Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Начальные классы / Другие методич. материалы / Формирование и развитие алгоритмических способностей школьников на уроках информатики
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Начальные классы

Формирование и развитие алгоритмических способностей школьников на уроках информатики

библиотека
материалов

44


Формирование и развитие алгоритмических способностей школьников на уроках информатики


Введение


Современный этап развития общества характеризуется внедрением информационных технологий во все сферы человеческой деятельности. Новые информационные технологии оказывают существенное влияние и на сферу образования. Происходящие фундаментальные изменения в системе образования вызваны новым пониманием целей, образовательных ценностей, а также необходимостью перехода к непрерывному образованию, разработкой и использованием новых технологий обучения, связанных с оптимальным построением и реализацией учебного процесса с учетом гарантированного достижения дидактических целей [3].

Одной из дидактических задач образовательного учреждения является формирование способностей учащегося, развитие его интеллекта. Важной составляющей интеллектуального развития человека является алгоритмическое мышление. Наибольшим потенциалом для формирования алгоритмических способностей школьников среди естественнонаучных дисциплин обладает информатика. Анализ развития стандарта образования по информатике позволяет сделать вывод: формирование алгоритмических способностей школьников – важная цель школьного образования на разных ступенях изучения информатики. Решение задачи на компьютере невозможно без создания алгоритма. Умения решать задачи, разрабатывать стратегию ее решения, выдвигать и доказывать гипотезы опытным путем, прогнозировать результаты своей деятельности, анализировать и находить рациональные способы решения задачи путем оптимизации, детализации созданного алгоритма, представлять алгоритм в формализованном виде на языке исполнителя позволяют судить об уровне развития алгоритмических способностей школьников [26].

Поэтому необходимо особое внимание уделять алгоритмическим способностям подрастающего поколения.

Поскольку алгоритмические способности в течение жизни развиваются под воздействием внешних факторов, то в процессе дополнительного воздействия возможно повышение уровень их развития. Необходимость поиска новых эффективных средств развития алгоритмических способностей у школьников обусловлена его значимостью для дальнейшей самореализации личности в информационном обществе.

Эффективным способом формирования алгоритмических способностей школьников в курсе информатики и информационно-коммуникационных технологий (ИКТ) является обучение построению рекурсивных алгоритмов и их использованию при решении большого класса задач из раздела алгоритмизации и программирования, а также теории алгоритмов [7].

Понятие алгоритма является одним из основных при формировании начальной компьютерной грамотности. Алгоритмические способности являются необходимой частью научного взгляда на мир [1].

Актуальность работы заключается в том, что обучение информатике не может проводиться без рассмотрения такого важного понятия как алгоритм. Знакомство с алгоритмами – традиционный раздел практически любого курса информатики, так как способность выполнять и разрабатывать алгоритмы занимает одно из центральных мест при обработке информации и решении задач.

Цель исследования: разработка дидактических материалов для формирования и развития алгоритмических способностей у учеников школьного возраста на уроках информатики.

Объектом исследования является процесс формирования алгоритмических способностей у учеников среднего школьного возраста на уроках информатики.

Предметом исследования является процесс формирования алгоритмических способностей при изучении предмета «Информатика» в средней школе.

Для достижения поставленной цели необходимо решить следующие задачи:

  1. провести анализ теоретической и научно-методической литературы по данной теме;

  2. проанализировать алгоритм как модель алгоритмического процесса;

  3. рассмотреть линию алгоритмизации в школьном курсе информатики;

  4. разработать дидактические материалы для формирования алгоритмического мышления.

Во введении данной работы обосновывается актуальность и практическая значимость алгоритмических способностей у учеников.

В первой главе «Теоретические основы формирования алгоритмических способностей на уроках информатики в средней школе» описывается алгоритмическое мышление и методы его развития, структура и содержание алгоритмической линии в школьном курсе информатики, рассматривается алгоритм как модель алгоритмического процесса,

Во второй главе «Разработка дидактического материала, направленного на развитие алгоритмических способностей» разработан конспект урока по информатике и ИКТ по теме: «Алгоритм. Свойства алгоритма», система заданий, направленных на формирование логико-алгоритмического мышления и рассмотрены задачи по программированию для развитие логического мышления учащихся.

В заключении приведены краткие выводы, отражающие решение поставленных задач.

Список использованных источников составляет 30 наименований.


1. Теоретические основы формирования алгоритмических

способностей на уроках информатики в средней школе

1.1. Алгоритмическое мышление и методы его развития


Одной из дидактических задач образовательного учреждения является интеллектуальное развитие учащегося, важной составляющей которого является алгоритмическое мышление.

Наибольшим потенциалом для формирования алгоритмического мышления школьников среди естественнонаучных дисциплин обладает информатика – одна из фундаментальных отраслей научного знания, формирующая системно-информационный подход к анализу окружающего мира, изучающая информационные процессы, методы и средства получения, преобразования, передачи, хранения и использования информации [20].

Во многом роль обучения информатике в развитии мышления обусловлена современными разработками в области методики моделирования и проектирования, особенно в объектно-ориентированном моделировании. Умение для любой предметной области выделить систему понятий, представить их в виде совокупности атрибутов и действий, описать алгоритмы действий и схемы логического вывода (т.е. то, что и происходит при информационно-логическом моделировании) улучшает ориентацию человека в этой предметной области и свидетельствует о его развитом мышлении [23].

Например, в процессе изучения темы «Алгоритмизация и программирование» учащиеся должны уметь разрабатывать план решения задачи, выдвигать и доказывать гипотезы, прогнозировать результаты решения, анализировать и находить рациональные способы и т.д. Эти мыслительные умения характеризуют уровень развития алгоритмического мышления. Алгоритмическое мышление – познавательный процесс, характеризующийся наличием чёткой, целесообразной последовательности совершаемых мыслительных процессов с присущей детализацией и оптимизацией укрупнённых блоков, осознанным закреплением процесса получения конечного результата, представленного в формализованном виде на языке исполнителя с принятыми семантическими и синтаксическими правилами [10]. Под способностью алгоритмически мыслить понимается умение решать задачи различного происхождения, требующие составления плана действий для достижения желаемого результата [7].

Поскольку алгоритмическое мышление в течение жизни развивается под воздействием внешних факторов, то в процессе дополнительного воздействия возможно повышение уровня его развития. Необходимость поиска новых эффективных средств развития алгоритмического мышления у школьников обусловлена его значимостью для дальнейшей самореализации личности в информационном обществе [21].

Алгоритмическое мышление имеет свои общие и специфические свойства по сравнению с другими стилями мышления. В число общих свойств алгоритмического мышления входят целостность и результативность, помогающие увидеть поставленную проблему в целом виде и предполагают создание предварительного образа результата решения поставленной проблемы. К специфическим свойствам относятся дискретность, абстрактность и осознанная закреплённость в языковых формах. Эти свойства представляют собой пошаговость исполнения алгоритма, дают возможность абстрагироваться от конкретных исходных данных, перейти к решению задачи в общем виде и представить алгоритм при помощи некоторого формализованного языка. Компонентами алгоритмического мышления являются умение формализовать задачу и разбивать её на отдельные составные логические блоки [4].

