Задача №1. Морская вода содержит 5% (по массе) соли. Сколько килограммов прес
Описание слайда:

Задача №1. Морская вода содержит 5% (по массе) соли. Сколько килограммов пресной воды  нужно прибавить к 40 кг морской воды, чтобы содержание соли в последней составляло 2%? Решение:

4 слайд Задача №2. Арбуз массой 20 кг содержал 99% воды. Когда он немного усох, содер
Описание слайда:

Задача №2. Арбуз массой 20 кг содержал 99% воды. Когда он немного усох, содержание воды в нем уменьшилось до 98%. Какова теперь масса арбуза? Решение.

5 слайд Задача №3. Виноград содержит 90% влаги, а изюм  — 5%. Сколько килограммов вин
Описание слайда:

Задача №3. Виноград содержит 90% влаги, а изюм  — 5%. Сколько килограммов винограда требуется для получения 40 килограммов изюма? Решение:

6 слайд Задача №4. Первоначально влажность зерна составляла 25%. После того как 200 к
Описание слайда:

Задача №4. Первоначально влажность зерна составляла 25%. После того как 200 кг зерна просушили, оно потеряло в массе 30 кг. Вычислить влажность просушенного зерна. Решение:

7 слайд Задача № 5.  Сухие грибы содержат 12% воды, а свежие - 90% воды. Сколько полу
Описание слайда:

Задача № 5.  Сухие грибы содержат 12% воды, а свежие - 90% воды. Сколько получится сухих грибов из 22 кг свежих грибов? Решение:

8 слайд Домашняя работа Если высушить свежие груши, то их масса уменьшится на 80%. Ск
Описание слайда:

Домашняя работа Если высушить свежие груши, то их масса уменьшится на 80%. Сколько понадобится свежих груш для приготовления 8 кг сушеных? Свежие грибы содержат 90% воды, а сухие — 15% воды. Сколько получится сухих грибов из 34 кг свежих грибов?

9 слайд Если высушить свежие груши, то их масса уменьшится на 80%. Сколько понадобитс
Описание слайда:

Если высушить свежие груши, то их масса уменьшится на 80%. Сколько понадобится свежих груш для приготовления 8 кг сушеных?

10 слайд Если высушить свежие груши, то их масса уменьшится на 80%. Сколько понадобитс
Описание слайда:

Если высушить свежие груши, то их масса уменьшится на 80%. Сколько понадобится свежих груш для приготовления 8 кг сушеных? 1) 100 – 80 = 20% - составляет масса сухих груш относительно свежих; 2) 8 : 20 = 0,4 (кг) 1% свежих груш для приготовления 8 кг сушеных; 3) 0,4 * 100 = 40 (кг). Ответ: понадобится 40 кг свежих груш.

11 слайд Грибы теряют при сушке 75% своей массы. Сколько понадобится свежих грибов для
Описание слайда:

Грибы теряют при сушке 75% своей массы. Сколько понадобится свежих грибов для приготовления 4 кг сушеных? 1) 100 – 75 = 25% масса сушеных грибов от массы свежих; 2) 4 : 25 = 0,16 1% от массы свежих грибов; 3) 0,16 * 100 = 16 (кг). Ответ : понадобится 16 кг свежих грибов.

Краткое описание документа:

Курс «Процентные вычисления на каждый день» рассчитан на 4 часа для обучающихся 7-8 классов, желающих расширить и углубить свои знания по математике.  Разработка программы данного курса обусловлена непродолжительным изучением темы «Проценты» на первом этапе основной школы, когда обучающиеся  в силу возрастных особенностей ещё не могут получить полноценные представления о процентах, об их роли в повседневной жизни. На последующих этапах обучения повторного обращения к этой теме не предусматривается. Во многих школьных учебниках можно встретить задачи на проценты, однако в них отсутствует компактное и чёткое изложение соответствующей теории вопроса. Текстовые задачи включены в материалы итоговой аттестации за курс основной школы, в КИМы и ЕГЭ, в конкурсные экзамены. Однако практика показывает, что задачи на проценты вызывают затруднения у обучающихся и очень многие окончившие школу не имеют прочных навыков обращения с процентами в повседневной жизни. Понимание процентов и умение производить процентные расчёты в настоящее время необходимы каждому человеку: прикладное значение этой темы очень велико и затрагивает финансовую, демографическую, экологическую, социологическую и другие стороны нашей жизни.

Общая информация

Номер материала: 392101

Вам будут интересны эти курсы:

Курс повышения квалификации «Табличный процессор MS Excel в профессиональной деятельности учителя математики»
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
Курс профессиональной переподготовки «Математика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Онлайн-конференция Идет регистрация