Инфоурок Сайты учителей Свиридова Ирина Александровна Страницы Дополнительноре образование для обучающихся (Художественное эмалирование)
Дополнительноре образование для обучающихся (Художественное эмалирование)

Эмалируемые металлы

Для технического эмалирования применяются листовая сталь, чугун и легкие металлы. Эмалевое покрытие улучшает эксплуатационные свойства изделий. Наиболее распространенные цвета эмалей для этих металлов — белый, голубой и черный. При изготовлении домашней посуды на эмаль, как правило, наносят несложный орнамент. Современные художники-эмальеры широко применяют эти материалы: например, в архитектуре эмаль превратилась из одноцветного защитного покрытия в интересное выразительное средство. И все же медь, драгоценные металлы и их сплавы гораздо чаще служат основой в художественном эмалировании.

Серебро и сплавы серебра

Благодаря высокой отражательной способности серебро придает прозрачным — в особенности зеленым и голубым— эмалям бриллиантовый блеск, хотя некоторые эмали взаимодействуют с серебром и изменяют свою окраску: отдельные красные тона становятся коричневыми, непрозрачные белые приобретают по краям желтую окраску, а опалисцирующая эмаль становится заглушённой. В таких случаях серебро перед нанесением эмали покрывают изолирующим слоем прозрачного фондона. Несмотря на то, что чистое серебро имеет высокую температуру плавления (1060,5° С), при обжиге эмали тонкая серебряная фольга и серебряные перегородки могут оплавиться.

Вследствие высокого значения коэффициента термического расширения и отсутствия химического взаимодействия сцепление эмали с чистым серебром недостаточно прочно. Поэтому на прочеканенные листы из-за дополнительно возникших при формообразовании напряжений нельзя сразу же наносить эмаль. Литые изделия должны иметь равномерную толщину стенок, их нельзя дорабатывать и выглаживать чеканом. Чтобы увеличить сцепление эмали с серебром, рекомендуется придавать металлической основе большую шероховатость, например гравировкой, гильошированием, травлением и т.д.

У сплавов серебра благодаря присутствию в них меди сцепление эмали с основой значительно прочнее, а термическое расширение меньше, что улучшает свойства покрытия.

При содержании меди свыше 9% температура плавления сплава 779° С, так что большинство эмалей по температурам обжига не подходит. Для эмалирования рекомендуется сплав 970-й пробы, температура плавления которого достаточно высока и составляет 900—930° С, а наличие 3% меди заметно улучшает сцепление эмали со сплавом.

Золото и сплавы золота

Теплый желтый цвет чистого золота гармонично сочетается со всеми оттенками эмали. Особую яркость и выразительность придает золото красным тонам. При выборе цвета эмали необходимо учитывать, что голубые и зеленые эмали отливают желтизной из-за цвета основы.

Температура плавления золота довольно высокая (1063° С), термическое расширение несколько выше, чем у эмали, поэтому можно безбоязненно наносить эмаль на любые изделия из золота. Несмотря на отсутствие химического взаимодействия сцепление эмали с металлом прочное. Однако высокая стоимость золота ограничивает его применение. Сплавы золота ниже 750-й пробы для эмалирования не подходят. Сплавы с более высоким содержанием золота имеют довольно высокую температуру плавления. Для усиления яркости эмалей содержание серебра в сплавах должно быть больше, чем меди.

Для художественного эмалирования хорошо зарекомендовали себя сплавы золота 750-й пробы. Температуры плавления этих сплавов достаточно высокие; прочность сцепления с эмалью удовлетворительна; цвета эмали более яркие, чем при использовании чистого золота и, наконец, уменьшение содержания чистого золота в сплаве уменьшает стоимость изделий.

Платина

Из всех эмалируемых металлов самый низкий коэффициент термического расширения у платины. Но при небольших напряжениях изгиба эмаль скалывается в силу отсутствия химической связи и низкой прочности сцепления. Лишь придавая поверхности шероховатость, можно добиться удовлетворительного сцепления эмали с металлом. Цвета эмалей на платине устойчивы. Благодаря высокой температуре плавления (1773,5° С) обжиг эмали не представляет трудности. Но из-за высокой стоимости платины практического значения как основа для нанесения эмали она не имеет.

