Инфоурок / Физика / Другие методич. материалы / Задания по физике "Кейсовая технология"
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Педагогическая деятельность в соответствии с новым ФГОС требует от учителя наличия системы специальных знаний в области анатомии, физиологии, специальной психологии, дефектологии и социальной работы.

Только сейчас Вы можете пройти дистанционное обучение прямо на сайте "Инфоурок" со скидкой 40% по курсу повышения квалификации "Организация работы с обучающимися с ограниченными возможностями здоровья (ОВЗ)" (72 часа). По окончании курса Вы получите печатное удостоверение о повышении квалификации установленного образца (доставка удостоверения бесплатна).

Автор курса: Логинова Наталья Геннадьевна, кандидат педагогических наук, учитель высшей категории. Начало обучения новой группы: 27 сентября.

Подать заявку на этот курс    Смотреть список всех 216 курсов со скидкой 40%

Задания по физике "Кейсовая технология"

библиотека
материалов

Примеры заданий по работе с текстом

1. Тексты с описанием различных физических явлений или процессов, наблюдаемых в природе или в повседневной жизни.

Задания к ним могут проверять:

понимание информации, имеющейся в тексте;

понимание смысла физических терминов, использующихся в тексте;

умение выделить описанное в тексте явление или его признаки;

умение объяснить описанное явление при помощи имеющихся знаний.


2. Тексты с описанием наблюдения или опыта по одному из разделов школьного курса физики. Задания к ним могут проверять:

понимание информации, имеющейся в тексте;

умение выделить (или сформулировать) гипотезу описанного наблюдения или опыта, понимание условий проведения, назначения отдельных частей экспериментальной установки и измерительных приборов;

умение определить (или сформулировать) выводы.


3. Тексты с описанием технических устройств, принцип работы которых основан на использовании каких-либо законов физики.

Задания к текстам могут проверять:

понимание информации, имеющейся в тексте;

понимание смысла физических терминов, использующихся в тексте;

умение определить основные физические законы (явления, принципы), лежащие в основе работы описанного устройства;

умение оценивать возможности безопасного использования описанных технических устройств.


4. Тексты, содержащие информацию о физических факторах загрязнения окружающей среды или их воздействии на живые организмы и человека.

Задания могут проверять:

понимание информации, имеющейся в тексте;

понимание смысла физических терминов, использующихся в тексте;

умение оценивать степень влияния описанных в тексте физических факторов на загрязнение окружающей среды;

умение выделять возможности обеспечения безопасности жизнедеятельности в условиях воздействия на человека неблагоприятных факторов.













Текст с описанием различных физических явлений или процессов


«Ледяная магия»


Между внешним давлением и точкой замерзания (плавления) воды наблюдается интересная зависимость. С повышением давления до 2200 атм она падает: с увеличением давления на каждую атмосферу температура плавления понижается на 0,0075 °С. При дальнейшем увеличении давления точка замерзания воды начинает расти: при давлении 3530 атм вода замерзает при –17 °С, при 6380 атм – при 0 °С а при 20 670 атм – при 76 °С. В последнем случае будет наблюдаться горячий лёд.

При давлении 1 атм объём воды при замерзании резко возрастает примерно на 11%. В замкнутом пространстве такой процесс приводит к возникновению громадного избыточного давления. Вода, замерзая, разрывает горные породы, дробит многотонные глыбы.

В 1872 г. англичанин Боттомли впервые экспериментально обнаружил явление режеляции льда. Проволоку с подвешенным на ней грузом помещают на кусок льда. Проволока постепенно разрезает лёд, имеющий температуру 0 °С, однако после прохождения проволоки разрез затягивается льдом, и в результате кусок льда остаётся целым.

Долгое время думали, что лёд под лезвиями коньков тает потому, что испытывает сильное давление, температура плавления льда понижается – и лёд плавится. Однако расчёты показывают, что человек массой 60 кг, стоя на коньках, оказывает на лёд давление примерно 15 атм. Это означает, что под коньками температура плавления льда уменьшается только на 0,11 °С. Такого повышения температуры явно недостаточно для того, чтобы лёд стал плавиться под давлением коньков при катании, например, при –10 °С.


Вопросы и задания

1. Как зависит температура плавления льда от внешнего давления?

2. Приведите два примера, которые иллюстрируют возникновение избыточного давления при замерзании воды.

3. Попробуйте объяснить своими словами, что может означать термин «режеляция».

4. При протекании какого процесса может выделяться теплота, которая идёт на плавление льда при катании на коньках? (Ответ. В 1936 г. Бауден и Хьюз доказали, что в случае катания на коньках или лыжах решающее значение имеет плавление льда под действием теплоты, выделяющейся при трении.)


Текст с описанием различных физических явлений или процессов

«Приливы и отливы»

Солнце действует почти одинаковым образом на всё находящееся на Земле и внутри неё. Сила, с которой Солнце притягивает, например, москвича в полдень, когда он ближе всего к Солнцу, почти не отличается от силы, действующей на него в полночь! Ведь расстояние от Земли до Солнца в десять тысяч раз больше земного диаметра, и увеличение расстояния на одну десятитысячную при повороте Земли вокруг своей оси на пол-оборота практически не меняет силы притяжения. Поэтому Солнце сообщает почти одинаковые ускорения всем частям земного шара и всем телам на его поверхности.

Почти, но всё же не совсем одинаковые. Из-за этой-то небольшой разницы возникают приливы и отливы в океане. На обращённом к Солнцу участке земной поверхности сила притяжения несколько больше, чем это необходимо для движения этого участка по эллиптической орбите, а на противоположной стороне Земли – несколько меньше. В результате, согласно законам механики Ньютона, вода в океане немного выпячивается в направлении, обращённом к Солнцу, а на противоположной стороне отступает от поверхности Земли. Возникают, как говорят, приливообразующие силы, растягивающие земной шар и придающие, грубо говоря, поверхности океанов форму эллипсоида.

Чем меньше расстояния между взаимодействующими телами, тем больше приливообразующие силы. Вот почему на форму Мирового океана большее влияние оказывает Луна, чем Солнце. Мы говорили о Солнце просто потому, что Земля вращается вокруг него, и здесь легче понять причину деформации поверхности океанов. Если бы не было сцепления между частями земного шара, то приливообразующие силы разорвали бы его.

Приливная волна тормозит вращение Земли. Правда, этот эффект мал, за 100 лет сутки увеличиваются на тысячную долю секунды. Но, действуя миллиарды лет, силы торможения приведут к тому, что Земля будет повёрнута к Луне одной стороной и дневные сутки станут равными лунному месяцу. С Луной это уже произошло. Луна заторможена настолько, что повернута к Земле всё время одной стороной.


Вопросы

1. Когда на человека действует большая сила притяжения со стороны Солнца: в полдень или в полночь? Почему?

2. Попробуйте объяснить своими словами, как возникают приливообразующие силы. Почему они оказывают тормозящее действие на вращение Земли?

3. Почему Луна при возникновении приливов оказывает гораздо большее воздействие, чем Солнце?

4. Период обращения Луны вокруг Земли равен 27 сут. 7 ч 43 мин. Чему примерно равен лунный день?

Текст с описанием различных физических явлений или процессов


«Ау, вы меня слышите?»

В 1938 г. американские исследователи Г.Пирс и Д.Гриффин, применив специальную аппаратуру, установили, что великолепная ориентировка летучих мышей в пространстве связана с их способностью воспринимать эхо. Оказалось, что во время полёта мышь излучает короткие ультразвуковые сигналы на частоте около 8 • 104 Гц, а затем воспринимает эхо-сигналы, которые приходят к ней от ближайших препятствий и от пролетающих вблизи насекомых. Гриффин назвал способ ориентировки летучих мышей по ультразвуковому эху эхолокацией.

Ультразвуковые сигналы, посылаемые летучей мышью в полёте, имеют характер очень коротких импульсов – своеобразных щелчков. Длительность каждого такого щелчка (1...5) • 10–3 с, ежесекундно мышь производит около десяти таких щелчков.

Американские учёные обнаружили, что тигры используют для коммуникации друг с другом не только рёв, рычание и мурлыкание, но также и инфразвук. Они проанализировали частотные спектры рычания представителей трёх подвидов тигра – уссурийского, бенгальского и суматранского – и обнаружили в каждом из них мощную низкочастотную компоненту. По мнению учёных, инфразвук позволяет животным поддерживать связь на расстоянии до 8 км, поскольку распространение инфразвуковых сигналов менее чувствительно к помехам, вызванным рельефом местности.


Вопросы

1. В чём отличие ультразвука и инфразвука от звуковых волн, воспринимаемых человеком?

2. Почему Г.Пирс и Д.Гриффин назвали способ ориентировки летучих мышей эхолокацией? Где ещё используется подобный принцип обнаружения объекта?

3. Объясните своими словами, как вы понимаете словосочетание «частотные спектры».

4. Почему инфразвук в отличие от обычного звука позволяет тиграм общаться на столь далёких расстояниях? Какие известные вам свойства волн проявляются в данном случае?