Алгоритмическое мышление определяется следующими компонентами [23]:

  1. анализ требуемого результата и выбор на этой основе исходных данных для решения проблемы;

  2. выделение операций, необходимых для решения;

  3. выбор исполнителя, способного осуществлять эти операции;

  4. упорядочение операций и построение модели процесса решения;

  5. реализация процесса решения и соотнесение результатов с тем, что следовало получить;

  6. коррекция исходных данных или системы операций в случае не совпадения полученного результата с предполагаемым.

Умение «разделять» задачу на подзадачи считают структурным стилем мышления. Особенности указанного стиля: простота и ясность; использование только базовых (основополагающих) конструкций; отсутствие многоцелевых функциональных блоков и т. д. Отметим, что компьютер, система программирования не являются целью обучения, они – инструмент реализации целей, хотя при этом, разумеется, познается, в определенном объеме, и сам инструмент [11].

В методической литературе по информатике отмечены различные способы формирования алгоритмического мышления школьников: проведение систематического и целенаправленного применения идей структурного подхода (А.Г. Гейн, В.Н. Исаков, В.В. Исакова, В.Ф. Шолохович); повышение уровня мотивированности задач (В.Н. Исаков, В.В. Исакова); постоянная умственная работа (Я.Н. Зайдельман, Г.В. Лебедев, Л.E. Самовольнова) [5].

В.В. Левитес [24] предложил систему приемов и заданий для индивидуальной работы с детьми по развитию логического и алгоритмического мышления. Целью данной системы является формирование и развитие простых логических действий (приемов мыслительной деятельности) на основе использования логического конструирования на образном математическом материале через непосредственную предметную деятельность с вещественным материалом: конструктивную деятельность с моделями фигур, конструктивно-графическую – с использованием специальной рамки-трафарета с геометрическими прорезями, логико-графическую, сопровождающую решение всех предлагаемых заданий.

А.Г. Гейн считает в развитии мышления важным этапом освоение системы базовых знаний, отражающих вклад информатики в формирование научной картины мира, роль информационных процессов в социальных, биологических и технических системах.

В работах Л.Г. Лучко и И.Н. Слинкиной были определены три основных уровня развития алгоритмического мышления:

  1. операционный владеет некоторыми разрозненными операциями, но не может сочетать их, не владеет структурой их вложенности;

  2. системный знает некоторые способы сочетания операций конструкций создания этих сочетаний, умеет решать стандартные задачи на применение алгоритмического мышления;

  3. методологический умеет использовать уже имеющиеся мыслительные схемы решения некоторых алгоритмических проблем, может преобразовать их в изменяющихся условиях или трансформировать имеющиеся [23, 27].

Соответственно данным уровням были выделены умения, характеризующие каждый этап развития алгоритмического мышления:

  1. решать задачи алгоритмического характера;

  2. производить анализ задачи;

  3. составлять алгоритм;

  4. записывать алгоритм;

  5. производить синтаксический анализ составленного или предложенного алгоритма;

  6. выполнять алгоритмы;

  7. проводить оптимизацию алгоритма;

  8. производить мыслительные операции.

На основе этих уровней выделяются требования к развитию алгоритмического мышления [23]:

Операционный уровень характеризуется тем, что ученик имеет представление об алгоритме.

Системный уровень характеризуется тем, что ученик имеет представления об алгоритме, его свойствах, составляет небольшие линейные алгоритмы или с простейшими ветвлениями и циклом; владеет конкретными операциями классификации, сериации; знает способы решения некоторого класса алгоритмических задач; имеет представление об исполнителе и системе команд исполнителя.

Методологический уровень характеризуется тем, что ученик имеет представления об алгоритме, знает его свойства, умеет составлять и записывать формальные и неформальные алгоритмы линейной структуры, с простейшими ветвлениями и циклами; владеет операциями классификации, сериации и взаимно однозначного соответствия; легко справляется с задачами алгоритмического характера; имеет представление об исполнителе, системе команд исполнителя [10].

Основные принципы построения обучения, направленного на развитие алгоритмического мышления сводятся к следующим: систематичность работы, направленной на развитие алгоритмического мышления; системность, полнота и всесторонность рассмотрения отдельных действий, входящих в структуру алгоритмического мышления; возможность соотнесения полученных результатов с эталоном. Для выполнения всех этих условий целесообразно и необходимо использование ПК [27].

Важно отметить, что технология такого обучения должна быть массовой и общедоступной.

Таким образом, развитие алгоритмического мышления представляет собой процесс, проходящий в несколько этапов, начиная с начальной школы и заканчивая процессом обучения в вузе.


1.2. Структура и содержание алгоритмической линии в школьном курсе информатики


В последние годы в методике информатики происходит осознание того, что курс информатики не может быть связан только с задачей формирования компьютерной грамотности. А.А. Кузнецов [5] указывает, что задачи курса информатики не ограничиваются только задачами подготовки школьников к практической деятельности, труду. Перед курсом основ информатики, как общеобразовательным учебным предметом, стоит комплекс учебно-воспитательных задач, выходящих за рамки прикладных задач формирования компьютерной грамотности.

На коллегии Министерства образования Российской Федерации, которая состоялась 22 февраля 1995 года, обсуждался ход реализации программы информатизации образования на 1994-1995 гг. Был рассмотрен вопрос о совершенствовании организации обучения информатике в общеобразовательной школе на современном этапе. Коллегия постановила признать целесообразной необходимость выделения нескольких этапов в овладении основами информатики и формировании информационной культуры в процессе обучения в школе:

  1. первый этап (1-6 классы) - пропедевтический;

  2. второй этап (7-9 классы) - базовый курс;

  3. третий этап (10-11 классы) - профильные курсы [20].

На первом этапе происходит первоначальное знакомство школьников с компьютером, формируются первые элементы информационной культуры в процессе использования учебных игровых программ, простейших компьютерных тренажеров и т.д.

Второй этап обеспечивает обязательный общеобразовательный минимум подготовки школьников по информатике. Он направлен на овладение учащимися методами и средствами информационной технологии решения задач, формирование навыков сознательного и рационального использования компьютера в своей учебной, а затем профессиональной деятельности.

Изучение базового курса формирует представления, передачи и хранения информации в живой природе, обществе, технике [29].

Целесообразность переноса начала систематического изучения информатики в 7-9 классы, помимо необходимости в условиях информатизации школьного образования широкого использования знаний и умений по информатике в других учебных предметах на более ранней ступени, обусловлена также двумя другими факторами. Во-первых, положительным опытом обучения информатике детей этого возраста, как в нашей стране, так и за рубежом и, во-вторых, существенной ролью изучения информатики для развития мышления, формирования научного мировоззрения школьников именно этой возрастной группы.

Представляется, что содержание базового курса может сочетать 3 основных направления в обучении информатике в школе и отражающих важнейшие аспекты ее общеобразовательной значимости:

  1. мировоззренческий аспект, связанный с формированием представлений о системно-информационном подходе к анализу окружающего мира, о роли информации в управлении, специфике самоуправляемых систем, общих закономерностях информационных процессов в системах различной природы;

  2. пользовательский аспект, связанный с формированием компьютерной грамотности, подготовкой школьников к практической деятельности в условиях широкого использования информационных технологий;

  3. алгоритмический (программистский) аспект, связанный в настоящее время уже в большей мере с развитием мышления школьников [30].

