Инфоурок / Математика / Рабочие программы / Рабочая программа по математике 6 класс (Мерзляк)

Рабочая программа по математике 6 класс (Мерзляк)

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта "Инфоурок" и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

ВЫБРАТЬ КУРС И ПОДАТЬ ЗАЯВКУ
библиотека
материалов

Рассмотрено на заседании

МО по математике

Руководитель МО

_________ Дмитрук Ю.А.

Протокол №___

от «____» ______ 2014 г.

Утверждаю


Директор МБОУ школа №71

____________ Беккер Т.А.

Приказ № ___

от «___»______ 2014 г.



РАБОЧАЯ ПРОГРАММА

по математике

Учитель: Дмитрук Юлия Александровна

Год реализации программы: 2014/ 2015 учебный год

Класс: 6

Общее количество часов по плану: 204 часов

Количество часов в неделю: 6
















Содержание



Пояснительная записка………………………………………………………3

Содержание курса математики в 6 классе…………………………………6

Тематическое планирование………………………………………………...12

Ресурсное обеспечение программы………………………………………..13












































Пояснительная записка

Рабочая программа рассчитана на 35 недель по 6 часов в неделю. В итоге на преподавание математике в 6 классах отводиться 210 часов. Поскольку моя программа рассчитана на 34 недели, следовательно, на преподавание математике остается 204 час. Мне пришлось убрать 6 часов, получились следующие изменения:

Глава 1 Делимость натуральных чисел-21 час

Глава 2 Обыкновенные дроби-46 часов

Глава 3 Отношения и пропорции-34 часов

Глава 4 Рациональные числа и действия над ними-80 часов

Повторение и систематизация учебного материала-23 часа

Рабочая программа составлена на основании:

авторской программы по математике для 5-6 классов общеобразовательных учреждений. Математика : программы : 5–9 классы / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко. — М. : Вентана-Граф, 2012. — 112 с.;

фундаментального ядра содержания общего образования, требований к результатам освоения образовательной программы основного общего образования, представленных в федеральном государственном стандарте основного общего образования с учётом преемственности с примерными программами для начального общего образования по математике.

Программа соответствует учебнику «Математика» для 6 класса образовательных учреждений/А.Г.Мерзляк, В.Б.Полонский, М.С.Якир, Е.В Буцко.-М.:Вентана-Граф,2012

В ней так же учитываются доминирующие идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.









Цели:

  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры;

  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни и для изучения смежных дисциплин, продолжения образования;

  • воспитание средствами математики культуры личности;

  • формирование представлений о значимости математики в развитии цивилизации и современного общества;

  • отношение к математике как к части общечеловеческой культуры через знакомство с историей её развития.


Задачи:

  • сохранить теоретические и методические подходы, оправдавшие себя в практике преподавания в начальной школе;

  • предусмотреть возможность компенсации пробелов в подготовке школьников и недостатков в их математическом развитии, развитии внимания и памяти;

  • обеспечить уровневую дифференциацию в ходе обучения;

  • обеспечить базу математических знаний, достаточную для изучения алгебры и геометрии, а также для продолжения образования;

  • сформировать устойчивый интерес учащихся к предмету;

  • выявить и развить математические и творческие способности;

  • расширить представления о делимости натуральных чисел;

  • учить выполнять сложение и вычитание дробей с разными знаменателями;

  • учить выполнять умножение и деление обыкновенных дробей, преобразование в десятичные дроби;

  • ввести понятия отношения и пропорции;

  • учить выполнять различные действия с рациональными числами;

  • продолжить знакомство с геометрическими понятиями;

  • развивать навыки построения геометрических фигур и измерения геометрических величин.



Курс математики 5-6 классов является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а так же учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса математики 5-6 классов состоит в том, что предметом её изучения являются пространственные формы и количественные отношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности. Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в 7–9 классах, а так же для изучения смежных дисциплин.

Одной из основных целей изучения математики является развитие мышления, прежде всего формирование абстрактного мышления. С точки зрения воспитания творческой личности особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, которые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приемы, как общего, так и конкретного характера. Эти приёмы, в частности, формируются при поиске решения задач высших уровней сложности. В процессе изучения математики также формируются и такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающее в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение математике даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития математики как науки формирует у учащихся представления о математике как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного характера, на пример решения текстовых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, под хода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.