Текст с описанием наблюдения или опыта


«Открытие животного электричества»

Днём рождения науки электробиологии по праву считается 26 сентября 1786 г. В этом году итальянский врач и учёный Луиджи Гальвани начинает новую серию опытов, решив изучить действие на мышцы лягушки «спокойного» атмосферного электричества. Поняв, что лапка лягушки является в некотором смысле чувствительным электродом, он решил попробовать обнаружить с её помощью атмосферное электричество. Повесив препарат на решётке своего балкона, Гальвани долго ждал результатов, но лапка не сокращалась ни при какой погоде.

И вот 26 сентября лапка наконец сократилась. Но это произошло не тогда, когда изменилась погода, а при совершенно других обстоятельствах: лапка лягушки была подвешена к железной решётке балкона на медном крючке и свисающим концом случайно коснулась решётки.

Гальвани проверяет: оказывается всякий раз, как образуется цепь «железо–медь–лапка», тут же происходит сокращение мышц независимо от погоды. Учёный переносит опыты в помещение, использует разные пары металлов и регулярно наблюдает сокращение мышц лапки лягушки. Таким образом, был открыт источник тока, который впоследствии был назван гальваническим элементом.

Как же можно было объяснить эти наблюдения? Во времена Гальвани учёные считали, что электричество не может возникать в металлах, они могут играть только роль проводников. Отсюда Гальвани заключает, источником электричества в этих опытах являются сами ткани лягушки, а металлы только замыкают цепь.


Вопросы

1. Какую гипотезу пытался проверить Л.Гальвани, начиная в 1786 г. новую серию опытов с лапкой лягушки?

2. Какой вывод сделал Л.Гальвани на основании своих опытов? В чём состояла ошибочность его вывода?

3. Из каких основных частей должен состоять гальванический элемент?

4. Если бы вы проводили опыты, аналогичные опытам Л.Гальвани, то какие бы дополнительные исследования (кроме проверки разных пар металлов) осуществили?

3. Текст с описанием технических устройств


Текст с описанием наблюдения или опыта


«Трубы-хамелеоны»


Для трубопроводов, которые находятся в помещениях, большое значение имеет их внешний вид. Для красоты их красят, никелируют. Но можно применить необычное покрытие, изобретение которого подсказано бабочками.

Чешуйки тропических бабочек семейства ураний представляют собой многослойную структуру. Семь хитиновых пластинок разделены между собой воздушными промежутками. В результате многократного отражения и интерференции отражённые лучи приобретают более насыщенный цвет, а поверхность – блеск полированного металла. При деформации чешуйки толщина воздушного зазора изменяется, что вызывает и изменение окраски чешуйки. Чешуйка крыла урании состоит из хитиновых пластинок, между которыми имеются прослойки воздуха (а).  Отражённый луч представляет собой результат интерференции лучей, отражённых от передней и задней поверхностей пластинки. Разность хода (АВС) двух частей световой волны определяется толщиной пластинки и углом падения лучей (б). Современные технологии позволяют получать тонкие плёнки толщиной до 0,5 мкм. На внешние стенки труб наносят покрытия из слоёв плёнки толщиной около 5 мкм, склеенных между собой. Но клей наносят не сплошь, а тонкими полосками, и получается структура, аналогичная чешуйкам бабочек ураний.

Такое покрытие будет менять цвет при изменении температуры: у горячей трубы возрастает давление изнутри на слои покрытия, и толщина воздушных зазоров уменьшается. По оттенкам цвета можно безошибочно определить, течёт ли по трубе вода и какая она – горячая или холодная. Кроме того, подобное покрытие также служит хорошим теплоизолятором и уменьшает потери тепла.



hello_html_461b1846.pnghello_html_1a50d036.png

Вопросы и задания

1. Что представляет собой явление интерференции света? Рассмотрите первый рисунок и поясните, какие лучи интерферируют в чешуйке бабочки.

2. Почему для нанесения описанного в тексте покрытия на трубы нельзя использовать плёнки толщиной, например, 1 мм?

3. Предположим, что чешуйка бабочки семейства ураний в данном пучке света имела зелёный цвет. Как изменится цвет пластинки при уменьшении воздушной полости между хитиновыми пластинками, например, при увеличении внешнего давления?

4. При нагревании металлические трубы расширяются быстрее, чем материал плёнок в покрытии. В какую сторону при увеличении температуры протекающей по трубе воды сместится окраска трубы – в синюю или красную? Почему?





Текст, содержащий информацию о физических факторах загрязнения окружающей среды или об их воздействии на живые организмы и человека

«Магнитобезопасность»

Электромагнитные поля окружают нас буквально всюду: дома, в поезде метро, в салоне троллейбуса или трамвая. Тронулся за стеной лифт, загудел компрессор холодильника, щёлкнуло реле обогревателя – всё это означает, что возникло электромагнитное поле. А его магнитная составляющая, как стало известно, хорошо проникает через любые преграды, в том числе и внутрь нашего тела.

Практически в каждой квартире имеются сегодня электробытовые приборы: телевизоры, холодильники, электроутюги, стиральные машины и т.п. Все они в работающем состоянии окружены соответствующим магнитным полем (см. диаграмму 1). При работе с бытовыми приборами главное значение имеет не столько величина магнитного поля прибора, сколько расстояние до него (пропорционально квадрату этого расстояния падает интенсивность магнитного поля), а также время работы с ним.

hello_html_1afa0e82.png

Средние уровни магнитного поля промышленной частоты бытовых электроприборов на расстоянии 0,3 м. Человеческий организм всегда реагирует на электромагнитное поле. Однако, чтобы эта реакция переросла в патологию и привела к заболеванию, необходимо совпадение ряда условий, в том числе достаточно высокий уровень поля и продолжительность облучения.

Статистические исследования, проведённые в Швеции, США, Канаде, Франции, Дании и Финляндии, показали, что увеличение индукции магнитного поля от 0,1 мкТл до 4 мкТл в несколько раз повышает риск развития лейкемии у детей, а там, где индукция составляет 0,3 мкТл и выше, онкологические заболевания встречаются в два раза чаще. Поэтому сегодня принято считать, что магнитное поле промышленной частоты может быть опасным для здоровья человека, если происходит продолжительное облучение (регулярно, не менее 8 ч/сут. в течение нескольких лет) с уровнем выше 0,2 мкТл.


Вопросы и задания

1. Почему электробытовые приборы в работающем состоянии окружены магнитными полями?

2. Как вы понимаете используемое в тексте словосочетание «магнитное поле промышленной частоты»?

3. Какие из представленных на диаграмме бытовых приборов могут создавать опасные для человека магнитные поля? Почему в подписи к этой диаграмме указано расстояние 0,3 м?

4. Почему для определения безопасного уровня магнитного поля использовались именно статистические исследования?

Текст по разделу «Электродинамика», содержащий информацию об использовании различных электрических устройств. Задания на определение условий безопасного использования электрических устройств


Как работает пьезоэлектрическая зажигалка?

Зажигалки, действие которых основано на явлении пьезоэлектрического эффекта, широко распространены. Пьезоэффект заключается в появлении разности потенциалов между гранями некоторых твердых кристаллических тел при их сжатии или растяжении. Количество электричества, возникающего при деформации пьезоэлектрика, пропорционально силе, вызывающей деформацию.

Основной частью пьезоэлектрической зажигалки является пьезоэлемент в виде цилиндра из пьезокерамики с металли¬ческими электродами на основаниях. При помощи механического устройства производится кратковременный удар по пьезоэлементу. При деформации пьезоэлемента на двух его сторонах, располо¬женных перпендикулярно направлению вектора деформирующей силы, появля¬ются разноименные электрические заря¬ды. Разность потенциалов между этими сторонами может достигать нескольких тысяч вольт. По изолированным проводам разность потенциалов подводится к двум электродам, расположенным в наконечнике зажигалки на расстоянии 3— 4 мм друг от друга. Возникающий между электродами искровой разряд поджигает смесь газа и воздуха.

Несмотря на очень большие напряжения (~10 кВ) опыты с пьезозажигалкой совершенно безопасны, так как это напряжение возникает на обкладках конденсатора очень малой электроемкости. Поэтому при напряжении 10 кВ даже при коротком замыкании сила тока оказывается ничтожно малой и безопасной для здоровья человека, как при электростатических разрядах при снимании шерстяной или синтетической одежды в сухую погоду.


Вопросы и задания

1. Каким образом возникает разность потенциалов на двух сторонах пьезоэлемента?

2. Можно ли измерить обычным вольтметром напряжение, генерируемое пьезоэлементом?

3. Почему напряжение в десятки киловольт от пьезозажигалки не опасно, а напряжение 220В в электрической розетке смертельно опасно?

4. Какие другие применения пьезоэффекта вам известны?

Текст по разделу «Квантовая физика и элементы астрофизики»,содержащий описание опыта. Задание на определение (или формулировку) гипотезы опыта, условий его проведения и вывод


Изучение явления фотоэффекта

Число образованных в полупроводнике под действием света электрических зарядов зависит от освещенности его поверхности. Освещенность поверхности, создаваемая точечным источником света, зависит от расстояния между поверхностью и источником и от угла падения лучей света на поверхность. Обе зависимости можно исследовать с помощью следующего опыта.

К выводам фотоэлемента подключают мультиметр, подготовленный для измерения малых постоянных токов. Фотоэлемент размещают на расстоянии 8—10 см от лампы. При таком расстоянии ее можно условно считать точечным источником. Лампу с ключом подключают к источнику тока; в начале опыта ключ разомкнут.