Третий этап (10-11 классы) - продолжение образования в области информатики как профильного обучения, дифференцированного по объему и содержанию в зависимости от интересов и направленности до профессиональной подготовки школьников.

Предложенная А.А. Кузнецовым структура обучения информатике в школе легла в основу ряда экспериментов по созданию системы непрерывного обучения информатике [14].

Одним из наиболее актуальных направлений информатизации образования является развитие содержания и методики обучения информатике, информационным и коммуникационным технологиям (ИКТ) в системе непрерывного образования в условиях информатизации и массовой коммуникации современного общества [29].

В соответствии со структурой школьного образования цели обучения информатике и информационным технологиям в 5-6 классах могут быть определены следующим образом:

  1. формирование у учащихся готовности к информационно-учебной деятельности, выражающейся в их желании применять средства информационных технологий в любом предмете для реализации учебных целей и саморазвития;

  2. пропедевтика понятий базового курса школьной информатики;

  3. развитие алгоритмических и познавательных способностей учащихся.

В основу представляемого вводного курса информатики для 5-6 классов положены такие принципы как:

  1. целостность и непрерывность, означающие, что данная ступень является важным звеном единой общешкольной подготовки по информатики и информационным технологиям;

  2. научность в сочетании с доступностью, строгость и систематичность изложения (включение в содержание фундаментальных положений современной науки с учетом возрастных особенностей обучаемых);

  3. практико-ориентированность, обеспечивающая отбор содержания, направленного на решение простейших практических задач планирования деятельности. Принцип поиска нужной информации [24];

  4. принцип дидактической спирали как важнейший фактор структуризации в методике обучения информатике: вначале общее знакомство с понятием с учетом имеющегося опыта обучаемых, затем его последующее развитие и обогащение, создающие предпосылки для научного обобщения в старших классах;

  5. принцип развивающегося обучения (обучение ориентировано не только на получение новых знаний в области информатики, но и на активизацию мыслительных процессов, формирование и развитие у школьников обобщенных способов деятельности, формирование навыков самостоятельной работы).

На самых ранних этапах обучения школьники должны получить представление об алгоритмах. У них должно быть четкое формирование понятия алгоритма.

Алгоритмические способности, рассматриваются как представление последовательности действий, наряду с образным и логическим мышлением определяет интеллектуальную мощь человека, его творческий потенциал [30].

Навыки планирования и полного описания своих действий помогают школьникам разрабатывать алгоритмы решения задач самого разного происхождения. Задача современной школы – обеспечить вхождение учащихся в информационное общество, научить каждого школьника пользоваться новыми массовыми ИКТ (текстовый редактор, графический редактор, электронные таблицы, электронная почта и др.)

Для обучения алгоритмике школьнику нужно только умение выполнять арифметические операции над целыми числами. Познание может происходить при активном использовании игр, театрализации задач.

Обучение школьника основам алгоритмического мышления базируется на понятии исполнителя. Это понятие в последние годы вошло в обиход преподавателей информатики, и большинство курсов основано именно на таком подходе. Исполнителя можно представить себе роботом, снабженным набором кнопок. Каждая кнопка соответствует одному действию (может быть, довольно сложному), которое робот способен совершить. Нажатие кнопки вызывает соответствующее действие робота [9].

Робот действует в определенной среде. Чтобы описать исполнителя, нужно задать среду, в которой он действует, и действия, которые он совершает при нажатии каждой из кнопок.

В 6-м классе предлагается углубленное представление алгоритмической линии. На элементы алгоритмизации отводится 24 часа.

Основной задачей учебного курса 7-9 классов, является подготовка учащихся согласно требованиям, предъявляемым обязательным минимумом содержания образования по информатике. Курс рассчитан на 7-9 классы общеобразовательной средней школы. Содержание курса соответствует общему уровню развития и подготовки учащихся данного возраста.

В различных регионах РФ и отдельных школах нередко действуют различные учебные планы по информатике. Поэтому в каждом конкретном случае учебный план по базовому курсу информатики должен быть поставлен в соответствии с учебным планом, принятым в школе [22].

Изучение курса информатики в школе должно преследовать две цели: общеобразовательную и прикладную. Общеобразовательная цель заключается в освоении учащимися фундаментальных понятий современной информатики, формировании у них навыков алгоритмического мышления, понимания компьютера как современного средства обработки информации.

Прикладная – в получении практических навыков работы с компьютером и современными информационными технологиями.

Обязательный минимум содержания образования по информатике утвержден приказом Министерства образования России от 30.06.99 г. № 56. В нем определяются объем и содержание учебного материала, предъявляемые школой учащимся. При этом уровень А предназначен для школ гуманитарного профиля, а также для школ, не имеющих компьютерного класса. Уровень Б обязательного минимума предполагает изучение курса при наличии в школе компьютерного класса [26].

Все курсы имеют основную задачу «Первоначальное знакомство с ЭВМ», введение и развитие представления об алгоритмах и их роли в процессах преобразования информации. Методической особенностью введения понятия «алгоритм» в данных курсах является использование для формирования представлений о его свойствах понятий исполнителя алгоритмов [1].

Обучение информатике в общеобразовательной школе целесообразно организовать «по спирали»: первоначальное знакомство с понятиями всех изучаемых линий (модулей), затем на следующей ступени обучения изучение вопросов тех же модулей, но уже на качественно новой основе, более подробное, с включением некоторых новых понятий, относящихся к данному модулю и т.д. Таких «витков» в зависимости от количества учебных часов, отведенных под информатику в конкретной школе, может быть два или три. На базовом уровне старшей школы это позволяет перейти к более глубокому всестороннему изучению основных содержательных линий курса информатики основной школы. С другой стороны это дает возможность осуществить реальную профилизацию обучения в гуманитарной сфере.


1.3. Алгоритм как модель алгоритмического процесса


Специфическими объектами, рассматриваемыми в алгоритмике, являются алгоритмы как определенные артефакты, продукты человеческой деятельности.

Исторически понятие алгоритма возникло в математике и является в ней фундаментальным. Математика предоставляет инструменты универсального описания математических моделей. Такая модель реального процесса является некоторым математическим объектом, который поставлен в соответствие этому процессу [15].

В прошлом веке в итоге исследований в отрасли математики К. Геделя, А. Чёрча, А. Тьюринга, А. А. Маркова, А. М. Колмогорова определился широкий круг процессов, которым присущи следующие свойства:

  1. в принципе строго детерминированы, т. е. каждый предыдущий этап полностью определяет следующие;

  2. потенциально осуществимы – с той точки зрения, что при длительном протекании без внешних препятствий приводят к фактическому результату;

  3. имеют атомарное строение – состоят из совокупности элементарных операций, которых имеется лишь несколько видов;

  4. заключаются в преобразовании объектов, которые четко различимы, и поэтому удобны для человеческого восприятия, запоминания и мышления [3].

Для описания и исследования такого рода процессов, которые получили название алгоритмических, возникла теория алгоритмов, как раздел математики.

В этой теории основное ударение делается на понятии принципиальной вычислимости алгоритмов, а форма представления алгоритма особой роли не играет. При этом характерной особенностью алгоритма является выбор минимальных средств для представления и преобразования информации, что диктуется с точки зрения удобства формализации самого понятия алгоритма. Но процедуры конкретных вычислений, записанные с помощью такого рода алгоритмических систем, как правило, настолько громоздкие и сложные для понимания, что в реальной практике не могут быть использованными. Это касается прикладной математики и особенно информатики [21].