Листовая сталь

Наибольшее количество вырабатываемой в мире эмали наносится на листовую сталь. Эмалированная домашняя посуда, производство которой еще несколько лет назад являлось основной областью применения эмалей, частично вытесняется посудой из пластмассы и других материалов. Благодаря улучшению качества эмали и расширению технологических возможностей из эмалируемой листовой стали изготавливают сегодня высококачественные, сложные по форме изделия. Холодильники, стиральные машины, аппараты пищевой и химической отраслей промышленности имеют, как правило, эмалированный корпус; эмалевые покрытия также применяются для котлов и трубопроводов.

Примером совершенствования технологии эмалирования может служить эмалирование листовой стали или алюминиевой фольги толщиной 0,10—0,25 мм. Эмалированную фольгу применяю в строительстве, ее можно подвергать сверлению, резке и прочим видам обработки. Покрытый эмалью стальной лист сочетает в себе твердость, коррозионную стойкость к агрессивным средам, блеск и окраску стекла с прочностью металла.

Около 60 лет назад стали эмалировать листы легированного титана, у которого часть углерода образует с титаном соединение TiC, а содержание свободного углерода составляет лишь 0,003 — 0,005%.

Особенно хорошо подходят для эмалирования хромоникелевые стали, причем металл не покрывают промежуточным (грунтовым) слоем эмали. Даже прозрачные эмали можно наносить непосредственно на металл и получать эффект, которого добиваются лишь при эмалировании благородных металлов; в данном случае отпадает необходимость в нанесении контрэмали. Благодаря нанесению жаропрочных и коррозионно-стойких эмалей повышаются эксплуатационные качества изделий.

Чугун

Обычный серый чугун вполне подходит для нанесения эмали, если имеет гомогенную структуру и достаточно высокую чистоту поверхности. Максимальное содержание углерода в зависимости от других добавок не должно превышать 3,5%, так как распад свободного цементита с образованием активного углерода приводит к браку эмалевого покрытия. Также читайте виды браков в художественной эмали . Изделия из чугуна должны иметь по возможности одинаковую толщину стенок, чтобы не возникали внутренние напряжения. Для эмалирования изделий из чугуна — ванн, деталей печей и каминов, аппаратов химической промышленности и т.д.— применяют только специальные эмали.

Легкие металлы

Практическое значение имеют лишь алюминий и его сплавы. Для эмалирования хорошо зарекомендовал себя сплав высокой прочности следующего состава: 2,25% Cu, 1,0% Mg, 0,6% Si, 0,25% Cr, остальное — Аl. Низкая точка плавления алюминия (659° С) и еще более низкие температуры плавления эвтектического сплава обусловливают применение легкоплавких эмалей. Эмалированный алюминий широко используют в строительстве из-за его невысокой плотности.

Эмаль на меди

Благодаря особым химическим и физическим свойствам меди сцепление эмали с ней особенно прочное. Относительно высокая температура плавления (1084° С) гарантирует устойчивость металла при оплавлении эмали. Стоимость материала от общей стоимости художественного изделия невелика. Таким образом, медь имеет то же значение в художественном эмалировании, что и листовая сталь в промышленном. В качестве основы медь идеально подходит для непрозрачных эмалей. На прозрачные эмали большое влияние оказывает цвет меди: они темнеют, приобретают бурый оттенок; красные тона превращаются в «грязные» красно-коричневые. Этого можно избежать, если предварительно нанести на медь бесцветную прозрачную эмаль (фондон) или использовать подложку из серебряной фольги.