При проведении опыта на фотоэлемент будут падать два световых потока: один — от светящейся лампы, другой — от посторонних источников света (окна, ламп освещения кабинета и др.). Чтобы исключить влияние посторонних источников света, силу тока измеряют дважды: сначала при выключенной лампе (этот ток возникает под действием посторонних источников света), а затем при включенной лампе (этот ток возникает под действием обоих световых потоков). Вычитая из второго значения силы тока первое, определяют силу тока в цепи, возникающего под действием лампы.

Силу тока измеряют несколько раз, изменяя расстояние между лампой и фотоэлементом. Расстояние определяют от нити накала лампы до поверхности светочувствительного слоя фотоэлемента.


Вопросы и задания


1. Какую зависимость исследуют, проводя этот опыт?

2. Какой вид фотоэффекта лежит в основе работы полупроводникового фотоэлемента?

3. Как уменьшить влияние посторонних источников света на фотоэлемент?

(Например, при проведении опыта в солнечную погоду при переменной облачности внешняя подсветка сильно изменяется.)

4. Стоит ли расстояние от лампы до фотоэлемента делать менее 8 см? Почему?




Текст по разделу «Молекулярная физика», содержащий описание использования законов МКТ и термодинамики в технике. Задания на понимание основных принципов, лежащих в основе работы описанного устройства


Измерение влажности воздуха

Аспирационный психрометр Ассмана — один из самых точных приборов для определения температуры и влажности воздуха. Диапазоны измерения температуры воздуха от -31 до +51°С. В пре делах температур от -10 до +40°С влажность измеряется от 10 до 100%.

Психрометр состоит из двух ртутных термометров, установленных в раме с тройником. Резервуары термометров защищены от инфракрасной радиации двойным трубчатым кожухом, покрытым никелем. На верхний патрубок тройника навернута головка аспиратора с заводным механизмом, вентилятором и ключом для завода пружины.

Резервуар смоченного термометра обернут батистом, который перед каждым наблюдением смачивают дистиллированной водой при помощи специальной пипетки. Пипетку наполняют водой до метки и осторожно вводят в трубочку, где находится конец смоченного термометра. Избыток воды с батиста удаляют встряхиванием прибора.

Вентилятор заводят ключом. Через 4— 5 мин летом и через 15 мин зимой отсчитывают показания сухого и смоченного термометров. Между смоченным тканевым мешочком и термометром образуется насыщенный при данной температуре пар, его температуру и фиксирует влажный термометр. Сухой же показывает температуру воздуха. Отсчитывают показания быстро, сначала десятые доли градуса, а затем целые величины. При измерении не рекомендуется держать прибор в руке и на него дышать. Расчеты проводятся по психометрическим таблицам, рассчитанным по формуле Шпрунга.

Конечно, там, где не требуется высокая точность измерений, можно пользоваться и электронным (использующим полоску влагочувствительного материала) и волосяным гигрометрами.

Вопросы и задания

1. Попробуйте объяснить, что означает слово «аспирация» (хотя бы по однокоренному слову «аспирин», действие которого всем хорошо известно). Как зависит скорость аспирации от относительной влажности воздуха?

2. Как осуществлена защита резервуаров термометров? Почему при измерении температур не рекомендуется дышать на прибор и держать его в руке?

3. Сравните по описанию психрометр Ассмана и станционный психрометр Августа, которым вы пользуетесь в кабинете физики.

4. Расскажите о влиянии влажности воздуха на самочувствие человека.

Текст по разделу «Электродинамика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задания на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи имеющихся знаний


Полное внутреннее отражение

Обратите внимание на замерзшую лужу. Лужа подо льдом чёрная. Однако в некоторых местах лед серебристый — там, где подо льдом образовалась прослойка воздуха и свет испытывает полное внутреннее отражение. Угол полного внутреннего отражения на границе лед—воздух равен 48°. Падающий свет отражается, лед в этих местах белый.

Как объяснить, что снег белый, хотя он состоит из отдельных прозрачных кристалликов льда — снежинок? Снег пушистый. Это означает, что каждая снежинка окружена воздухом. Так как острые иголочки снежинки имеют большое количество отражающих поверхностей, то весь падающий свет отражается как от внешних, так и от внутренних граней и не проходит сквозь толщу снега. Мы наблюдаем полное внутреннее отражение света от снега. Поэтому он ослепительно белый. Свежевыпавший снег отражает более 90% падающего света.

Старый снег уплотняется, уменьшаются воздушные зазоры, снег темнеет. Белизна снега зависит от его плотности! Плотность снега может меняться от 30 до 800 кг/м3.


Вопросы и задания


1. Что такое полное внутреннее отражение? При каких условиях оно наблюдается?

2. Что происходит с лучами, падающими на границу лед—воздух под углами больше 48°? меньше 48°?

3. Возьмем кусочек льда и раздробим его в мелкую крошку. Порошок изо льда уже не прозрачный, а имеет белый свет. Объясните, почему.

4. Почему в оттепель снег, пропитанный, водой, темнеет?











Текст по теме «Ядерная физика», содержащий информацию о влиянии радиации на живые организмы или воздействии ядерной энергетики на окружающую среду. Задания на понимание основных принципов радиационной безопасности



Радиоактивные отходы: современные проблемы и один из проектов их решения

Ядерная энергетика, широко используемая в последние десятилетия, оставляет много радиоактивных отходов: в основном, это отработанное ядерное топливо реакторов АЭС и подводных лодок, а также надводных кораблей Военно-морского флота. Эти отходы накапливаются и представляют чрезвычайную радиационную опасность для обширных районов России и сопредельных стран. Что делать с этими отходами?

Несколько отечественных физико-технических институтов разработали проект их захоронения, в основу которого положен подземный ядерный взрыв. Предлагается осуществить его на острове Новая Земля, в зоне вечной мерзлоты, на глубине 600 м. Там, на бывшем атомном полигоне, имеются заброшенные" выработанные шахты и штольни; их-то и можно специально подготовить и разместить в них отработанные твэлы с АЭС, реакторы лодок, отходы ядерных предприятий, загрязненные конструкции. Пространство между опасным «мусором» планируется заполнить материалом, способным резко снизить излучение. После ядерного взрыва в штольне должно образоваться стеклообразное вещество, которое явится хорошим барьером для ядерных излучений. В результате одного такого взрыва может быть превращено в стекловидную массу до 100 т радиоактивных отходов.



Вопросы и задания

1. Знали ли вы, что в нашей стране накопилось много радиоактивного «мусора» и что он теперь — реальная и грозная опасность для нашей жизни и здоровья? Откуда берется этот «мусор»?

2. Какие могут быть экологические последствия, если эту проблему не решить?

3. Как вы думаете: какой метод захоронения отходов дороже — метод стеклования взрывом или традиционный, требующий сооружения бетонных могильников? Почему? (Ответ. Традиционный метод дороже: для его осуществления требуется возвести помимо могильников комплекс обслуживающих предприятий и поддерживать постоянные параметры захоронений — давление, температуру, влажность.)

4. Можно ли, с вашей точки зрения, «совместить» предлагаемый проект захоронения отходов с помощью подземных ядерных взрывов и Договор о всеобщем запрещении ядерных испытаний, который подписан Россией и за бессрочное продление которого выступает наша страна?




Текст по разделу «Молекулярная физика», содержащий описание опыта. Задания на определение (или формулировку) гипотезы опыта, условий его проведения и выводов



Наблюдаем анизотропию на примере бумаги

Хорошим пособием для наблюдения анизотропии свойств материалов является обычная бумага. Бумага — это связанные между собой древесные волокна длиной 2-4 мм и толщиной 30-50 мкм, которые имеют кристаллические и аморфные участки. Свойства волокон вдоль их осей и в перпендикулярном к ним направлении различны. При производстве бумаги оси волокна располагаются в плоскости листа, но не абсолютно хаотично. В результате механического взаимодействия с катками бумагоделательной машины они преимущественно ориентируются в направлении движения бумажного волокна. Поэтому появляется анизотропия свойств в так называемом машинном и поперечном к нему направлениях. Наибольшую анизотропию имеет бумага, изготовляемая на высокоскоростных машинах, например, газетная.

Самое простое — это наблюдение анизотропии механических свойств. Берем газету и рвем ее в двух взаимно перпендикулярных направлениях. В одном направлении линия разрыва ровная, а в другом — рваная, потому что механическая прочность разная.

Для наблюдения анизотропии при изгибе вырезаем две одинаковые полоски длиной около 15 см и шириной около 2 см в машинном и поперечном направлениях. Складываем их вместе и, держа полоски за один конец, наблюдаем, что изгиб полосок разный.

Для бумаги характерна анизотропия всех физико-механических свойств.


Вопросы и задания

1. В чем заключается анизотропность вещества? Анизотропию каких свойств бумаги можно наблюдать, проделав данный опыт?

2. Машинное направление будет вдоль или поперек ровной линии разрыва?

3. Какая полоска больше изогнется: вырезанная в поперечном или в машинном направлении? Как вы думаете, как связана анизотропия бумаги с процессом ее изготовления?

4. Какие тела обладают изотропией? Приведите примеры анизотропных и изотропных тел.