Поэтому для практической реализации алгоритмических методов преобразования информации на базе классической теории алгоритмов возникает прикладная теория алгоритмов. При этом применение алгоритмических методов исследования выходит за пределы математики, кибернетики, информатики. Это произошло потому, что «представление посредством алгоритмов позволяет выявить определенные закономерности в поведении сложной системы, взаимосвязь частей, что ее составляют, изучить ее динамические характеристики.

Место формул, не отрицая их, а обобщая, заняли алгоритмы» [1; 14]. То есть речь уже идет не об отдельном изолированном разделе математики или информатики, а об отдельной методологии научного исследования. Понятие алгоритма проникло в отрасли гуманитарных и общественных дисциплин, например, в психологию – для описания психических процессов, в педагогику – для описания и организации процесса обучение и т. др. Но в связи с использованием в «размытых», не сформированных формально областях науки, произошло и определенное «размытие» самого термина «алгоритм». И это понятно – ведь не все реальные процессы строго формальные.

Мир не исчерпывается лишь алгоритмическими формами. Даже в процессах, которые удается так или иначе описать посредством алгоритмов, есть неформализированные компоненты, недопустимые в пределах строгого математического понятия алгоритма. Поэтому применяются так называемые ослабления понятия алгоритма. В самой математике уже встречается понятие ослабления алгоритма (это ослабление реализуется в алгоритме сводимости – предписанию, которое сводит решение задач определенного типа к задачам, которые принимаются за уже решенные) [3].

В отличие от «абсолютных» алгоритмов, операции которых строго формальные, определенные предписания алгоритмического типа допускают правила, которые имеют смысловой характер. Например, если в качестве исполнителя выступает человек, то алгоритмы могут содержать действия, что существенно зависят от человеческого понимания; в силу этого операции, из которых состоят предписания, могут быть, по сути дела, достаточно сложными «блоками» умственных действий – лишь бы исполнитель, например, человек, мог оперировать без осложнений такими «смысловыми блоками».

Таким образом, на данный момент можно выделить три смысловых значения, которые могут интерпретировать понятие алгоритма:

  1. как строго определенный математический объект;

  2. как термин, используемый в прикладной теории алгоритмов – эмпирическое понятие, но сам алгоритм является строгим формальным предписанием;

  3. как термин, используемый в ослабленном, «размытом» значении [25].

С точки зрения обучения алгоритмике в школе наиболее пригодно понятие алгоритма, используемое в прикладной теории алгоритмов. Эмпирическое понятие алгоритма, с одной стороны, является формальным, что отличает его от «размытого», а, с другой стороны, является понятным, простым для применения в сравнении с его математическим толкованием.

Существует множество толкований алгоритма. Например:

  1. алгоритм – точное предписание, которое определяет вычислительный процесс, что ведет от варьируемых исходных данных к искомому результату [13];

  2. алгоритм – способ (программа) решения вычислительных и других задач, которая точно приписывает, как и в какой последовательности получить результат, который однозначно определяется входными данными [18];

  3. алгоритм – система операций (например, вычислений), что применяются по строго определенным правилам, которая после последовательного их выполнения приводит к решению поставленной задачи [15].

Алгоритм может приобретать две формы – идеальную и знаковую (рис. 1). Идеальная форма является отображением ментального образа алгоритма в ментальном пространстве человека, носителем семантического значения алгоритма. Знаковая форма есть своеобразной промежуточной формой, и служит для передачи алгоритма от конструктора алгоритма к его исполнителю, а также для сохранения алгоритма для последующего использования [6].

hello_html_m7b42a6bf.png

Рис. 1.1. Формы алгоритма

Следовательно, знаковая форма необходима, во-первых, для устранения семантической разницы в интерпретации алгоритма конструктором и исполнителем а, во-вторых, для сохранения или передачи алгоритма для последующего применения.

Понятно, что прежде чем научиться конструировать, составлять алгоритмы, и через них порождать алгоритмические процессы и руководить ими, нужно понять закономерности, которые имеют место в самих этих процессах. Но в большинстве случаев алгоритмический процесс наблюдать невозможно в результате его непосредственной недоступности для человека [19].

Таким образом, знаковая форма является самостоятельным объектом, который реально существует и замещает другой реальный объект – алгоритмический процесс. При этом выполняется условие: алгоритм не совпадает полностью с соответствующим ему алгоритмическим процессом, но исследование алгоритма дает полную информацию о протекании процесса.

Поэтому знаковую форму алгоритма можно назвать моделью алгоритмического процесса. Заметим, что если принять такую точку зрения, то, по отношению к описанию информационной модели, алгоритм выступает в качества метамодели. Признание знаковой формы алгоритма как определенной модели позволяет распространить на нее общие методы работы с моделями, т.е. алгоритмизация является моделированием алгоритмических процессов.

Знаковая форма алгоритма в качестве модели выступает и как продукт, и как средство осуществления теоретической деятельности через наглядно-образные формы. Это позволяет утверждать, что алгоритмы-модели являются своеобразным сочетанием чувственного и рационального в познании. Этот вывод важен, потому что позволяет по-новому взглянуть на дидактическое значение и применение представлений алгоритмов [14].

При правильном выборе алгоритмического представления можно развивать не только теоретическое мышление, но и наглядно-образное. Например, можно с достаточной достоверностью прогнозировать, что применение графическо-символьных представлений алгоритмов будет способствовать обучению алгоритмике детей, в которых преобладает наглядно-образный компонент над аналитическим.

Также особенно нужно отметить, что алгоритмы, как своеобразная форма наглядного представления процессов, используются не просто как иллюстрация некоторого положения, но и как отображение активных моделей.

Алгоритмы являются не просто иллюстративными моделями, которые односторонне воспроизводят алгоритмические процессы. Они являются также моделями проектирующими, то есть такими, что порождают эти процессы, позволяют их организовывать и реорганизовывать, полностью предугадывая их поведение [13].

Таким образом, алгоритмизация рассматривается нами как специфическая познавательно-проектирующая деятельность. Алгоритмизация – это не просто знание алгоритмов и их воссоздание. Это, прежде всего, овладение общими способами действий, приемами, средствами создания и применения алгоритмов.

2. Разработка дидактического материала, направленного на

развитие алгоритмических способностей

2.1. Разработка конспекта урока по информатике и ИКТ по теме: «Алгоритм. Свойства алгоритма»


Конспект урока по информатике и ИКТ разработан для учащихся 6 класса, обучающихся по учебнику Л. Босовой.

Цель: ознакомление обучающихся с понятием алгоритма, его свойств, исполнителя алгоритма и основными алгоритмическими структурами.

Задачи:

  1. обеспечить усвоение понятий алгоритм, исполнитель, свойства алгоритма, дать представление об основных алгоритмических структурах умения составлять простейшие блок-схемы алгоритмов;

  2. способствовать развитию алгоритмического мышления, внимательности, информационной культуры;

  3. формировать способность к самостоятельной работе, самоконтролю и правильной организации рабочего времени, содействовать профориентации учеников.

Ход занятия:

1.Организационный момент. Приветствие и объявление темы урока.

Добрый день, ребята! Сегодня, мы начнём изучать самую интересную и важную тему курса информатики «Алгоритм».