Эмалировочный томпак

В данном случае речь идет о сплаве меди с цинком с содержанием цинка 3—5%. Температура плавления его достаточно высока (1055—1065° С), так что при обжиге эмали не возникает никаких затруднений. Термическое расширение сплава из-за наличия цинка несколько выше, чем у чистой меди, но возникающие напряжения выравниваются благодаря упругости эмали. Особое преимущество эмалировочного томпака заключается в его светло-желтой окраске, и поэтому цвета эмали на томпаке чистые и яркие. Томпак, как правило, используют для изготовления серийных изделий небольшого размера, например значков и эмблем. При эмалировании больших по площади изделий появляется опасность скалывания эмали. На томпаке эмаль обжигают от двух до четырех раз. Все другие сплавы меди, такие как латуни с более высоким содержанием цинка, нейзильбер, бронза, для эмалирования не подходят.

Общие технологические сведения

Эмали относятся к группе стекол и обладают характерными для них особенностями: светопропусканием, водо- и кислотостойкостью, хрупкостью, не горят. Стекло не имеет кристаллической решетки, полностью изотропно, аморфно и может восприниматься как застывшая жидкость.

Эмаль – это образовавшаяся посредством частичного или полного расплавления стекловидная застывшая масса неорганического, главным образом окисного состава, иногда с добавками металлов, нанесенная на металлическую основу

Эмаль представляет собой стеклообразный сплав, содержащий ряд компонентов, входящих в состав стекла. Эмаль наносят на поверхность металлических изделий в тонкоизмельченном состоянии и она закрепляется посредством обжига при высоких температурах в виде прочного и тонкого покрытия. Эмали получают путем сплавления при высоких температурах (1250— 1400 °С), специально подобранных шихтовых материалов: горных пород (кварцевый песок, глина, мел, полевой шпат) с плавнями (бура, сода, поташ) и вспомогательных веществ: 1) окислы для улучшения сцепления эмали с поверхностью металла (NiO, CoO); 2) глушители для получения непрозрачного состояния (ТiO2, ZrO2, SnO2, фториды и др.); 3) красители для придания эмали желаемого цвета.

По своим оптическим свойствам эмали бывают прозрачные (транспарантные), непрозрачные (глушеные или опаковые) и опалисцирующие – полупрозрачные.

.2. производство эмали{C}[1]

Строение стекла. Для эмалей, как и для любого стекла характерно т. н. стекловидное состояние, которое можно определить хаотическим расположением атомов вещества в пространстве, не образующих геометрически правильной упорядоченной пространственной структуры, то есть отсутствием кристаллической решетки. Стекловидное состояние характерно не только для стекол. В этом состоянии находится, например, янтарь, оргстекло (полиметилметакрилат) и другие вещества. Это позволяет называть «эмалью» некоторые полимерные покрытия, имеющие сходные декоративные свойства с классической горячей эмалью на металле или стекле.

Охлаждаясь, жидкое расплавленное вещество переходит либо в кристаллическое, либо в стеклообразное состояние. Свойства анизотропного кристаллического вещества зависят от конфигурации кристаллов и в различных направлениях неодинаковы. Стекловидное вещество, напротив, изотропно, т. е. его свойства во всех направлениях одинаковы.

Кристаллы характеризуются строго фиксированной температурой плавления, выше которой кристаллическое вещество в процессе плавления не нагревается, вся дополнительная подводимая теплота расходуется не на нагрев, а на разрушение кристаллической структуры. При быстром охлаждении некоторые вещества, например кремнезем SiO2 и кремнекислые соли металлов (силикаты) и другие, переходят в стеклообразное состояние. Расплавы этих веществ обладают большой вязкостью и так быстро загустевают, что атомы не успевают построиться в правильную кристаллическую структуру. Подобное хаотическое расположение атомов и молекул – главный признак жидкости или газа. Следовательно, стекло можно назвать твердой (точнее - переохлажденной) жидкостью.

При повторном нагревании стекловидное вещество может перейти в кристаллическое в следствии его неустойчивости. В производстве эмали подобная кристаллизация нежелательна, это является одним из пороков эмали.