Текст по разделу «Электродинамика», содержащий описание использования законов электродинамики в технике, задания на понимание основных принципов, лежащих в основе работы описанного устройства


Термен — изобретатель электромузыкального инструмента

«Я собрал два генератора высокой частоты. У одного частота была постоянная, а у другого — изменялась при продувании газа между обкладками конденсатора. С выходов генератора подал сигнал на смеситель. На выходе смесителя возникали биения с частотой, равной разности частот ВЧ-генераторов. Затем сигнал биений усиливался и измерялся вольтметром. Вскоре пришла в голову мысль: а что, если вместо вольтметра подключить громкоговоритель? Ведь частота биений находилась в звуковом диапазоне! Подключил. В громкоговорителе раздался звук. При поднесении руки к конденсатору частота колебаний изменялась. Так как я играл на виолончели, то быстро сыграл несложную мелодию. В институте разнесся слух: Термен играет на вольтметре». Так рассказывал Лев Сергеевич Термен. Инструмент получил название «терменвокс» (голос Термена). Наружу «выглядывают» антеннообразный стержень и дуга — они-то и играют роль колебательной системы устройства. Исполнитель управляет работой терменвокса, изменяя положение ладоней. Двигая рукой вблизи стержня, исполнитель регулирует "высоту звука. «Жестикуляция» в воздухе около дуги позволяет повышать или понижать громкость звучания. Движения осуществляются в пространстве без контакта с антенной. Представляете, как трудно играть на таком инструменте?


Вопросы и задания

1. Что вы понимаете под частотой звукового диапазона? Каким образом возникает такая частота на выходе смесителя?

2. Каким образом электромагнитные колебания преобразуются в звуковые?

3. Каким образом с помощью руки менялась частота колебательного контура?

4. 'Этот аппарат, сконструированный в 1920 г., мог работать не только как музыкальный инструмент, но и как охранный сигнализатор для особо важных объектов. Каков был принцип действия такого сигнализатора?









Текст по разделу «Электродинамика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни, задания на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи имеющихся знаний


Молния

Атмосферное электричество образуется и концентрируется в облаках — образованиях из мелких водяных частиц, находящихся в жидком и твердом состояниях.

Сухой снег представляет собой типичное сыпучее тело: при трении снежинок друг о друга, их ударах о землю и о местные предметы снег должен электризоваться. При низких температурах во время сильных снегопадов и метелей электризация снега настолько велика, что происходят зимние грозы, наблюдается свечение остроконечных предметов, образуются шаровые молнии.

При дроблении водяных капель и кристаллов льда, при столкновениях их с ионами атмосферного воздуха крупные капли и кристаллы приобретают избыточный отрицательный заряд, а мелкие — положительный. Восходящие потоки воздуха в грозовом облаке поднимают мелкие капли и кристаллы к вершине облака, крупные капли и кристаллы падают к его основанию. Отрицательно заряженная часть облака наводит на земной поверхности под собой положительный заряд. Между облаком и землей создается сильное электрическое поле, которое способствует ионизации воздуха и возникновению искрового разряда. Молния переносит из облака 20—30 Кл отрицательного заряда, сила тока 10—20 кА, длительность импульса тока несколько десятков микросекунд. Разряд прекращается, так как большая часть избыточных электрических разрядов нейтрализуется электрическим током, протекающим по плазменному каналу молнии.


Вопросы и задания

1. Можно ли назвать молнию, возникающую между облаком и землей, электрическим током? А между двумя облаками?

2. Каковы причины возникновения молнии?

3. Каким зарядом в большинстве случаев заряжается нижняя часть облака, а каким — верхняя? С чем это связано?

4. Какое действие электрического тока вызывает образование озона в воздухе при грозовых разрядах?






Текст по разделу «Механика», содержащий описание использования законов механики в технике. Задания на понимание основных принципов, лежащих в основе описанного устройства



Гидравлический удар на службе человека


Явление гидравлического удара, заключающегося в резком увеличении давления при внезапном падении скорости потока жидкости, нашло свое воплощение в устройствах, называемыми гидравлическими таранами.

Это, в сущности, насос без двигателя, который, не требуя подключения дополнительного источника энергии, использует только потенциал небольшой плотины или даже просто естественного рельефа реки. Гидротаран способен нагнетать жидкость на высоту в 10—20 раз большую, чем высота используемой плотины. Вода от источника самотеком подается по длинному напорному трубопроводу, идущему с небольшим понижением. Под действием нарастающего динамического напора воды закрывается отбойный клапан, расположенный на нижнем конце трубопровода, и вследствие инерции движущейся воды и её несжимаемости давление здесь резко повышается. Кратковременного повышения давления достаточно для подъема небольшой части воды через напорный клапан на высоту более 50 м. Затем отбойный клапан открывается, и все повторяется сначала.

Гидравлический таран действует только за счет импульса движущегося столба воды, без какого-либо двигателя. Применяется для полива сельхозкультур, для водоснабжения небольших строек, для подачи воды на пастбища, расположенные в 10-20 км от реки и т.д.



Вопросы и задания

1. Что представляет собой явление гидравлического удара? Каковы условия его возникновения?

2. Назовите причину возникновения повышения давления в нижнем конце трубопровода гидравлического тарана.

3. Гидротаран использовали еще в начале XX века, однако потом он был не заслуженно забыт. С какими проблемами связан наряду с использованием новейших технологий возврат к старым изобретениям человечества?

4. Чем обусловлена необходимость установления в трубах теплосетей специальных устройств — стабилизаторов давления?


Текст по разделу «Электродинамика», содержащий описание использования законов электродинамики в технике. Задания на понимание основных принципов, лежащих в основе описанного устройства


Как работает СНЧ-металлодетектор?

Принцип действия металлодетектора основан на физическом явлении регистрации вторичного электромагнитного поля, создаваемого любым металлическим предметом, помещенным в первичное электромагнитное поле.

Внутри поисковой рамки металлодетектора находится намотанный провод, называемый передающей катушкой. Электрический ток, протекая по ней, создает электромагнитное поле. Направление тока меняется несколько тысяч раз в секунду на противоположное. Когда ток протекает в одном направлении, возникает магнитное поле, направленное на исследуемый объект, когда направление тока изменяется, то и направление магнитного поля будет направлено от объекта. В любом металлическом (и даже электропроводящем) объекте, оказавшемся поблизости, под действием такого изменяющегося магнитного поля возникнут электрические токи. Наведенный ток, в свою очередь, создаст собственное магнитное поле. Внутри рамки есть еще одна — приемная — катушка, расположенная таким образом, чтобы максимально нейтрализовать влияние передающей. А вот поле от металлического предмета, оказавшегося поблизости, будет наводить в приемной катушке ток, который можно усилить и обработать электроникой.

Вторичное электромагнитное поле различается как по напряженности поля, так и по другим параметрам. Эти параметры зависят от размера предмета и его проводимости (например, у золота и серебра проводимость гораздо лучше, чем у свинца) и, естественно, от расстояния между антенной детектора и самим предметом.

Чувствительность некоторых металлодетекторов настраивается. Её, например, уменьшают, если необходимо произвести досмотр только с целью обнаружения крупных металлических предметов. А небольшие предметы — ключи, оправы очков, ручки — сигнализацию детектора не вызовут. Сигнализация металлодетекторов может быть различной: световой, звуковой (причем по долготе сигнала можно делать вывод о размере предмета), вибрационной.


Вопросы и задания

1. Для чего, для каких целей используют металлодетекторы?

2. Как вы понимаете характеристику «рабочая частота» прибора? Велика ли она?

3. Какой закон физики лежит в основе действия описанного металлодетектора? Какими другими словами мы называем «наведенный ток»?

4. Каким образом с помощью металлодетектора можно обнаружить взрывное устройство в пластиковой оболочке?











Текст по разделу «Квантовая физика и элементы астрофизики», содержащий описание использования законов квантовой, атомной или ядерной физики в технике. Задания на понимание основных принципов, лежащих в основе работы описанного устройства


«Квантовые ямы»


В микроэлектронике пленки толщиной около 0,01 мкм и менее называются квантовыми ямами, так как их толщина близка к размерам атома. Свойства таких пленок существенно зависят от их толщины (т.е. от одного из размеров).

Тонкие пленки напыляются на подложки в вакууме в специальных установках. Журналисты любят называть такие установки атомными фабриками.. Действительно, на подложку здесь осаждаются отдельные атомы (молекулы) вещества!

Ж.И.Алферов нашел множество применений «квантовым ямам». В жизни мы каждый день сталкиваемся с ними. В качестве примера можно привести миниатюрный полупроводниковый лазер, с помощью которого считывается информация с компакт-диска. Схематично структура полупроводникового лазера изображена на рис 1.


hello_html_m5ab1033c.png

Metal Si02

p*GaAs 3 pm pAl025Ga075As3pm

pGaAs 0.5 pm

рА10 25Ga0 75 As 3 pm

nGaAs

Metal

Она представляет собой «слоёный пирог» из перемежающихся слоев арсенида галлия-алюминия р-типа, сформированного на подложке из арсенида галлия n-типа. «Рабочим, телом» лазера является тонкая (0,5 мкм) пленка («квантовая яма») арсенида галлия р-типа. При подаче напряжения на металлические электроды, между которыми и заключена вся полупроводниковая структура, лазер возбуждается и генерирует излучение.