2.Этап подготовки обучающихся к активному сознательному усвоению знаний.

Учитель предлагает учащимся ответить на следующие вопросы:

  1. Что такое алгоритм?

  2. Для чего нужны алгоритмы?

  3. Какими свойствами обладают алгоритмы?

  4. Кто такой исполнитель?

Возникающие вопросы фиксируются на доске.

Каждый из нас ежедневно использует различные алгоритмы: инструкции, правила, рецепты и т.д. Обычно мы это делаем не задумываясь. Например, вы хорошо знаете, как заварить чай. Но допустим, нам надо научить этому младшего брата или сестру. Значит, нам придется четко указать действия и порядок их выполнения. Что это будут за действия и какой их порядок?  Учащиеся составляют правило заваривания чая:

  1. Вскипятить воду.

  2. Окатить заварочный чайник кипятком.

  3. Засыпать заварку в чайник.

  4. Залить кипятком.

  5. Закрыть крышечкой.

  6. Накрыть полотенцем.

Другими словами мы составили алгоритм. Теперь попробуем дать определение алгоритма. Как вы думаете, что называется алгоритмом?

Алгоритм – это конечная последовательность действий, направленных на получение из исходных данных результата, записанная с помощью точных и понятных исполнителю команд.

Мой помощник, ваш одноклассник, подготовил историческую справку о происхождении слова «алгоритм» (Приложение 1), для этого он использовал учебник, справочники, интернет-ресурсы.

3. Этап усвоения новых знаний.

Итак, алгоритм – это описание детерминированной последовательности действий, направленных на получение из исходных данных результата за конечное число дискретных шагов с помощью понятных исполнителю команд.

  1. Какие алгоритмы Вы знаете, и кто или что является исполнителями алгоритмов?

  2. Как Вы понимаете высказывание Норберта Винера: «Любая машина стоит лишь столько, сколько стоит человек, который на ней работает?» Обмен мнениями в группах.

Исполнитель – человек, группа людей, животное, техническое устройство, способные выполнять заданные команды. Любая задача может быть успешно решена только тогда, когда она чётко описана. Из приведённого списка задач выберите те, которые сформулированы чётко:

  1. Сосчитайте число окон в своём доме.

  2. Сосчитайте звёзды на небе.

  3. Дайте подробное описание дороги от двери своего дома до школы (пешком, на автобусе или другом транспорте).

  4. Иди туда, не знаю куда.

  5. Принеси то, не знаю что.

Мир алгоритмов очень разнообразен. Несмотря на это, удается выделить общие свойства, которыми обладает любой алгоритм. Рассмотрим следующие примеры.

Алгоритм открывания двери:

  1. Достать ключ из кармана.

  2. Вставить ключ в замочную скважину.

  3. Повернуть ключ 2 раза против часовой стрелки.

  4. Вынуть ключ.

Алгоритм нахождения большего из 2 чисел А и В:

  1. Из числа А вычесть число В.

  2. Если получилось отрицательное значение, то сообщить, что число В больше.

  3. Если получилось положительное значение, то сообщить, что число А больше.

  4. Если получился ноль, то сообщить, что числа равны.

Внимательно проанализируйте эти примеры. Что в них общего?

Рассмотрим свойства алгоритмов.

  1. Результативность. Получение требуемого результата за конечное число шагов; это означает, что неправильный алгоритм, который не достигает цели, вообще не нужно считать алгоритмом.

  2. Дискретность (пошаговость). Под дискретностью понимают, что алгоритм состоит из последовательности действий, шагов. Выполнение каждого следующего шага невозможно без выполнения предыдущих. Последний шаг, как правило, выдаёт результат действия алгоритма.

  3. Определённость. Означает, что действия, выполняемые на каждом шаге, однозначно и точно определены.

  4. Понятность. Алгоритм должен быть понятен не только автору, но и исполнителю.

  5. Выполнимость. Алгоритм должен содержать команды, записанные на понятном языке и выполнимые исполнителем.

  6. Массовость. Один тот же алгоритм может применяться для решения большого количества однотипных задач с различающимися условиями.

Задача: измените, алгоритм получения кипятка таким образом, чтобы предотвратить несчастный случай:

  1. Налить в чайник воду.

  2. Открыть кран газовой горелки.

  3. Поставить чайник на плиту.

  4. Ждать, пока вода закипит.

  5. Поднести спичку к горелке.

  6. Зажечь спичку.

  7. Выключить газ.

Ребята, перед вами формы записи алгоритмов (демонстрация форм записи алгоритмов).

1.Словесно-формульный.

Например, Составить алгоритм решения арифметического выражения (23+34)*57/3.

2. С помощью алгоритмического языка.

Например, Составить алгоритм решения алгебраического выражения x=2y+z.

3. Таблицы.

4.Блок-схемы, в которых для обозначения шагов алгоритма используются геометрические фигуры.

4.Этап закрепления знаний.

4.1. Самостоятельная работа в группах по карточкам. Командир группы о результатах сообщает учителю. Задания представлены в Приложении 2.

Информационная переменка (физминутка).

4.2. Индивидуальная работа: тестирование. Тестовые задания представлены в Приложении 3.

5. Подведение итогов урока. Рефлексия.

Анализируем, на все ли вопросы были найдены ответы. Удалось ли решить поставленную задачу?

Какие вопросы вызвали затруднение?

Как ты оцениваешь свою работу?

6.Этап информации о домашнем задании.

Учитель: Запишите домашнее задание:

1. «Информатика» 6 класс, Л. Босова, стр. 62-69 (обязательно).

2. По желанию можно приготовить творческое сообщение на тему: «Алгоритмы вокруг нас», используя разумные источники. Творческое сообщение обязательно будет оценено! Спасибо за урок! До свидания, ребята.


2.2. Системы теоретических и практических заданий,

направленных на формирование логико-алгоритмического

мышления


Рассмотрим различные системы заданий, которые направлены на развитие логического и алгоритмического языков. Задания могут быть различными, как теоретические логические задачи, так и практические задания.

Системы заданий разделены по следующим категориям:

  1. задачи на переправы;

  2. задачи на переливания;

  3. задачи, решаемые с помощью построение кругов Эйлера;

  4. задачи на нахождение искомого предмета, веса;

  5. задачи на определение закономерности в построении последовательности чисел;

  6. задачи на установление последовательности;

  7. задачи на установление закономерности.

Задачи на переправы. В задачах на переправы требуется указать последовательность действий, при которой осуществляется требуемая переправа и выполнены все условия задачи.

  1. Некий человек должен был перевезти в лодке через реку волка, козу и капусту. В лодке с человеком могли поместиться только один волк, либо одна коза, либо одна капуста. Если оставить волка с козой без человека, то волк съест козу; если оставить козу с капустой без человека, то коза съест капусту; в присутствии человека никто никого не ел. Человек все-таки перевез свой груз через реку. Как он это сделал?

  2. Небольшой воинский отряд подошел к реке, через которую необходимо было переправиться. Мост сломан, а река глубока. Офицер замечает у берега двух мальчиков, катающихся на лодке. Но лодка так мала, что в ней может разместиться только один солдат или два мальчика – не больше. Однако все солдаты переправились через реку именно в этой лодке. Каким образом?