Содержание курса математики в 6 классе

Содержание математического образования в 6 классе представлено в виде следующих содержательных разделов: «Арифметика», «Числовые и буквенные выражения. Уравнения», «Геометрические фигуры. Измерение геометрических величин», «Элементы статистики, вероятности. Комбинаторные задачи», «Математика в историческом развитии».

Содержание раздела «Арифметика» служит фундаментом для дальнейшего изучения учащимся математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение различных задач, а также приобретению практических навыков, необходимых в повседневной жизни.

Содержание раздела «Числовые и буквенные выражения. Уравнения» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.

Содержание раздела «Геометрические фигуры. Измерение геометрических величин» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы правильной геометрической речи, развивает образное мышление и пространственные представления.

Содержание раздела «Элементы статистики, вероятности» - обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности-умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся осуществлять рассмотрение случаев, перебор и подсчет вариантов, в том числе в простейших прикладных заданиях. При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, закладываются основы вероятностного мышления.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.


Общая характеристика курса математики в 6 классе

Арифметика

Натуральные числа

  • Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.

  • Простые и составные числа. Разложение числа на простые множители.

  • Решение текстовых задач арифметическим способом.

Дроби

  • Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.

  • Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.

  • Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.

  • Решение текстовых задач арифметическим способом.

Рациональные числа

  • Положительные, отрицательные числа и число 0.

  • Противоположные числа. Модуль числа.

  • Целые числа. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.

  • Координатная прямая. Координатная плоскость.

Числовые и буквенные выражения. Уравнения.

  • Раскрытие скобок. Подобные слагаемые, привидение подобных слагаемых. Формулы.

  • Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности.

  • Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.

  • Случайное событие. Достовернее и невозможное события. Вероятность случайного события. Решение комбинаторных задач.

Геометрические фигуры. Измерение геометрических величин.

  • Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера.

  • Примеры разверток многогранников, цилиндра, конуса.

  • Понятие и свойства объема. Объем прямоугольного параллелепипеда и куба.

  • Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.

  • Осевая и центральная симметрии.


Математика в историческом развитии

Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метрическая система мер в России, в Европе. История формирования математических символов. Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число нуль. Появление отрицательных чисел.






Личностные, метапредметные и предметные результаты освоения содержания курса математики в 6 классе


Изучение математики по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям федерального государственного образовательного стандарта основного общего образования.

Личностные результаты:

  1. ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

  2. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  3. креативность мышления, инициативы, находчивости, активность при решении арифметических задач.

Метапредметные результаты:

  1. способность самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

  2. умение устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

  3. развитие способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе;

  4. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и т.п);

  5. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных и математических проблем;

Предметные:

  1. умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;

  2. владение базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, шар, сфера), формирование представлений о статистических закономерностях в реальном мире и различных способах их изучения;

  3. умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов;

  4. умение пользоваться изученными математическими формулами;

  5. умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.


Место курса математики в учебном плане

Базисный учебный (образовательный) план на изучение математики в 6 классе основной школы отводит 6 учебных часов в неделю в течение всего года обучения, всего 204 часа.


Планируемые результаты обучения математики в 6 классе


Арифметика

По окончании изучения курса учащийся научится:

сравнивать и упорядочивать рациональные числа;

выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;

использовать понятия и умения, связанные с процентами, в ходе решения математических задач и задач из смежных предметов, выполнять не сложные практические расчёты;

анализировать графики зависимостей между величинами (расстояние, время; температура и т. п.).

Учащийся получит возможность:

углубить и развить представления о натуральных числах;

научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

выполнять операции с числовыми выражениями;

выполнять преобразования буквенных выражений (раскрытие скобок, привидение подобных слагаемых);

решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

развить представления о буквенных выражениях и их преобразованиях;

овладеть специальными приёмами решения уравнений.

Геометрические фигуры. Измерение геометрических величин

По окончании изучения курса учащийся научится:

распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;

  • распознавать и изображать развертки куба, прямоугольного параллелепипеда,

правильной пирамиды, цилиндра и конуса;

  • определять по линейным размерам развертки фигуры линейные размеры самой фигуры и наоборот;


Учащийся получит возможность:

научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

углубить и развить представления о пространственных геометрических фигурах;

распознавать и изображать развёртки куба, прямоугольного параллелепипеда;

определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

Элементы статистики, вероятности. Комбинаторные задачи

По окончании изучения курса учащийся научится:

использовать простейшие способы представления и анализа статистических данных;

Учащийся получит возможность:

приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;



Принятые сокращения в календарно-тематическом планировании:

МД - математический диктант

СР - самостоятельная работа

ФО - фронтальный опрос

КР - контрольная работа

УО - устный опрос

ПР - проверочная работа

ДК - дифференцированный контроль

ИК - индивидуальные карточки

МТ – математический тест

ДКР - домашняя контрольная работа



тематическое планирование


п/п

Наименование разделов и тем

Количество часов


всего

в том числе контрольных работ

1.

Делимость натуральных чисел

21

1

2.

Обыкновенные дроби

46

3

3.

Отношения и пропорции

34

2

4.

Рациональные числа и действия над ними

80

5

5.


Повторение

23

1

Всего

204

12









Ресурсное обеспечение программы


1. Математика : 6 класс : учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2012.

2. Математика: 6 класс : дидактические материалы : сборник задач и контрольных работ / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. : Вентана-Граф, 2012.

3. Математика : 6 класс : рабочая тетрадь / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. : Вентана-Граф, 2012.

4. Математика : 6 класс : методическое пособие / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. : Вентана-Граф, 2012.





11


Краткое описание документа:

РАБОЧАЯ ПРОГРАММА

по математике

Учитель: Дмитрук Юлия Александровна

Год реализации программы: 2014/ 2015 учебный год

Класс: 6

Общее количество часов по плану:204часов

Количество часов в неделю: 6

Пояснительная записка

Рабочая программа рассчитана на 35 недель по 6 часов в неделю. В итоге на преподавание математике в 6 классах отводиться 210 часов. Поскольку моя программа рассчитана на 34 недели, следовательно, на преподавание математике остается 204 час. Мне пришлось убрать 6 часов, получились следующие изменения:

Глава 1 Делимость натуральных чисел-21 час

Глава 2 Обыкновенные дроби-46 часов

Глава 3 Отношения и пропорции-34 часов

Глава 4 Рациональные числа и действия над ними-80 часов

Повторение и систематизация учебного материала-23 часа

Рабочая программа составлена на основании:

авторской программы по математике для 5-6 классов общеобразовательных учреждений. Математика : программы : 5–9 классы / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир, Е.В. Буцко. — М. : Вентана-Граф, 2012. — 112 с.;

фундаментального ядра содержания общего образования, требований к результатам освоения образовательной программы основного общего образования, представленных в федеральном государственном стандарте основного общего образования с учётом преемственности с примерными программами для начального общего образования по математике.

Программа соответствует учебнику «Математика» для 6 класса образовательных учреждений/А.Г.Мерзляк, В.Б.Полонский, М.С.Якир, Е.В Буцко.-М.:Вентана-Граф,2012

В ней так же учитываются доминирующие идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться.

Курс математики 5-6 классов является фундаментом для математического образования и развития школьников, доминирующей функцией при его изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а так же учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Практическая значимость школьного курса математики 5-6 классов состоит в том, что предметом её изучения являются пространственные формы и количественные отношения реального мира. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности. Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии в 7–9 классах, а так же для изучения смежных дисциплин.

Одной из основных целей изучения математики является развитие мышления, прежде всего формирование абстрактного мышления. С точки зрения воспитания творческой личности особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, которые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приемы, как общего, так и конкретного характера. Эти приёмы, в частности, формируются при поиске решения задач высших уровней сложности. В процессе изучения математики также формируются и такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающее в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение математике даёт возможность школьникам научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития математики как науки формирует у учащихся представления о математике как части общечеловеческой культуры.

Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сравнение, анализ, выделение главного, установление связей, классификацию, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного характера, на пример решения текстовых задач, денежных и процентных расчётов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, под хода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

Общая информация

Номер материала: 142323

Похожие материалы