Высокочувствительные транзисторы, в которых используется эффект «квантовой ямы», стоят в каждом мобильном телефоне. Именно благодаря им мобильные телефоны поддерживают устойчивую связь в условиях чрезвычайно слабого сигнала.


Вопросы и задания

1. Почему описание свойств тонких пленок возможно только на основе квантовой механики?

2. Почему тончайшие пленки не могут существовать без подложки? Почему их напыляют в вакуумной камере?

3. Почему подложка должна быть из другого материала?

4. Как вы думаете, благодаря чему мобильные телефоны поддерживают связь даже в условиях слабого сигнала?





Текст по разделу «Электродинамика», содержащий описание опыта. Задания на определение (или формулировку) гипотезы опыта, условий его проведения и выводов



Из истории открытия электромагнитных явлений


Очень внимательно слушает на заседании Французской академии наук выступление её ученого секретаря Франсуа Араго об опытах Эрстеда выдающийся математик Андре Мари Ампер. У него рождается проницательная мысль: если проводник тока всегда окружен магнитными силами, то «электрический конфликт» должен выступать не только между проводом и магнитной стрелкой, но и между двумя проводами, по которым течет ток. За семь дней Ампер конструирует оригинальный электрический прибор и уже на следующем заседании демонстрирует присутствующим взаимодействие двух проводников с током! Если в обоих проводниках электрические токи текут параллельно друг другу в одном направлении, то они притягиваются, эти же проводники отталкиваются, когда токи в них проходят во взаимно противоположных направлениях. Ампер продолжает свои опыты. Свернув проводники в виде двух спиралей, получивших название «соленоиды», он доказывает, что соленоиды, установленные рядом, при пропускании через них тока ведут себя, подобно двум магнитам.

Идеи Ампера были столь новы, что многие члены Французской академии не поняли их революционного научного смысла. «Что же, собственно, нового в том, что вы нам сообщили? — спросил один из них. — Само собой ясно, что если два тока оказывают действие на магнитную стрелку, то они оказывают действие и друг на друга?» За Ампера его оппоненту мгновенно ответил Араго. Он вынул из кармана два ключа и сказал: «Вот каждый из них тоже оказывает действие на магнитную стрелку, однако же они никак не действуют друг на друга...»


Вопросы и задания

1. Какую гипотезу пытался проверить Ампер своими опытами? Что надо пони мать под словами «электрический конфликт»?

2. Играет ли роль в проверке взаимодействия между проводниками с током расстояние между ними?

3. В каком направлении должны протекать токи в двух соленоидах, чтобы они притягивались друг к другу?

4. Как вы думаете, каким образом можно исследовать влияние магнитного поля Земли на движение проводника, соленоида или металлической рамки с током?






Текст по разделу «Механика», содержащий информацию о мерах безопасности при использовании транспортных средств или шумовом загрязнении окружающей среды. Задания на понимание основных принципов, обеспечивающих безопасность использования механических устройств, или выявление мер по снижению шумового воздействия на человека


Спасите наши уши!

Слух всегда бодрствует, даже ночью, во сне. Он постоянно подвергается раздражению, так как не обладает никакими защитными приспособлениями.

Обычно для обозначения того, что мы слышим, используются два близких по смыслу слова: «звук» и «шум». Звук — это физическое явление, вызванное колебательным движением частиц среды. Шум представляет собой хаотичное, нестройное смешение звуков, отрицательно действующее на нервную систему. Воздействие шума на человека определяется его уровнем (громкостью, интенсивностью) и высотой составляющих его звуков, а также продолжительностью воздействия. Уровни шумов от различных источников и реакция организма на акустические воздействия приведены в таблице.


Источник шума,

помещение


Уровень шума, дБ



Реакция организма на длительное

акустическое воздействие

Листва, прибой

Средний шум в квартире, классе

20

40

Успокаивает Гигиеническая норма

Шум внутри здания рядом с магистралью Телевизор

Поезд метро Кричащий человек Мотоцикл

60

70
80
80
90

Появляются чувство раздражения, утомляемость, головная боль

Реактивный самолет (на высоте 300 м)

Цех текстильной фабрики

95


100

Постепенное ослабление слуха, нервно-психический стресс (угнетённость, возбуждённость, агрессивность), язвенная болезнь, гипертония

Плеер

Ткацкий станок

Отбойный молоток Реактивный двигатель (при взлете, на расстоянии 25 м)

Шум на дискотеке

114
120
120
140-150

175

Вызывает звуковое опьянение наподобие алкогольного, нарушает сон, разрушает психику, приводит к глухоте

В диапазоне слышимых человеком звуков самое неблагоприятное воздействие оказывает шум, в спектре которого преобладают высокие частоты (выше 800 Гц). Звуки сверхнизких частот, которые мы даже и не слышим (инфразвуки), также опасны для организма человека. Частота в 6 Гц может вызвать ощущение усталости, тоски, морскую болезнь, при частоте в 7 Гц может даже наступить смерть от внезапной остановки сердца. Доказано, что, попадая в естественный резонанс работы какого-нибудь органа, инфразвуки могут разрушить его, например, частота в 5 Гц разрушает печень.


Вопросы и задания

1. Что собой представляет звуковая волна? Каков частотный диапазон, воспринимаемый человеком? Соответствует ли шуму какая-либо определенная частота?

2. Сравните громкость звука плеера с техническими устройствами, указанными в таблице. Почему (по выводам скандинавских учёных) каждый пятый подросток плохо слышит, хотя и не всегда догадывается об этом?

3. Каково условие резонанса? Почему возникают неприятные ощущения при длительной езде в автобусе, при плавании на корабле или качании на качелях, если собственная частота нашего вестибулярного аппарата близка к 6 Гц?

4. Назовите существующие простые административные меры по борьбе с шумом. Как борются с шумом с помощью технических устройств?


Текст по теме «Тепловые двигатели», содержащий информацию о воздействии тепловых двигателей на окружающую среду. Задания на понимание основных факторов, вызывающих загрязнение, и выявление мер по снижению воздействия тепловых двигателей на природу


Влияние тепловых двигателей на окружающую среду

При сгорании топлива образуются такие вредные для растений, животных и человека вещества, как оксиды азота, углеводороды, оксиды углерода, сернистые соединения, а также твердые частицы (сажа).

Наибольшему загрязнению подвергается воздушный бассейн Земли, причем некоторые загрязнения приводят к глобальным отрицательным последствиям Твердые частицы пыли и сажи, образующиеся при работе тепловых двигателей, приводят к запылению воздуха, которое повышает отражательную способность атмосферы и становится причиной заметных изменений природы (похолодания) в зоне действия указанных выбросов, более частых дождей и туманов. Эти твердые частицы загрязняют листовую поверхность растений, нарушая их нормальное функционирование. Выбросы сернистого газа и оксидов азота являются причиной образования кислотных осадков, которые вызывают закисление почв, приводят к потерям урожаев сельскохозяйственных культур, гибели лесов, оказывают отрицательное воздействие на пресные водоемы.

Поговорим о воздействии вредных выбросов, образующихся в результате действия тепловых двигателей на организм человека. Диоксид углерода обладает наркотическим действием, раздражающе действуют на кожу и слизистую оболочку. Оксид углерода при вдыхании связывается с гемоглобином крови, вытесняя из нее кислород, в результате чего наступает кислородное голодание. Уменьшение переноса кислорода к тканям особенно пагубно для миокарда (сердечной мышцы). Сернистый газ приводит к росту онкозаболеваний. Как любая мелкая пыль, сажа действует на органы дыхания, на ней адсорбируются канцерогенные вещества, следовательно, возрастает риск заболевания раком. Канцерогенные вещества, как и соединения свинца, не удаляются из организма, а накапливаются в нем, так же как в почве и растениях.

При работе тепловых двигателей выделяется углекислый газ, который наряду с парами воды в атмосфере приводит к так называемому «парниковому эффекту». Атмосфера пропускает видимое солнечное излучение, которое нагревает поверхность Земли. Нагретая Земля излучает, невидимое излучение, которое поглощается в значительной степени углекислым газом, содержащимся в атмосфере. Увеличение концентрации углекислого газа в атмосфере Земли приведет к повышению средней температуры планеты.


Вопросы и задания

1. Какие экологические проблемы стоят перед человечеством в связи с использованием тепловых двигателей?

2. Какие изменения в погоде происходят в зонах возникновения фотохимического смога? Какие фотохимические реакции затруднены при загрязнении растений?

3. Почему в последнее время рождается все меньше абсолютно здоровых детей (особенно в крупных и промышленных городах)? Почему прогрессируют сердечно-сосудистые заболевания?

4. Назовите наиболее неблагоприятные с точки зрения экологии участки вашего микрорайона (города, района, области), которые образовались в связи с использованием тепловых двигателей.



Текст по разделу «Механика», содержащий описание использования законов механики в технике. Задания на понимание основных принципов, лежащих в основе описанного устройства


Ультразвуковые стиральные устройства (УСУ)

В последнее время ультразвуковые стиральные машины завоевывают все большую популярность. Легкие, беззвучные, не занимают много места, не требуют врезки в водопровод — они идеально подходят для людей, часто путешествующих, для дачников и студентов.