  3. Три японских господина и их самураи решили переправиться через реку на двухместной лодке. У первого господина было пять самураев, у второго три, у третьего один. Самураи получили приказ не находиться ни на берегу, ни в лодке в присутствии чужого господина без своего господина. Пассажиры лодки в моменты отплытия и причаливания считаются находящимися на берегу. Помогите компании переправиться.

Задачи на переливания. В задачах на переливания требуется указать последовательность действий, при которой осуществляется требуемое переливание и выполнены все условия задачи [23].

1. Имеются три сосуда вместимостью 8, 5 и 3 литра. Наибольший сосуд полон молока. Как разделить это молоко на две равные части, используя остальные сосуды?

2. В бочке не менее 10 л бензина. Как отлить из неё 6 л с помощью девятилитрового ведра и пятилитрового бидона?

4. Имеются трехлитровая банка сока и 2 пустые банки: одна литровая, другая – двухлитровая. Как разлить сок так, чтобы во всех банках было по одному литру?

Задачи, решаемые с помощью построение кругов Эйлера.

  1. Из 15 котят 8 рыжих и 7 пушистых, и других нет. Есть ли среди этих котят хоть один рыжий и пушистый одновременно?

  2. Среди 12 щенков 8 ушастых и 9 кусачих, и других нет. Сколько среди этих щенков ушастых и кусачих одновременно?

  3. В классе 15 мальчиков. Из них 10 человек занимается волейболом и 9 баскетболом. Сколько мальчиков занимается и тем, и другим?

Задачи на нахождение искомого предмета, веса [9].

  1. Среди трех монет одна фальшивая. Она не отличается от настоящей монеты по виду, но немножко тяжелее настоящей монеты. У нас имеются чашечные весы без гирь. Как одним взвешиванием установить, какая монета фальшивая?

  2. Имеется 9 кг песка и гиря в 250 г. Как в три взвешивания на чашечных весах отмерить 2 кг песка?

  3. Одна из 75 одинаковых по виду монет – фальшивая, она несколько отличается по весу от остальных. Как двумя взвешиваниями на чашечных весах определить, легче или тяжелее эта монета, чем остальные?

Задачи на определение закономерности в построении последовательности чисел.

  1. Продолжи последовательность: 8, 6, 10, 6, 12, 6, ... .

  2. Продолжи последовательность: 2, 3, 5, 8.

  3. Попытайся понять, как составлена эта последовательность, и продолжи ее: 2, 20, 40, 400, 800.

Задачи на установление последовательности

  1. Волейбольные команды А, Б, В, Г, Д и Е разыгрывали первенство. Известно, что команда А отстала от Б на три места, команда В оказалась между Г и Д, команда Е опередила Б, но отстала от Д. Какое место заняла каждая из команд?

  2. В семье четверо детей. Им 5, 8, 13, 15 лет. Детей зовут Аня, Боря, Вера и Галя. Сколько лет каждому ребенку, если одна девочка ходит в детский сад, Аня старше Бори и сумма лет Ани и Веры делится на три?

  3. Леня, Дима, Коля и Алик подсчитывали после рыбной ловли свои трофеи. В результате выяснилось следующее. Алик поймал больше, чем Коля. Леня и Дима вместе поймали рыбы столько же, сколько поймали Коля и Алик. Леня и Алик вместе поймали меньше рыбы, чем Дима и Коля. Какие места занял каждый по улову рыбы?

Задачи на установление закономерности

    1. Три девочки - Белова, Краснова и Чернова - одеты в белое, красное и черное платья, причем ни у одной из них цвет платья не соответствует ее фамилии. Девочка в белом платье и Чернова родились в один день. Кто в какое платье одет?

    2. Однажды композитор, художник и писатель с фамилиями Музыкантский, Живописцев и Рассказов встретились в театре, и композитор заметил, что ни у кого из них фамилия не соответствует профессии. «Действительно», – подтвердил Живописцев. Определите фамилию каждого деятеля искусств.

  1. Три подруги вышли погулять в белом, зеленом и синем платьях и в туфлях таких же цветов. Известно, что только у Ани цвет платья и цвет туфель совпадают. Ни туфли, ни платье Вали не были белыми. Наташа была в зеленых туфлях. Определите цвет платья и туфель на каждой из подруг.

Таким образом, представленные системы заданий могут быть использованы для развития у учащихся логического мышления.

2.3. Развитие логического мышления учащихся через решение

задач по программированию


Алгоритмизация, как раздел информатики, который изучает процессы создания алгоритмов, традиционно относится к теоретической информатике вследствие своего фундаментального характера. При этом сторонники «пользовательского» подхода при изучении школьной информатики говорят об отсутствии практической значимости этого раздела для развития навыков пользователя современного программного обеспечения [16]. Вследствие развития новых информационных технологий появляется возможность в пределах раздела «Основы алгоритмизации» давать общенаучные понятия информатики и в то же время формировать и развивать умение и навыки, необходимые пользователю при работе с современным программным обеспечением, т.е. появляется возможность сделать раздел «Основы алгоритмизации» мостиком между теоретической и практической информатикой [2].

Шаги в этом направлении делали авторы многих школьных программ по информатике. Стоит вспомнить работы А.Г.Кушниренко, Ю.А.Первина, А.Л.Семенова по внедрению «конструктивистской» парадигмы при изучении теоретической информатики. Одним из принципов этой парадигмы является самостоятельное добывание учениками знаний, которые формируются при работе с реальными и виртуальными объектами. Реализация этого принципа основывается на использовании творческих деятельностных сред, таких как ЛогоМиры, Кумир, Роботландия [5].

На практике это приводит к тому, что вопросы одного из основных разделов курса информатики и ИКТ «алгоритмизации и программирования» заменяются изучением офисных технологий, которые сводятся в большинстве своем к работе с офисными приложениями. Важнейшая задача формирования стиля мышления и научного мировоззрения у школьников подменяется подготовкой к практической деятельности.

Изучение алгоритмизации и программирования направлено на развитие логического мышления детей, на умение разрабатывать алгоритмы, находить пути и способы решения задачи, а в целом, на повышение общего интеллектуального потенциала [12].

Умение организовать деятельность по решению некоторой задачи, разделить задачу на более мелкие подзадачи, составить необходимую последовательность действий – все это означает способность разработать алгоритм решения. Логическое мышление универсально, применимо в любой профессиональной сфере, а его основы должны быть заложены при изучении курса общеобразовательной школы.

Раздел программирования в учебном курсе информатики и ИКТ изучается только на профильном и углубленном уровнях в старшей школе.

Рассмотрим задания могут, которые можно реализовать, используя начальную среду программирования – ЛогоМиры.

Использование программной среду «ЛогоМиры» в качестве технической поддержки начального курса позволяет:

1. Способствовать развитию алгоритмических способностей учащихся; научить ребенка восприятию условия задачи на построение алгоритма.

2. Выявить наиболее способных детей для дальнейшей работы с ними на более высоком уровне (языки программирования Pascal, Delphi и др.).

3. Пробудить в детях желание экспериментировать, формулировать и проверять гипотезы и учиться на своих ошибках [4].

Задачи курса:

    1. освоение среды ЛогоМиры и стандартных команд исполнителя Черепашки;

    2. освоение понятия «алгоритм» и изучения видов и свойств алгоритма;

    3. освоение сложных алгоритмических конструкций.