Состав и производство эмали. Основой большинства неорганических стекол и эмалей является окись кремния SiO2, вводимая в шихту в виде кварцевого песка (силикатные стекла). Cтеклообразователями служат также трехокись бора B2O3, фосфорный ангидрид P2O5, оксид свинца PbO и др. Соответственно такие стекла называются борными, свинцовыми и т. д. Кроме того, в состав эмали входят модификаторы (окиси щелочных и щелочноземельных металлов, от которых зависят свойства эмалей), а также красители и пигменты – красящие окислы металлов, окиси алюминия, свинца, соединения фтора и т. д.

В качестве тугоплавкого сырья для изготовления эмалей используют чистый кварцевый песок (двуокись кремния), полевой шпат (алюмосиликат калия, кальция или натрия), магнезит (углекислый магний). Кварц (SiO2) составляет 30 - 55 % большинства художественных эмалей. От содержания кварца в составе эмалей зависят такие механические свойства стекла, как прочность при сжатии, упругость и химическая стойкость. Однако увеличение количества SiO2 в составе шихты значительно увеличивает тугоплавкость эмали (температура плавления чистого кварца 1800 - 2000ºС). Обычные, в том числе художественные стекла содержат 60 – 75% оксида кремния.

Для снижения температуры плавления в шихту вводят легкоплавкие компоненты – флюсы. Чаще всего используются следующие вещества: борная кислота (H3BO3), бура (Na2B4O7), сода (Na2CO3), известковый шпат (CaCO3), свинцовый сурик (Pb3O4).

Плавление шихты и варку эмалей проводят при температуре в пределах 1000 - 1400 ºС. время варки – от нескольких десятков минут, до нескольких часов. Столь долгое время необходимо для достижения однородной (гомогенной) структуры вещества. В процессе варки в расплаве шихты протекают сложные химические реакции, сопровождающиеся выделением газов. В промышленных условиях варку эмали производят в специальных плавильных или тигельных печах, в лабораторных условиях – в небольших тиглях.

Перед плавкой все компоненты шихты измельчают и тщательно перемешивают. Как правило, варку эмали проводят в два приема. Сначала варят прозрачное стекло – фритту. Затем фритту измельчают и используют как основу для производства собственно цветных эмалей.

Кварц применяют в виде особо чистого песка, но при этом в расплав все же попадает ряд примесей, особенно окислы железа. С другими естественными шихтовыми материалами в образовавшуюся фритту также попадают некоторые примеси. В расплаве эти материалы взаимодействуют друг с другом в виде окислов.

Образовавшаяся из рассмотренных компонентов фритта прозрачна и служит основой для прозрачных эмалей. При добавлении в стекловидный расплав глушителей понижается его прозрачность и таким образом получают исходный материал для непрозрачных эмалей.

До сих пор эмали составляют на основе экспериментальных данных. Многие факторы невозможно заранее предусмотреть, так как взаимодействие компонентов в процессе плавления приводит к различным отклонениям. Состав эмали зависит от заданных технологических параметров. В Таблице 1. дан примерный состав эмалей, выпускаемых промышленностью.

Таблица 1.

Исходная рецептура ювелирных эмалей [1]

Кварц

34 — 55

Бура (борная кислота)

0 — 12,5

Сода

3 — 8

Поташ

1,5 — 11

Свинцовый сурик

25 — 40

Плавликовый шпат

0 — 2,5

Криолит

1 — 4

Калиевая селитра

0 — 2

Мышьяк

0 — 4

Красящие окислы

0,1 — 0,5

Предпосылкой для полного растворения и равномерного распределения всех компонентов в расплаве является тщательная подготовка исходных материалов. Точно взвешенное количество шихтовых материалов тщательно измельчают и смешивают так, чтобы в результате получилась однородная смесь твердых, мелких гранул компонентов. Эмалевую шихту расплавляют в печи до получения стеклообразной массы, которая представляет собой основу будущей эмали.

Температура плавления для различных эмалей находится в пределах От 1000 до 1400 °С. Минимальная температура плавления шихты определяется температурой плавления компонентов. Отсюда следует, что ход сложных реакций в шихте требует определенного времени и не может быть ускорен резким повышением температуры.

Здесь, как и при любом химическом процессе, скорость реакции увеличивается с повышением температуры, но до определенного предела, превышение которого приводит к нежелательным явлениям: слишком большим изменениям состава эмали за счет летучести компонентов.

При изготовлении стекла шихту плавят, затем расплав выдерживают при температуре плавления до тех пор, пока не будут удалены газовые пузырьки, и смесь не станет гомогенной. Точно так же поступают при варке эмали: шихту нагревают до температуры плавления, расплав перемешивают и, выдержав необходимое время, быстро охлаждают. Вследствие этого получают застывший расплав в виде твердых частиц стекла с включениями газовых пузырьков. Химические реакции между компонентами в необожженной эмали еще не закончены, и при последующем оплавлении на металлической подложке физико-химические процессы продолжаются до тех пор, пока стеклообразная масса не станет полностью однородной. Процесс варки довольно сложен, так как химические и физические процессы протекают одновременно, влияя друг на друга.

Глушение стекла. Если варят непрозрачные (опаковые) эмали, то в стекловидный расплав добавляют глушители, особые глушащие добавки с иными показателями преломления, чем у основы стекла. Свет при прохождении через эмалевую массу отклоняется неравномерно, рассеивается и отражается. Чем больше разница показателей преломления основного стекла и глушителя, тем больше глушащий эффект. Некоторые глушители, растворяясь в жидкой эмалевой массе, при охлаждении выделяются в виде твердых частиц или газов. Мелкие газовые пузырьки или кристаллические частицы отражают свет.

В качестве глушителей могут быть использованы следующие вещества: костяной пепел (широко применялся еще с античных времен, в настоящее время вытеснен другими материалами); двуокись олова (SnO2); двуокись титана (TiO2); плавликовый шпат или фтористый кальций (CaF2); криолит (Na3AlF6).

Окрашивание стекол и эмалей.

Цвет (окраска). Известно, что тела, обладающие избирательным поглощением света в одной или нескольких областях видимого спектра, представляются окрашенными. Тело имеет тот цвет, который оно пропускает или отражает.

Нормальный глаз человека воспринимает колебания с длинами волн примерно от 380 до 760 нм, получая впечатления различных цветов.

Если тело имеет наибольшее поглощение в фиолетовой, синей и зеленой областях и минимальное – в длинноволновой части спектра, то его цвет изменяется от желтого до красного. Наоборот, если максимальное поглощение имеет место в длинноволновой, а минимальное – в коротковолновой области спектра, то цвет тела будет меняться от синего до фиолетового. Окраска эмалей также основана на явлении избирательного поглощения в видимой части спектра.

Для придания эмали определенной окраски в шихту для повторной варки вводят некоторое количество (в размере до нескольких процентов от общей массы) специальных красящих компонентов – пигментов и красителей. Существуют два типа окрашивания – ионное и коллоидное.

Ионное окрашивание обусловлено наличием в стекле положительно заряженных ионов некоторых переходных или редкоземельных металлов. Различные ионы одного и того же металла характеризуются различным отношением к окрашиванию стекла. Можно провести аналогию между окрашиванием стекла и водных растворов ионными красителями. Например, водный раствор медного купороса – голубой, пермарганата калия – фиолетовый. Такие же цвета получаются и при введении данных веществ в шихту стекла. В этом случае исходное бесцветное стекло (фритту) можно считать растворителем, а окислы металлов – растворенными пигментами. При смешивании красящих окислов добиваются многочисленных цветовых оттенков, используемых в ювелирных эмалях.

Степень избирательного поглощения, а следовательно, и пропускания цветовых лучей зависят от концентрации ионов в эмали и толщины эмалевого слоя (для прозрачных эмалей). При вторичном нагреве затвердевшей эмалевой массы с ионными красителями окраска почти не изменяется. Эти красители окрашивают стекла и эмали любых составов.

Эмали, окрашенные коллоидными красителями обладают другими свойствами. В этом случае окрашивание обусловлено избирательным рассеиванием цветовых лучей: рассеиваются фиолетовые, синие и голубые лучи (коротковолновое излучение), стекло пропускает лишь желтые, оранжевые и красные лучи. В этих эмалях присутствуют мельчайшие (т. н. коллоидные) частицы таких металлов, как золото, серебро, медь, или же некоторых сульфидов. Размеры коллоидных частиц составляют 10...50 нм. Окраска появляется, когда эти частицы вырастают в стекле до указанного размера. Однако процесс чрезмерного укрупнения частиц может привести к помутнению и заглушению эмали. При резком охлаждении коллоидно – окрашенные эмали получаются бесцветными; окраска возникает лишь при вторичном подогреве затвердевшей эмали (наводке). В результате наводки в эмали протекают процессы выделения частиц красителя. Интенсивность окраски зависит от числа выделившихся коллоидных частиц и от их размеров. Размеры самих коллоидных частиц и расстояний между ними сопоставимы с длинами волн цветовых излучений.

Примером такого окрашивания могут быть некоторые красные транспарантные (прозрачные) ювелирные эмали, в которых в качестве коллоидного красителя присутствуют мельчайшие частицы золота.

Красители и пигменты.{C}[2]

Синие и голубые эмали получают введением в шихту от 0,02 % до 1 % окиси кобальта CoO. Для получения оттенков голубого зелено-голубого цвета добавляют 1 – 2 % (масс. доли) окиси меди CuO.

Фиолетовый оттенок получают с помощью добавок окиси марганца Mn2O3. Ионы Mn3+ придают прозрачной эмали пурпурно-фиолетовую окраску. Окись никеля NiO, вводимая в количестве до 3 %, окрашивает стекло, содержащее К2О в красновато-фиолетовый цвет.

Если оксид меди CuO вводится в шихту в количестве 2...4 %, то цвет эмали становится изумрудно-зеленым. Более теплые оттенки зеленого цвета (без примеси голубого) обусловлены присутствием в составе эмали окиси хрома Cr2O3. Для получения различных голубовато-зеленых оттенков оксиды хрома применяют в сочетании с оксидом меди и оксидами железа FeO и Fe2O3. при этом FeO окрашивает стекло в голубой цвет, а Fe2O3 – в желтый. При сложении этих цветов получаются различные оттенки зеленого (бутылочного) цвета. Применение оксидов железа в качестве красителей художественного стекла и эмали ограничено из-за того, что они являются обычными красителями бутылочного и другого тарного стекла.

Для получения эмалей желтого цвета применяют сульфиды некоторых металлов (сульфид кадмия CdS, сульфид меди CuS, сульфид свинца PbS), а также сульфид железа FeS, в при большой концентрации которого (до нескольких процентов от общей массы шихты) получается интенсивная янтарно-коричневая окраска. Эмали, содержащие сульфиды, являются типичными примерами молекулярно-коллоидного окрашивания стекла. Различные оттенки желтого цвета можно получить используя соединение сурьмы и свинца Pb2Sb4O7 с добавлением ZnO и Al2O3. В свинцовых легкоплавких эмалях (стеклообразователь – PbO) в качестве коллоидного красителя для получения оттенков желтого, оранжевого и красного цвета применяют хромовокислый калий (хромпик) KCr2O. В зависимости от концентрации частиц хромпика получается соответствующий оттенок.

Красные эмали получают также с помощью добавок сульфида кадмия CdS и селенида кадмия CdSe в различных пропорциях. При соотношении CdS:CdSe = 3:1 получается оранжевый цвет. Красные прозрачные эмали различных оттенков от алого по пурпурного называются рубиновыми. Ювелирные рубиновые эмали содержат коллоидно-дисперсное золото (до 0,03 %) – результат разложения хлорида золота AuCl3 на элементарное золото.

Коричневые эмали окрашивают смесью окислов железа, цинка и хрома.

Черный цвет получают в результате смешения различных окислов металлов (окись хрома, кобальта, меди с добавками окиси никеля, железа, марганца).

Ниже, в таблице 2. приведены данные по окраске эмалей некоторыми красителями.

Таблица 2

Пигменты и красители для эмалей [8].

Окраска

эмали

Краситель

Желтая

Сульфид кадмия CdS,

соединение сурьмы и свинца Pb2Sb4O7 c добавлением ZnO и Al2O3

Оксид сурьмы Sb2O5 (при увеличении концентрации переходит в охру и коричневый оттенок)

Коричневая

Смесь окислов железа, цинка и хрома

Красная и оранжевая

Смесь сульфида кадмия CdS и селенида кадмия CdSе,

Хромовокислый калий (хромпик) KCr2O

Основной хромат свинца Pb[CrO4]•Pb[OH]2,

Коллоидно-дисперсное золото (до 0,03%)

Синяя

Окись кобальта СоО

Для получения оттенков добавляют окись марганца, двуокись олова, окись алюминия, окись хрома

Зеленая и сине-зеленая

Оксиды меди CuO Cu2O

Окись хрома Cr2O3, добавки окиси алюминия, кобальта, железа смягчают оттенки

Красно-фиолетовая

Оксиды марганца Мn2О3 МnО

Черная

Смеси окиси хрома, кобальта, меди с добавками окиси железа, никеля, марганца. В большинстве случаев не получается чистого глубокого черного цвета, а, как правило, с коричневым или голубоватым оттенком

Интенсивность окраски при цветном глушении зависит от количества пигмента в эмали, от величины его частиц, а также от степени глушения эмали.

Если пигмент добавляют к заглушенной эмали, то окраска ослабляется. Чем сильнее заглушена эмаль, тем слабее окраска, вызываемая пигментом. Поэтому для получения интенсивной окраски при небольшой добавке пигмента необходимо применять незаглушенные эмали.

{C}2.3. Некоторые физико-химические свойства эмали

Термические характеристики предназначенных для эмалирования специальных стекол должны соответствовать термическим характеристикам металла основы. В результате обжига между этими материалами должно осуществляться соединение без использования связующего материала.

Наибольшее значение для художественных эмалей имеют следующие свойства:

Термомеханические – вязкость эмалевого расплава (термопластичность), Поверхностное натяжение, термическое расширение.

Механические – прочность сцепления, твердость, упругость.

Химические – химическая устойчивость.

Вязкость.{C}[3]{C} Одно из основных свойств стекол и эмалей. В отличие от кристаллических материалов, у аморфных веществ, к которым относятся эмали нет фиксированных термических точек. Переход из твердого и хрупкого состояния в пластичное, а затем в жидкое происходит плавно, при этом четко определить границы состояния не представляется возможным.

Вязкостью называют внутреннее трение между молекулами, обусловленное текучестью жидкостей и газов. От показателя вязкости при определенной температуре зависит жидкотекучесть эмали (растекаемость по поверхности металла). Вязкость жидкотекучего состояния – 102 – 122 Пас, должна достигаться (для художественных эмалей) при температурах от 800 до 900 ºС.

Термопластичность относится к основным свойствам стекол и эмалей. При нагреве твердый хрупкий материал размягчается, постепенно переходит в пластичное состояние, с повышением температуры становится вязкотекучим и затем жидким, при этом определить границы состояния не представляется возможным.

В то время как у кристаллических материалов, например у металлов, изменения агрегатного состояния можно зафиксировать температурными точками (точка плавления у чистых кристаллических веществ, интервал плавления сплавов), у аморфных веществ нет фиксированных термических точек.

Степень разжижения нагретого стекла характеризуется вязкостью, и это физическое свойство имеет особое значение для характеристики стекла.

Вязкость эмалевой фритты должна обеспечивать достаточную текучесть, полное покрытие металла, растворение окалины и технически оптимальную дегазацию.

Поверхностное натяжение и смачиваемость. Это свойство определяется силами молекулярного взаимодействия на поверхности расплавленной или размягченной эмали. От величины поверхностного натяжения зависит смачиваемость поверхности металла расплавом эмали. Поверхностное натяжение σ равно работе (энергии), которая должна быть израсходована на увеличение поверхности жидкости на 1 см2.

На жидкость действует сила, под влиянием которой жидкость стремится принять форму шара – тела с минимальной поверхностью. Достаточно вспомнить о поведении шариков ртути или воды на жирной поверхности.

Величина поверхностного натяжения зависит от температуры и от состава жидкости. При наплавлении эмали на металл требуется пониженное значение поверхностного натяжения, а при нанесении одного слоя эмали на другой, либо на стеклянную подложку или грунт, следует использовать составы с более высоким показателем поверхностного натяжения (более тугоплавкие) во избежание перемешивания с подложкой (в случае, когда это не предусмотрено специально), либо производить обжиг при более низкой температуре, чем обжиг подложки. Добавки окиси свинца и борной кислоты, а также K2O, Na2O, Li2O, CaF2, V2O5, MoO3, WO3 значительно уменьшают поверхностное натяжение, а следовательно увеличивают растекаемость расплава эмали.

Для эмали поверхностное натяжение, а следовательно, сила сцепления и смачивания металлической основы эмалевым расплавом имеют важное значение. Например, при нанесении эмали по высокому рельефу поверхностное натяжение уменьшается настолько, что эмаль растекается по всей площади и хорошо смачивает основу. Как видно из рис. 1., нанесенная на поверхность твердого тела капля жидкости либо растекается, образуя тонкий слой жидкости (полная смачиваемость), либо остается более или менее сплющенной (неполная смачиваемость).

Рис 1. поверхностное и адгезионное натяжение:

а – общая схема; б – неполная смачиваемость; в – полная смачиваемость; г – полная несмачиваемость.

Термическое расширение. Известно, что тело при нагревании расширяется, а при охлаждении уменьшается до первоначального размера и формы. Термическое расширение эмалей и их согласование с расширением основы имеет важное значение для сцепления эмалей с металлом и поэтому служит одним из основных факторов, влияющих на качество изделий. Варьируя комбинации компонентов шихты, можно добиться того, что термическое расширение эмали становится выше, чем у бытовых стекол, приближаясь к термическому расширению металлов. Но при этом термическое расширение эмали не должно быть выше термического расширения металла или равнялось ему. Для прочного сцепления эмали с металлом необходимо, чтобы коэффициент линейного расширения эмали был несколько меньше, чем у металла. При этом эмаль находится под небольшим напряжением сжатия, что положительно сказывается на ее механических свойствах, благодаря относительно высокой прочности стекла при сжатии.

Для эмалей наибольшее значение имеет коэффициент, характеризующий линейное расширение, вследствие того, что толщина эмалевого слоя на поверхности металла как правило несравнимо меньше его площади.

Сравнительные значения коэффициентов линейного расширения эмалей, стекол и других материалов даны на рис. 2.

Рис 2. Температурный коэффициент линейного расширения эмалей, стекол и других материалов [1].

Прочность. Механическая прочность представляет собой сопротивление материала необратимой деформации и распространению трещин при внешнем механическом нагружении. Разрыв связей между частицами тел вызывается действием растягивающих сил. Поскольку стекла и эмали очень чувствительны к растягивающим нагрузкам, прочность на растяжение является важным параметром их свойств.

Предел прочности стекла при сжатии примерно в десять раз превышает предел прочности при растяжении, чем и обусловлено вышеуказанное правило. Стекло и эмаль весьма чувствительны к ударам, имеют низкую ударную прочность. Однако, в отличие от стекла, эмаль имеет более высокие показатели прочности при растяжении, изгибе, ударной прочности, благодаря соединению эмали с металлической подложкой. Не смотря на это, следует избегать всего, что может привести к повышению довольно низких значений пределов прочности при пользовании эмалированными изделиями.

Прочность сцепления. Прочность сцепления эмали с металлом является одной из основных характеристик системы металл-эмаль; она определяет стабильность системы еще до того, как изделие поступает в эксплуатацию. После обжига изделий, покрытых эмалью, на металле получается прочно связанно

Художественное эмалирование

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.