УСУ состоит из источника питания, излучателя ультразвуковых колебаний и соединительного кабеля.

Для стирки излучатель помещается в середину емкости с моющим раствором и текстильными изделиями, где он и возбуждает ультразвуковые колебания. Эффект удаления пятен обусловлен кавитацией — образованием в растворе огромного количества микроскопических пузырьков, заполненных газом, паром и их смесью, эти пузырьки возникают при прохождении акустической волны во время полупериода разрежения. Под действием перепада давления при появлении и «схлопывании» пузырьков нарушается сцепление загрязненных микрочастиц с волокнами изделий и облегчается их удаление поверхностно-активными веществами моющего раствора стирального порошка или мыла.

Под действием ультразвуковых колебаний слой жидкости, который максимально близко находится к ткани (приповерхностный слой), приобретает определенные свойства — его скорость значительно увеличивается. Это активно помогает моющему средству, растворенному в воде, более глубоко проникать в структуру ткани, а значит, эффективно отстирывать ткань. При механической же стирке скорость приповерхностного слоя жидкости относительно ткани приближается к нулю. Кроме того, ультразвук обладает дезинфицирующим действием, а также удаляет неприятные запахи.

После включения в воде или на воздухе устройства не подают никаких видимых для человека признаков работы. Но если положить ультразвуковой генератор на ладонь, можно почувствовать небольшую вибрацию. Это ощущение сугубо индивидуально, так как не все люди одинаково воспринимают звуковые частоты и колебания.


Вопросы и задания


1. В чем отличие ультразвука от звуковых волн, воспринимаемых человеком?

2. Что называют кавитационным пузырьком? Какой эффект получается при «схлопывании» кавитационных пузырьков?

3. Почему излучатель ультразвуковых колебаний имеет чаще всего форму шара или диска?

4. Попробуйте объяснить, зачем на блоках питания установлены светодиодные индикаторы.















Текст по разделу «Молекулярная физика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задание на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи физических знаний


Способности живых существ защищаться от холода

Реакции животных на разный тепловой режим жизнеобеспечения разнообразны. И все они направлены на регулирование уровня теплопередачи. Животные с высоким уровнем обменных процессов — птицы и млекопитающие — поддерживают постоянную температуру тела даже при значительных колебаниях температуры внешней среды. Тепло выделяется при биохимических реакциях внутри организма. Снижению теплопотерь способствуют опущение, оперение, шерстный покров, жировые отложения, темный окрас покрова.

Обратите внимание на птиц. Мелкие пташки — воробьи, синицы, снегири — зимой похожи на пушистые комочки с торчащими острыми клювиками. Они распушили свое оперение и окружили себя неподвижным слоем плохо проводящего тепло воздуха. Мудрая природа распорядилась так, что относительная длина перьев у маленьких птиц больше, чем у крупных. Маленькие птицы теряют больше тепла, им нужна лучшая защита от холода.

Теплопроизводительная способность живого существа зависит от объема тела, а потери тепла — от площади их поверхности. У мелких животных и детенышей соотношение потерь тепла к его притоку больше, чем у крупных, т.е. они поставлены в худшие условия. Дети должны замерзать быстрее, чем взрослые, но их спасает большая подвижность.

Человек, находясь вне жилища, защищается от холода аналогично: с помощью хорошей одежды, высококалорийного питания и двигательной активности.


Вопросы и задания

1. Назовите отличительную особенность теплопроводности как вида теплопередачи. Почему воздух является плохим проводником тепла?

2. В сильный мороз птицы чаще замерзают на лету, чем сидя на месте. Чем это можно объяснить? Почему в холодную погоду многие животные спят, свернувшись клубком?

3. У человека замерзают быстрее всего конечности, уши и нос, так как эти части тела имеют тонкие стенки. А еще почему?

4. Когда человеку холодно, его тело покрывается мурашками, он начинает дрожать. Какую роль играют эти защитные механизмы для увеличения внутренней энергии человека?






Текст по разделу «Механика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задание на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи физических знаний


Приливы и отливы

Жители побережий океанов ежедневно наблюдают, как во время приливов поднимается вода и заливает берег. Через несколько часов наступает отлив и берег опять обнажается. Подъем воды достигает в отдельных местах нескольких метров, и в зависимости от характера очертания берегов вода может проникать в глубь материка даже на несколько километров.

Хотя Солнце играет существенную роль в приливно-отливных процессах, решающим фактором их развития служит сила гравитационного притяжения Луны, которая стремится сместить Землю по направлению к Луне и «приподнимает» все объекты, находящиеся на Земле, в направлении Луны.

Вода на Земле, находящаяся прямо под Луной, поднимается в направлении Луны, что приводит к оттоку воды из других мест земной поверхности, однако, поскольку притяжение Луны столь мало в сравнении с притяжением Земли, его было бы недостаточно, чтобы поднять столь огромную массу. Благодаря различию в притяжении подвижная водная гладь как бы вытягивается, образуя 2 «горба»: один со стороны Луны, другой с противоположной стороны («отстающий горб»). Таким образом, возникает приливная волна, которая на обращенной к Луне стороне Земли называется прямой, а на противоположной — обратной. Первая из них всего на 5% выше второй.

Приливы вызывает не только Луна, но и Солнце. Оба приливных действия будут складываться, когда Луна, Земля и Солнце расположатся по одному направлению. А это происходит в новолуние и полнолуние. В это время приливы достигают наибольшей высоты. В первую же и последнюю четверти Луны бывают наименьшие приливы, потому что солнечный прилив совпадает с лунным отливом. Между двумя последовательными приливами или двумя отливами в данном месте проходит примерно 12 ч 25 мин. Период продолжительностью 24 ч 50 мин называется приливными (или лунными) сутками.


Вопросы и задания

1. Объясните механизм возникновения приливных волн. Какой фактор (масса тел или расстояние между ними)

играет большую роль в определении величины приливообразующей силы?

2. Где приливная волна будет достигать наибольшей высоты: в открытом океане или в узких заливах? Попробуйте объяснить почему.

3. Каковы бывают приливы и отливы в дни солнечных и лунных затмений? Почему?

4. Попробуйте объяснить, почему приливы и отливы продолжаются не по 12 ч, а по 12 ч 25 мин. С чем это связано? Почему жители прибрежных зон пользуются картами приливов и отливов?








Текст по разделу «Молекулярная физика», содержащий описание опыта. Задания на определение (или формулировку) гипотезы опыта, условий его проведения и выводов


Принцип действия пузырьковой камеры


В начале пятидесятых годов прошлого столетия Дональд Глейзер придумал прибор, регистрирующий элементарные частицы. Он получил название пузырьковой камеры. Основная часть модели камеры — стеклянная колба с эфиром объемом несколько кубических сантиметров. Жидкость нагревается и находится под давлением около 20 атм. Специальное устройство позволяет быстро сбрасывать давление. Если во время «ожидания» пролетала заряженная частица, то вдоль следа появлялись пузырьки пара. Сфотографировав след, можно было снова повысить давление, пузырьки исчезали — и прибор снова в работе.

Почему пузырьки появлялись именно на пути частицы?

Возьмем две пробирки, одну из них тщательно вымоем, проследим, чтобы на стенках не было царапин или посторонних частиц, и наполним ее дистиллированной водой (приблизительно 10 см3). Во вторую пробирку нальем такое же количество водопроводной воды и еще бросим кусочек мела. Будем подогревать пробирки в одинаковых условиях и при отсутствии прямого соприкосновения с огнем.

В пробирке с водопроводной водой кипение начнется раньше, и процесс этот будет проходить достаточно спокойно и непрерывно, пузырьки пара образуются в основном на кусочке мела. В пробирке с дистиллированной водой процесс кипения начнется позже (при большей температуре) и будет происходить неравномерно. В лаборатории удается очистить сосуд и воду так хорошо, что кипение не наступает вплоть до температуры 140°С. Если в такую воду, названную перегретой, бросить крупинку, произойдет взрыв — так быстро образуются пузырьки с паром. Для того чтобы процесс кипения происходил равномерно, в сосуд помещают так называемые «кипелки» — обломки стеклянных и фарфоровых трубок, кусочки мрамора и т. п.

Описание описанных свойств жидкости связано с силами поверхностного натяжения, которые стремятся раздавить образовавшийся пузырек. Дополнительное давление тем больше, чем меньше радиус пузырька. Так что процесс кипения подавляется в самом зародыше. Именно потому однородную жидкость удается перегревать.


Вопросы и задания

1. С какой целью проводился эксперимент, описанный в тексте?

2. Почему в пробирке с водопроводной водой пузырьки образуются в основном на кусочке мела? Что является «кипелкой» для процесса кипения воды в обычном чайнике?

3. Объясните, как вы понимаете смысл понятия «перегретая жидкость».

4. Почему важнейшим условием работы камеры Глейзера является однородность жидкости и чистота ампулы?









Текст по разделу «Квантовая механика и элементы астрофизики», содержащий описание использования законов квантовой, атомной или ядерной физики в технике. Задания на понимание основных принципов, лежащих в основе работы описанного устройства


Голография


Голография — это особый фотографический метод, когда с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высокой степени похожие на реальные. Такая запись называется голограммой.