Данная среда чаще позиционируется как учебная среда для начальной школы, но в ситуации, когда изучение информатики начиналось не с начальных классов, тоже имеет право на существование. На уроках в 6 классе, например, при изучении использованием учебного исполнителя данной среды – Черепашки [8].

Задание 1. С помощью кнопок, продвигающих Черепашку на разное расстояние (10, 50 или 100 шагов) учащимся необходимо перевести черепашку из собственного домика в домик друзей. Предварительно учащимся задается вопрос: какой из домиков принадлежит Черепашке? Почему?

«Переползая» в домик друзей, Черепашка оставляет след, поэтому учащимся легко определить насколько далеко она находится от цели. Задание не сложное, но требует определенной наблюдательности, так как длина дорожки потребуется при выполнении следующего задания.

Задание 2. В этом задании учащиеся самостоятельно в поле команд записывают возможные комбинации команд для того, чтобы снова перевести Черепашку в домик друзей. После выполнения задания можно определить самую короткую цепочку команд (здесь мы её ещё не называем программой), самую длинную, посмотреть цепочки одинаковой длины с разными командами.

Учащиеся приходят к выводу: задачу можно решить несколькими способами.

Задание 3. В данном задании добавляются команды поворотов. Требуется, нажимая на кнопки, провести Черепашку по лесенке до верхней ступеньки. При неудачной попытке можно вернуться к началу лестницы (кнопка «домой»), стерев все линии (кнопка «сотри»).

Задание 4. На листе нет никого поясняющего текста, но учащиеся догадываются о смысле задания: написать цепочку команд, чтобы Черепашка снова смогла сходить в гости к друзьям. При выполнении задания можно использовать команду для рисования (по), чтобы увидеть возможность достижения цели различными путями.

Задание 4, 5 выполняются учащимися дома. В тетради записывается программа, если нет возможности работать за компьютером или прямо в данном проекте, если компьютер есть дома или же во время самостоятельной работы в гимназии.

Задание 7. Учащиеся выполняют его после определения понятий «алгоритм» и «программа», поэтому формулировка задания не вызывает вопросов. В поле, ограниченном рамкой записывается программа для рисования квадрата. Кнопка «запусти программа» позволяет просмотреть результат выполнения программы.

Задание 8 подобно заданию 7, но требуется нарисовать другую фигуру (букву Т). Точно также можно просмотреть результат выполнения программы по нажатию на кнопку «запусти программа»

Задание 9. *Задания 9 и 10 являются пропедевтическими для понимания конструкции цикла и её организации, для осознания возможности организовывать работу более рационально.

Требуется, просмотрев результат работы Программы 1, написать подобную программу для рисования правильной геометрической фигуры с другим числом сторон. Данное задание достаточно сложно, так как необходимо понять принцип построения замкнутой фигуры.

Задание 10. Также как и в задании 9 необходимо посмотреть результат работы Программы 1 и написать свою программу для рисования цветка с другим числом лепестков.

Задание 11. Создайте процедуры, которые моделируют анимационные персонажи, такие как лошадь, бегущая по полю; человек, идущий вперед; скачками передвигающаяся собака, ныряющий дельфин; трактор, пашущий землю, который опускает грабли и др.

Задание 12. Создание своих форм Черепашки.

Вышеописанная система заданий может быть реализована в курсе информатики 5-6 классов для формирования у учащихся алгоритмических способностей.


Заключение


Алгоритмические способности не являются врожденным, значит, на протяжении всех лет обучения в школе необходимо всесторонне развивать мышление учащихся (и умение пользоваться мыслительными операциями), учить их логически мыслить. Логика необходима там, где имеется потребность систематизировать и классифицировать различные понятия, дать им четкое определение.

Для решения данной проблемы необходима специальная работа по формированию и совершенствованию умственной деятельности учащихся.

Необходимо:

  1. развивать умение проведения анализа действенности для построения информационно-логической модели;

  2. научить использовать основные алгоритмические конструкции для построения алгоритмов (с целью развития алгоритмического мышления);

  3. вырабатывать умение устанавливать логическую (причинно-следственную) связь между отдельными понятиями;

  4. совершенствовать интеллектуальные и речевые умения учащихся.

В старших классах для учащихся усиливается важность самого процесса учения, его цели, задачи, содержания и методы. Этот аспект оказывает влияние на отношение ученика не только к учебе, но и к самому себе, к своему мышлению, к своим переживаниям.

В основе алгоритмических способностей учеников среднего школьного возраста лежит взаимосвязь математических знаний и логического мышления. Сдвиги и изменения в познавательной деятельности ребенка, происходящие в результате этих видов деятельности, и характеризуют динамику логического развития.

Наиболее эффективным методом развития алгоритмических способностей является опора на теоретические знания, которыми овладевают учащиеся посредством использования как традиционных видов деятельности, так и занимательного материала.

В ходе исследовательской работы была достигнута цель, а именно разработан дидактический материал для формирования и развитие алгоритмических способностей у учеников школьного возраста на уроках информатики и решены поставленные задачи.

В результате исследования был разработан конспект урока на тему «Алгоритм. Свойства алгоритма» и рассмотрены системы заданий, в основе которых лежит развитие логических приемов. Они позволяют повысить уровень развития алгоритмических способностей у учащихся среднего школьного возраста и улучшить его результаты.

Таким образом, развитие логического мышления в учебном процессе и, конечно же, на уроках информатики актуально и необходимо современному ученику для развития и совершенствования информационной компетенции, которая позволит стать успешным ученику школы в современном обществе.

Список использованных источников


  1. Аляев, Ю.А. Алгоритмизация и языки программирования: учебно-справочное пособие [Текст] / Ю.А. Аляев, О.А. Козлов. – М.: Финансы и статистика, 2009. – 320 с.

  2. Антонова, Н.А. Необходимость повышения уровня алгоритмической культуры студентов информационных сᴨȇциальностей в системе профессиональной подготовки [Электронный ресурс] – Режим доступа: http://www.rusnauka.com/NTSB_2012/Pedagogica/antonovoy.doc.htm

  3. Батршина, Г.С. Формирование и развитие логико-алгоритмического мышления учащихся начальной школы [Текст] / Г.С. Батршина // Информатика и образование, 2010. – №9. – С. 21-23.

  4. Бочкин, А.И. Методика преподавания информатики [Текст] / А.И. Бочкин. – Минск: Высшая школа, 2011. – 431 с.

  5. Бочкин, А.И.«МПИ» Обзор учебников по информатике [Электронный ресурс] Режим доступа: http://www.kamgu.ru/dir/mpi/Seminar1/Bochkin6.htm

  6. Бударный, А. А. Индивидуальный подход к учащимся в процессе обучения [Текст] / А. А. Бударный. - М.: 2009. – 47 с.

  7. Вишнякова, С.М. Профессиональное образование: Словарь. Ключевые понятия, термины, актуальная лексика [Текст] / С.М. Вишнякова. М.: 2009. 113 с.

  8. Волкова, Р.А. Программирование в среде «Лого Миры». Часть 6. Программирование списков [Текст] / Р.А. Волкова. СПб.: ЦПО «Информатизация образования», 2014. 103 с. 

  9. Волчкова, Г.П. Сборник задач по теории алгоритмов [Текст] / Г.П. Волчкова, В.М.Котов, Е.П.Соболевская. – Мн.: БГУ, 2010. 257 с. 