Открытие и обоснование англичанином Д.Габором в 1948 г. принципов голографии положило начало развитию совершенно нового и очень перспективного научного направления с широчайшим спектром его применения.

Голограмма представляет собой интерференционную картину, возникающую на фотопленке при сложении двух когерентных пучков света. Один из них отражается от зеркала, другой — от предмета. Оба эти потока образуют на фотопластинке интерференционную картину, представляющую собой чередование светлых и темных пятен. Голографическое изображение предмета абсолютно не соответствует его внешнему виду. Основным условием получения высококачественных голограмм является когерентность опорного и предметного пучков, что достигается применением лазера. Для восстановления голограммы ее освещают таким же когерентным освещением. При освещении голограмма формирует изображение, которое представляет собой точную копию исходного трехмерного объекта.

Интересно, что если разбить пластинку, на каждом кусочке пластинки сохранится полное (хотя и более слабое) изображение этого предмета, ведь практически на каждую точку поверхности фотопластинки падает излучение, отраженное от всех точек предмета.

Запись пропускающей голограммы

hello_html_m220b0492.png

  1. -лазер

  2. - полупрозрачное зеркало

  3. - зеркало

  4. - расширяющие линзы

  5. - опорный пучок

  6. - предметный пучок

  7. - объект

  8. фотопластинка



Вопросы и задания

1. Почему для получения голограмм используется лазер?

2. Там, где интерферирующие волны совпадают по фазе, образуются прозрачные или темные участки голограммы?

3. Попробуйте объяснить? почему качество изображения, полученное от куска голограммы, будет хуже, чем от всей голограммы.

4. Сколько голографических снимков достаточно сделать, чтобы получить объемное изображение предмета полностью?




Текст по разделу «Молекулярная физика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задание на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи физических знаний


Как разгоняют облака?

Большое научное и практическое значение имеет проблема активных воздействий на атмосферные процессы с целью изменения погоды. Так, рассеяние в облаках некоторых реагентов изменяет развитие грозовых облаков и предотвращает выпадения града.

Наиболее плотные облака, защищающие нас от солнечного света и содержащие много влаги, находятся, как правило, на высоте 2—3 км и содержат много мельчайших капелек (10—100 мкм) переохлажденной воды при температуре ниже — 10°С. Чтобы уничтожить облако, необходимо вызвать появление крупных капель (более 1 мм) и кристаллов льда в тумане, после чего образовавшиеся крупные капли упадут на землю, и облако исчезнет. Для этого в облаках распыляют микрочастицы, которые служат так называемыми ядрами кристаллизации для образования крупных капель и кристаллов. В качестве таких частиц часто используют йодид серебра, кристаллическая структура которого очень похожа на гексагональную структуру кристаллов льда.

Другой способ осаждения облака — его охлаждение. Для этого над облаком разбрасывают кристаллы «сухого льда» (СО2), которые, охлаждая облако, вызывают усиленную конденсацию с образованием крупных капель и кристаллов льда.

Можно разбрасывать в облаках микроскопические крупинки гигроскопических солей (NaCl или КС1), которые, попав в облако, будут притягивать к себе влагу и разбухать, становясь зародышами больших капель. Однако этот метод, как и использование цементной пыли для осаждения облаков, считают экологически небезопасным.


Вопросы и задания

1. Почему для осаждения облака необходимо получение крупных капель и кристаллов?

2. Почему в качестве «затравки» для образования крупных капель воды и кристаллов используют йодид серебра?

3. Каким образом кристаллы «сухого льда» усиливают конденсацию? В чём суть этого явления?

4. Объясните необходимость разумного влияния человека на атмосферные процессы.




Текст по разделу «Квантовая физика и элементы астрофизики», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задание на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи физических знаний


Особенности фотохимических реакций

Под действием света происходят многие химические реакции, которые без освещения (если все остальные условия остаются неизменными) не протекают. Такие реакции называются фотохимическими.

Фотохимические реакции весьма разнообразны. В одних случаях при поглощении молекулами квантов света происходит реакция разложения, приводящая к образованию простых молекул из более сложных молекул. Например, под действием света аммиак разлагается на азот и водород. В других случаях происходит реакция синтеза, приводящая к образованию под действием света из молекул исходных веществ более сложных молекул. Например, под действием ультрафиолетового излучения из молекул кислорода образуются молекулы озона.

Для каждой фотохимической реакции существует определенная минимальная частота, свет с меньшей частотой данную фотохимическую реакцию вызвать не может. Объяснить это можно так. Атомы внутри молекул удерживаются химическими связями. Если энергия кванта, поглощаемого молекулой, достаточна для разрыва этой связи, то фотохимическая реакция происходит. При малой энергии фотона фотохимическая реакция не происходит.

Исключительно важное значение для жизни на Земле имеет фотосинтез — процесс образования под действием света углеводов (крахмала) в зеленом листе растения. Процесс этот весьма сложен, он связан с множеством вторичных биохимических реакций. За счет поглощения нескольких (примерно трех) фотонов с длиной волны 650-680 нм молекула хлорофилла приходит в возбужденное состояние (активированная молекула) и, реагируя с молекулой воды, разлагает ее на водород и кислород. Последний выделяется в атмосферу, а атомарный водород присоединяется к углекислому газу, вследствие чего синтезируются углеводы, из которых потом строятся жиры, белки и другие составные части организмов.

Вопросы и задания

1. Что такое фотосинтез? Какова его роль в жизни на Земле?

2. Как вы думаете, что такое красная граница фотохимической реакции?

3. Почему образование озона не происходит под действием света лампы накаливания?

4. Почему не рекомендуется иметь много комнатных растений в спальне?










Текст по разделу «Механика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задание на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи физических знаний


История на сенокосе

История эта произошла давно, когда многие семьи в нашем поселке еще имели коров. Летом готовили сено, ставили стога. Затем сено вывозили с покосов на видавших виды ГАЗ-51. Погрузка сена на машину требовала определенных умений и навыков. На воз ставили опытных мужиков, они складывали сено, не торопясь, соблюдая углы и покрикивая на подающих. Покосы были далеко, дороги — очень плохими, так что с плохо сложенным возом могли возникнуть аварийные ситуации.

В августе поехали за сеном. Старшие стали держать совет: можно ли увезти сено за один рейс? Всех переспорил дядя Юрий Федорович: «Увезем». На том и порешили. Работа закипела. Сложили высокий и красивый воз. Задавили сено на возу березовым бастрыгом, затянули веревками. Спустились с горы и поехали к мелкой речке Быстрый Ключ. Машина плавно покачивалась, все шло хорошо.

Вот и брод. Он был твердым, но имелась уже колея. Машина осторожно пошла вперед, и... левые скаты попали в колею, а правые пошли выше. Веревки не выдержали, и часть сена рухнула в быстрый поток! Образовалась преграда метра в полтора. Вода прибывала быстро. Делать было нечего. Взяв вилы, стали доставать мокрое сено из воды. Домой приехали часов в двенадцать ночи, усталые, мокрые и голодные. А на другой день сушили сено.

Вопросы и задания

    1. Что такое центр тяжести?

    2. Как изменит центр тяжести груз в кузове? Что удобнее и безопаснее возить в машине: листовое железо или сено? Почему покачивается ГАЗ-51?

    3. Как от площади опоры и от расположения центра тяжести зависит устойчивость тел на плоской поверхности? Что можно было поменять в условиях данной в тексте ситуации?

    4. Объясните, почему игрушка Ванька-встанька возвращается в положение равновесия при любом наклоне игрушки.







Текст по разделу «Молекулярная физика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задание на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи физических знаний


Эффект лотос

Непростые отношения существуют между жидкостями и поверхностью твердого тела. Капли воды, например, «любят» ветровое стекло автомобиля и, скатываясь с него, оставляют на нем мокрые длинные полосы, а вот на поверхности капусты или лотоса оставить след им не удается. «Взаимные чувства» материалов зависят от параметров явления смачивания и адгезии. Смачивание — явление, возникающее при соприкосновении жидкости с поверхностью твердого тела и являющееся результатом межмолекулярного взаимодействия в зоне этого контакта.

Поверхность цветков и листьев лотоса всегда чиста — капельки воды стекают с их водоотталкивающих покровов, одновременно смывая частицы пыли.


Вода стекло ртуть

hello_html_m4eb679c8.png



Оказалось, вся поверхность листьев лотоса густо покрыта микропупырышками высотой около 10 мкм, а сами микропупырышки, в свою очередь, покрыты микроволокнами. Капля воды, попав на поверхность листа лотоса, похожую на массажную щетку, не проникает между пупырышками, так как этому мешает большое поверхностное натяжение жидкости. Ведь для того чтобы проникнуть между микропупырышками, капле надо увеличить свою поверхность, а это энергетически невыгодно. Чем больше коэффициент поверхностного натяжения жидкости, тем с большей силой пытается она минимизировать свою поверхность. Капля сворачивается в шарик, демонстрируя очень высокий краевой угол. Поверхность, аналогичная массажной микрощетке, уменьшает адгезию (прилипание) не только капель воды, но и любых частичек с размером более 10 мкм, так как они касаются такой поверхности лишь в нескольких точках. Поэтому частички грязи, оказавшиеся на поверхности лотоса, либо сами сваливаются с него, либо увлекаются скатывающимися каплями воды. Такое самоочищение называют эффектом лотоса. Похоже устроена поверхность крыльев бабочек и многих других насекомых.

Выведав у природы секреты, ученые смогли создать самоочищающиеся покрытия. Эффект лотоса используется для создания водоотталкивающих самоочищающихся покрытий и красок.


Вопросы и задания

1. Чем объясняются явления смачивания и несмачивания? Воспользуйся рисунком для объяснения этого явления.

2. Почему капельки жидкости в состоянии невесомости (когда на нее не действуют никакие внешние силы) принимают форму шара?

3. Между микропупырышками поверхности листа находится воздух. Уменьшает или увеличивает это силу адгезии между каплей и поверхностью листа и почему?

4. Предложите какое-нибудь применение самоочищающейся микрокристаллической пленки.



Текст по разделу «Электродинамика», содержащий описание физических явлений или процессов, наблюдаемых в природе или в повседневной жизни. Задание на понимание физических терминов, определение явления, его признаков или объяснение явления при помощи физических знаний


Магнитное поле Земли

Основная часть магнитного поля Земли, по современным воззрениям, имеет внутриземное происхождение. Магнитное поле Земли создается ее ядром. Внешнее ядро Земли жидкое и металлическое.

Благодаря постоянным течениям в жидком ядре и проводимости металла, соответствующий электрический ток создает магнитное поле.

Незначительная часть магнитного поля (около 1%) имеет внеземное происхождение. Возникновение этой части приписывают электрическим токам, текущим в проводящих слоях атмосферы и поверхности Земли.

Магнитное поле Земли находится во взаимодействии с магнитными полями Солнца', планет и потоков заряженных частиц, испускаемых в изобилии Солнцем. Если влиянием самого Солнца и тем более планет из-за удаленности можно пренебречь, то с потоками частиц, иначе — солнечным ветром, так не поступишь. Солнечный ветер представляет собой потоки мчащихся со скоростью около 500 км/с частиц, испускаемых солнечной атмосферой.

В моменты солнечных вспышек, а также в периоды образования на Солнце группы больших пятен, резко возрастает число свободных электронов, которые бомбардируют атмосферу Земли. Это приводит к возмущению токов, текущих в ионосфере Земли, и благодаря этому происходит изменение магнитного поля Земли. Возникают магнитные бури. Такие потоки порождают сильное магнитное поле, которое взаимодействует с полем Земли, сильно деформируя его. Благодаря своему магнитному полю, Земля удерживает в так называемых радиационных поясах захваченные частицы солнечного ветра, не позволяя им проходить в атмосферу Земли и тем более к поверхности. В направлении к Солнцу магнитосфера Земли сплюснута и простирается всего до 10 радиусов планеты. В противоположном направлении имеет место вытянутость до 1000 радиусов планеты.

Вопросы и задания

1. Назовите причину возникновения магнитного поля внутри ядра.

2. Что собой представляет солнечный ветер? Какие явления в верхних слоях атмосферы вызываются частицами солнечного ветра?

3. Почему расположение геомагнитных силовых линий не симметрично относительно земной оси, а Земля имеет своеобразный магнитный хвост?

4. Вспомните, что вы знаете о воздействии магнитных бурь на здоровье и жизнедеятельность человека.

Текст по разделу «Механика», содержащий описание опыта. Задания на определение (или формулировку) гипотезы опыта, условий его проведения и выводов


Удивительный песо

Само разнообразие свойств песка достойно удивления. Сухой, он текуч, подобно воде. Однако в отличие от жидкости без труда выдержит вес человека, прогуливающегося вдоль берега. Даже в состоянии покоя песок ведет себя странным образом. Кажется очевидным, что, оказавшись под 30-метровой кучей песка, человек испытывает гораздо большее давление, чем под 3-метровой. Однако это не так. Давление жидкости на дно сосуда возрастает пропорционально высоте ее уровня, давление же сыпучего вещества на основание сначала растет, потом достигает максимума и далее остается неизменным. Силы, действующие между частицами песка, переносят избыточное давление на стенки резервуара.

Наберите две пригоршни сухого песка и медленно высыпайте его через щель между ладонями. Обратите внимание на то, что вначале высыпаются песчинки, лежащие непосредственно над отверстием. А затем песчинки из верхнего слоя песка, в котором образуется воронка. Наклоните ладони. Воронка все равно образуется точно по вертикали над отверстием. Что мешает раньше высыпаться другим песчинкам, расположенным вокруг отверстия в нижних слоях, т.е. ближе к нему?

Продолжим эксперимент. Возьмем лист бумаги, свернем его в трубку, положим горизонтально и засыплем снаружи сухим песком. Конструкция из бумаги будет выдерживать довольно большие нагрузки, прочность ей придает не только трубчатая форма; нужно, чтобы вокруг трубки и сверху толстым слоем лежал сухой песок. Почему песок не расплющивает трубку, даже если надавить сверху на песок ладонью? Дело в том, что под давлением песчинки перестраиваются так, что заклинивают друг друга, мешая взаимному перемещению. В науке это явление носит название «появление арочных структур». В арке каждый отдельный элемент не может переместиться в направлении действия внешней силы — он зажат враспор соседними элементами, которым и передает действующую нагрузку. В результате под давлением (внешним и внутренним) песок утрачивает подвижность и приобретает свойства твердого тела.

По этой причине в песочных часах песок пересыпается равномерно, независимо от высоты его столба (в отличие от воды!). И первыми высыпаются песчинки именно верхнего слоя, потому что они не связаны арочными структурами.


Вопросы и задания

1. С какой целью проводится эксперимент, описанный в тексте?

2. Почему давление, которое оказывает куча песка, максимально не в центре, под пиком, а по краям?

3. Почему количество песчинок, проходящих через отверстие, соединяющее две колбы песочных часов, остается примерно постоянным?

Чем объясняется прочность сводов туннелей метро, куполов соборов, арочных проемов?







Текст по теме «Электромагнитные поля», содержащий информацию об электромагнитном загрязнении окружающей среды, задания на определение степени воздействия электромагнитных полей на человека и обеспечение экологической безопасности


Электромагнитные поля сотовых телефонов

Главное преимущество мобильного телефона состоит в том, что он поддерживает постоянную радиотелефонную связь при перемещении абонента в пределах так называемой «зоны покрытия», где установлены приемные и передающие антенны. Включенный мобильный телефон автоматически время от времени посылает сигналы, поддерживая связь с ближайшим к нему приемником-передатчиком, который предоставляет ему один из свободных каналов. Интенсивность радиоволн на поверхности такого вторжения в природный мир полностью пока не известны. Рассмотрим несколько негативных проявлений.

Сотовые телефоны создают угрозу другим радиоэлектронным средствам в связи с так называемой проблемой электромагнитной совместимости, т.е. созданием взаимных помех различными радиоэлектронными устройствами. Первыми забили тревогу авиаторы. Не надо объяснять, что может случиться с заходящим на посадку самолетом, если у него вдруг откажет навигационная система или автопилот. Многие известные компании запретили пользоваться сотовыми телефонами на своих бензозаправочных станциях.

Звонок по сотовому телефону может создать угрозу здоровью и жизни человека в больнице, где используется чувствительное электронное оборудование.

С утверждением, что излучения сотовых телефонов влияют на здоровье, соглашаются практически все специалисты. Особенно чувствительными к воздействию электромагнитных полей являются нервная, иммунная, эндокринно-регулятивная и половая системы. Наиболее подвержены воздействию излучений сотового телефона развивающиеся организмы.

Вопросы и задания

1. Назовите достоинства сотовой связи, которые не «позволяют» нам отказаться от мобильных телефонов.

2. Почему запрещается пользоваться сотовыми телефонами в местах, где производятся взрывные работы, в пожаро- и взрывоопасных помещениях?

3. Объясните, почему людям, использующим кардиостимуляторы, включенный сотовый телефон всегда следует держать на расстоянии не менее 15 см от кардиостимулятора.

4. Почему не рекомендуется находиться подолгу вблизи антенны ретранслятора провайдера?

33




Самые низкие цены на курсы переподготовки

Специально для учителей, воспитателей и других работников системы образования действуют 50% скидки при обучении на курсах профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца с присвоением квалификации (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок", но в дипломе форма обучения не указывается.

Начало обучения ближайшей группы: 27 сентября. Оплата возможна в беспроцентную рассрочку (10% в начале обучения и 90% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru

Общая информация

Номер материала: ДВ-298767

Похожие материалы

2017 год объявлен годом экологии и особо охраняемых природных территорий в Российской Федерации. Министерство образования и науки рекомендует в 2017/2018 учебном году включать в программы воспитания и социализации образовательные события, приуроченные к году экологии.

Учителям 1-11 классов и воспитателям дошкольных ОУ вместе с ребятами рекомендуем принять участие в международном конкурсе «Законы экологии», приуроченном к году экологии. Участники конкурса проверят свои знания правил поведения на природе, узнают интересные факты о животных и растениях, занесённых в Красную книгу России. Все ученики будут награждены красочными наградными материалами, а учителя получат бесплатные свидетельства о подготовке участников и призёров международного конкурса.

Конкурс "Законы экологии"