  10. Газейкина, А.И. Стили мышления и обучение программированию студентов педагогического вуза [Электронный ресурс] – Режим доступа: http://ito.edu.ru/2013/Moscow/I/1/I-1-6371.html

  11. Гессен, С.И. Основы педагогики [Текст] / С.И. Гессен. М.: Школа – Пресс, 2010. – 355 с.

  12. Грохульская, Н. Л. Организация изучения основных алгоритмических конструкций в среде Лого Миры [Электронный ресурс] Режим доступа: http://www.5ballov.ru/referats/preview/32490/

  13. Давыдов, В. В. Российская педагогическая энциклопедия: В 2 тт. [Текст] / В. В. Давыдов. – М.: Большая российская энциклопедия, 2010. – 608 с.

  14. Давыдов, В.В. Виды обобщения в обучении: Логико-психологические проблемы построения учебных предметов [Текст] / В.В. Давыдов. – М: Педагогическое общество России, 2012. – 216 с. 

  15. Дьяченко, В.К. Коллективно - групповые способы обучения [Текст] / В.К. Дьяченко // Педагогика, 2011. № 2. – С. 41-42.

  16. Истомина, Т.Л. Обучение информатике в среде Лого [Текст] / Т.Л. Истомина. – М.: Слог-Пресс-Спорт, 2014.64 с. 

  17. Камалов, Р.Р. Компьютерные игры как элемент школьного курса информатики [Текст] / Р.Р. Камалов. –М.: Инфо, 2014. 504 с.

  18. Коджаспирова, Г. М. Педагогический словарь: Для студентов высших и средних пед. заведений [Текст] / Г. М. Коджаспирова. – М.: Академия, 2010. – 176 с.

  19. Котов, В.М. Структуры данных и алгоритмы: теория и практика [Текст] / В.М. Котов, Е.П. Соболевская. – Мн.: БГУ, 2009. – 326с.

  20. Лапчик, М.П. Методика преподавания информатики [Текст] / М.П. Лапчик. – М.: Академия, 2010. – 624 с.

  21. Лебедева, Т.Н. Формирование алгоритмического мышления школьников в процессе обучения рекурсивным алгоритмам в профильных классах средней общеобразовательной школы [Текст] / Т.Н. Лебедева. – Челябинск: Челябинский государственный педагогический университет, 2013. –– 20 с.

  22. Левитес, В.В. Развитие логического мышления детей дошкольного и младшего школьного возраста [Текст] / В.В. Левитес // Известия Российской академии образования, 2009. – №4. – 12 с.

  23. Лучко, Л.Г. Решение задач школьного курса информатики [Текст] / Л.Г. Лучко. – Омск: ОмГПУ, 2011. – 80 с.

  24. Мутанов, Г.М. Снижение границы развития логико-алгоритмической культуры [Текст] / Г.М. Мутанов, Н.Д. Щеткина // Вестник Высшей школы Казахстана, 2013. №3. – С. 36-38.

  25. Российская Педагогическая энциклопедия в 2-х томах. Том 1 [Текст] / – М.: науч. издательство «Большая Российская Энциклопедия», 2013. – 520 с.

  26. Семакин, И. Г. Преподавание базового курса информатики в средней школе: Методическое пособие [Текст] / И. Г. Семакин. – 2-е изд., испр. и доп. – М.: БИНОМ. Лаборатория знаний, 2009. – 228 с.

  27. Слинкина, И.Н. Использование компьютерной техники в процессе развития алгоритмического мышления у младших школьников [Текст] / И.Н. Слинкина. – Екатеринбург: УрГПУ, 2010. – 22 с.

  28. Стандарт основного общего образования по информатике и информационным технологиям [Текст] / Информатика и образование. – 2009. –№4. – 79 с.

  29. Цукарь, А.Я. Схематизация и моделирование при решении текстовых задач [Текст] / А.Я. Цукарь // Математика в школе, 2013. № 5. – 15с.

  30. Яковлева, Е.И. «Игры в Лого» [Текст] / Е.И. Яковлева // Научно-практический электронный альманах «Вопросы информатизации образования», 2014. №4. – 23с.














Приложения


Приложение 1

Историческая справка. Происхождение слова «Алгоритм»

Пример выступления. Слово «алгоритм» происходит от имени арабского учёного Мухаммед ибн Муса ал-Хорезми. Ал-Хорезми жил и творил в IX веке, он сформулировал правила выполнения арифметических действий в десятичной позиционной системе счисления.

В латинском переводе книги Ал-Хорезми правила начинались словами «Алгоризми сказал». С течением времени люди забыли, что «Алгоризми» - это автор правил, и стали просто называть правила алгоритмами. В настоящее время слово «алгоритм» является одним из важнейших понятий науки информатики. (Демонстрация презентации,5 слайд)

Приложение 2

Карточки для группового занятия

Задание для 1 группы

 Старинная задача. Встречается в рукописях 8 века. Уже тогда интересовались алгоритмами!

Некий человек должен перевезти в лодке через реку волка, козу и капусту. Каждый раз он может перевезти либо волка, либо козу, либо капусту. На одном берегу нельзя оставить вместе козу и волка, а также козу и капусту. Составьте алгоритм переправы на другой берег.  

Задание для 2 группы

Два солдата перешли к реке, по которой на лодке катаются двое мальчиков. Как солдатам переправиться на другой берег, если лодка вмещает только одного солдата (либо двух мальчиков), а солдата и мальчика уже не вмещает?

Приложение 3

Тестовые задания к уроку

1. Какой из документов является алгоритмом?

  1. Правила техники безопасности.

  2. Инструкция по получению денег в банкомате.

  3. Расписание уроков.

  4. Список класса.

2. Свойством алгоритма является:

  1. Возможность изменения последовательности выполнения команд

  2. Возможность выполнения алгоритма в обратной последовательности

  3. Массовость

3. Расчлененность алгоритма на отдельные элементарные действия – это

  1. Массовость

  2. Определенность

  3. Понятность

  4. Дискретность

4. Какое свойство алгоритма, требует, чтобы в алгоритме не было ошибок

  1. Определенность

  2. Дискретность

  3. Массовость

  4. Результативность

5. В каких случаях правильно заканчивается предложение: Алгоритм – это

  1. Последовательность действий, строгое исполнение которых приводит к решению поставленной задачи за конечное число шагов

  2. Указание на выполнение действий

  3. Программа в машинных кодах

6. Какова правильная последовательность следующих операций:

  1. Вывод результатов;

  2. Ввод исходных данных;

  3. Обработка исходных и промежуточных данных и получение результата


Краткое описание документа:

Современный этап развития общества характеризуется внедрением информационных технологий во все сферы человеческой деятельности. Новые информационные технологии оказывают существенное влияние и на сферу образования. Происходящие фундаментальные изменения в системе образования вызваны новым пониманием целей, образовательных ценностей, а также необходимостью перехода к непрерывному образованию, разработкой и использованием новых технологий обучения, связанных с оптимальным построением и реализацией учебного процесса с учетом гарантированного достижения дидактических целей

Автор
Дата добавления 14.01.2015
Раздел Начальные классы
Подраздел Другие методич. материалы
Просмотров3832
Номер материала 299212
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх