Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Свидетельство о публикации

Автоматическая выдача свидетельства о публикации в официальном СМИ сразу после добавления материала на сайт - Бесплатно

Добавить свой материал

За каждый опубликованный материал Вы получите бесплатное свидетельство о публикации от проекта «Инфоурок»

(Свидетельство о регистрации СМИ: Эл №ФС77-60625 от 20.01.2015)

Инфоурок / Математика / Конспекты / Конспект урока "Отношения и пропорции" 6 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 28 июня.

Подать заявку на курс
  • Математика

Конспект урока "Отношения и пропорции" 6 класс

библиотека
материалов

Воронцова Галина Николаевна

Муниципальное казенное общеобразовательное учреждение «Старокармыжская средняя общеобразовательная школа»

Конспект урока по математике 6 класс

«Отношения и пропорции»

Цель:

- сформировать понятие пропорции, отношения.

- закрепить новые понятия.

- совершенствовать навык счета.

- развивать чувство гармонии, прекрасного.

Оборудование:

- плакат с опорным конспектом.

- наглядность (рисунки)

- бумага, ножницы, линейка

Тип урока: изучение нового материала

Ход урока.

1.Изучение нового материала. (можно использовать слайды по определениям и задачам, записи отношений и пропорций)

Примеры на доске: 7:2 1:8 hello_html_m50ca8438.gifhello_html_782540b1.gifhello_html_m53d4ecad.gif

Учитель: Прочесть записи на доске.

Ученики: частное чисел 7 и 2; 1 и 8; четыре седьмых; пять третьих; отношение чисел 4 и 7; отношение чисел 5 и 3

Учитель: вы употребили новое понятие «отношение», некоторым из вас оно может уже знакомо, некоторые его встретили при чтении энциклопедии и других источников по математике. Давайте мы поподробнее ознакомимся с этим понятием.

Определение: Отношением чисел называют частное двух чисел не равных


0, hello_html_m25f292df.gif- отношение, а≠0, в≠0,где а и в – члены отношения.

Отношение показывает, во сколько раз первое число больше второго или какую часть первое число составляет от второго.

По словарю Ожегова - Отношение 1. Взаимная связь разных величин, предметов, действий. 2.Частное, получаемое от деления одного числа на другое, а также запись соответствующего действия (запись понятия на отдельном листочке и вывешивается на доске).

Если значения двух величин выражены одной и той же единицей измерения, то их отношение называют также отношением этих величин (отношением длин, отношением масс и т.д.) Частное двух величин называют отношением величин.hello_html_m62ca1577.gifhello_html_782540b1.gifhello_html_m53d4ecad.gifОтношение величин одного наименования есть число. Такие величины называются однородными. Отношение величин разных наименований есть новая величина. Примеры :S/t=v, m/v=ρ .

Учитель: Запишем дату, тему урока «Отношения и пропорции» и определение отношения в тетради.

2.Закрепление понятия «отношение.

1). «Г» (говори правильно) – стр. 121, №706 – отношения читает каждый ученик про себя, затем один вслух.

2).№ 706 (стр. 121), используя слово «отношение» прочитайте записи и назовите члены отношений.

3) творческое задание учащимся: составить всем по одному отношению и назвать их по очереди.

Учитель: Как же обстояло дело с понятием « отношение» раньше?

3. Историческая справка. При решении разнообразных практических задач часто приходится сравнивать однородные величины между собой, вычислять их отношения. Долгое время под числом понималось только натуральное число (собрание единиц), полученное в результате счета. Отношение как результат деления одного числа на другое не считалось числом. Новое определение числа было дано впервые английским ученым Исааком Ньютоном(1643-1727). В своей «Всеобщей арифметике» он писал: «Под числом мы понимаем не столько множество единиц, сколько отвлеченное отношение какой-нибудь величины к другой величине того же рода, принятой нами за единицу». Вот с тех пор и считается что отношение величин одного наименования есть число.

4. Продолжение изучения нового материала.

Учитель: Рассмотрим следующие пары отношений

20:4 и 1/3:1/15 6:3и18:9 1,2:4 и 3:10 (запись на доске)

-Что можно сказать про эти отношения? (проблемный вопрос для класса).

Ученики: если найти отношения, то получатся одинаковые ответы в правой и левой частях и можно между ними поставить знак равно.

Учитель: пары отношений равны между собой.

Определение. Равенство двух отношений называется пропорцией.

В буквенном виде пропорция записывается следующим образом

а : в = с : д или hello_html_47640b60.gif где а, в, с, д - члены пропорции, не равные 0.

а, д – крайние члены; с, д – средние члены.

Правильное чтение пропорций (отношений, записанных выше).

По словарю Ожегова: Пропорция - 1)Равенство двух отношений 2)Определенное соотношение частей между собой, соразмерность(в частях здания).

Для запоминания определения пропорции можно выучить следующее четверостишие:

Кто с задачами постарается

Тот не упустит решений.

А пропорцией называется

Равенство двух отношений.

5.Историческая справка про «пропорции».

В древности учение о пропорциях было в большом почете у пифагорийцев. С пропорциями они связывали мысли о порядке и красоте в природе, о созвучных аккордах в музыке и гармонии во вселенной. В 7 книге «Начал» Евклида (3 в. до н.э.) изложена теория отношений и пропорций. Современная запись пропорции выглядит так: а : в = с :д или hello_html_47640b60.gif. В то время Евклид вывел производные пропорции (а≠в, с≠д):

в : а = д : с (а + в) : в = (с + д) :д а : (а – в) = с : (с – д )

а : с = в : д (а – в) : в = (с – д) :д

Известный нам способ записи пропорций появился не сразу. Ещё в 17в. французский ученый Р.Декарт (1596-1650) записывал пропорцию

7 : 12 = 84 : 144 так /7/12/84/144/

Современная запись пропорции с помощью знаков деления и равенства была введена немецким ученым Г. Лейбницем (1646 – 1716) в 1693г.

Вначале рассматривали только пропорции, составленные из натуральных чисел. В 4 в. до н.э. древнегреческий математик Евдокс дал определение пропорции, составленной из величин любой природы. Древнегреческие математики с помощью пропорций 1) решали задачи, которые в настоящее время решают с помощью уравнений, 2) выполняли алгебраические преобразования, переходя от одной пропорции к другой. Часть математики, в которой говорится об отношениях и пропорциях греки называли музыкой. Почему такое странное название? Дело в том, что греки создали и научную теорию музыки. Они знали: чем длиннее натянутая струна, тем ниже «толще» получается звук, который она издает. Они знали, что короткая струна издает высокий звук. Но у всякого музыкального инструмента не одна, а несколько струн. Для того чтобы все струны при игре звучали «согласно», приятно для уха, длины звучащих частей их должны быть в определенном отношении. Поэтому учение об отношениях, о дробях и стало называться музыкой.

Пропорциональность является непременным условием правильного и красивого изображения предмета. Это мы видим в произведениях искусства, архитектуре, встречается в природе.

Рисунки о пропорциональности в природе и искусстве, архитектуре. Пропорциональность в природе, искусстве, архитектуре означает соблюдение определенных соотношений между размерами отдельных частей растения, скульптуры, здания и является непременным условием правильного и красивого изображения предмета.

Творческое задание учащимся. Вырежьте из бумаги прямоугольник со сторонами 10 см и 16см. Отрежьте от него квадрат со стороной 10см. Что произойдет с прямоугольником, т.е. с отношением сторон? Затем снова от этого прямоугольника отрежьте квадрат со стороной 6см. Что произойдет в этом случае со сторонами прямоугольника?

Ученики: в первом и во втором случаях остается прямоугольник, одна сторона которого примерно в 1,6 раза больше другого.

Учитель: этот процесс можно продолжать и дальше. На прямоугольники, в которых стороны соотносятся приблизительно как 1,6:1, обратили внимание очень давно. Посмотрите на изображение храма Парфенон в Афинах (Приложение 1).

Даже сейчас это одно из самых красивых сооружений мира. Этот храм построен в эпоху расцвета древнегреческой математики. И его красота основана на строгих математических законах. Если мы опишем около фасада Парфенона прямоугольник (Приложение 2), то окажется, что длина его больше ширины примерно в 1,6 раза. Такой прямоугольник назвали золотым прямоугольником. Говорят, что его стороны образуют золотое сечение.

Понятие «золотого сечения»

Золотое сечение или божественное деление это такое деление целого на две неравные части, при котором большая часть относится к целому, как меньшая к большей. Число 1,6 лишь приближенно ( с точностью до 0,1) представляет величину золотого сечения.

Пhello_html_159b883c.gifhello_html_159b883c.gifhello_html_159b883c.gifример 1.Если отрезок разделен на две части так, что меньшая имеет длину Х, а большая – длину У, то в случае золотого сечения У: (Х+У)=Х:У.

hello_html_3de7f176.gif

У

Х



Пhello_html_295fe730.gifример2. В правильной пятиконечной звезде каждая из пяти линий, составляющих эту фигуру, делит другую в отношении золотого сечения.

С

АС : (АС+СВ) = СВ : АС

А

В





Пример 3. На изображении раковины точка С делит отрезок АВ приблизительно в золотом сечении. АС : СВ = СВ : АВ


hello_html_469a7f5d.png














Пример 4. Знаменитая скульптура Аполлона Бельведерского. Если высоту великолепно сложенной фигуры разделить в крайнем и среднем отношении, то линия раздела окажется на высоте талии. Особенно хорошо удовлетворяет этой пропорции мужская фигура.


hello_html_3f0d86d6.png























Пример 5. Каждую отдельно взятую часть тела( голову, руку, кисть) также можно разделить на естественные части по закону золотого сечения.

hello_html_m5c3dbecb.png













hello_html_m3aa0569b.png













Пример 6. Расположение листьев на общем стебле растений. Между каждыми двумя парами листьев (А и С) третья расположена в месте золотого сечения (точка В).



hello_html_m2b88261f.png























Вывод: Можно привести множество подобных примеров. Нам кажутся одинаково некрасивыми и квадратная, и слишком удлиненная прямоугольная форма: и та, и другая грубо нарушают пропорцию золотого сечения. То же можно наблюдать и во многих других случаях, когда прямоугольная форма предмета не зависит от практических целей и может свободно подчиняться требованиям вкуса. Прямоугольная форма книг, бумажников, тетрадей, фотографических карточек, рамок для картин – более или менее точно удовлетворяет пропорции золотого деления. Даже столы, шкафы, ящики, окна, двери не составляют исключения: в этом легко убедиться, взяв среднее из многих измерений.

6.Закрепление понятия « пропорция»

Разминка: У меня в руках 3 прямоугольника. Прямоугольники неравные, но один из них имеет размеры 5х8. На какой из них приятно смотреть?(Ответ: Древние греки считали, что прямоугольники у которых стороны относятся как 5х8 (стороны образуют «золотое сечение») имеют наиболее приятную форму.

Снова вспомнить определение пропорции.

Творческая работа для учащихся: 1). Составить всем простые пропорции и озвучить по очереди. 2). № 744по учебнику

3). Решение задач:

А) Клоун составил следующие пропорции:

1)3 : 6 = 2 : 4

2) 4 : 6 = 2 : 3 Все ли пропорции составлены правильно? Почему?

3) 3 : 6 = 4 : 2

4) 6 : 2 = 4 : 6

5) 6 : 2 = 4 : 6

6) 6 : 4 = 3 : 2

7) 6 : 3 = 4 : 2

8) 8 : 4 = 2 : 3

Б) Почему равенства 1) 1 : 2 = 3 : 6 и 1,2 : 0,3 = 32 : 8 являются пропорциями?

2) 4,2 : 2 = 22 : 10 не является пропорцией?

7. Домашнее задание: №735, 752 выучить определения, придумать примеры предметов, имеющие форму золотого прямоугольника

8. Решение примеров

744,745, 752, 760

9.Творческое задание. Золотое сечение встречается и в растительном мире. На каждом столе лежит рисунок стебля растения. Составьте золотую пропорцию, сделайте необходимые измерения и вычислите коэффициент пропорциональности.

10. Итог урока

А). итог по выполненному заданию.

Б).ответы на вопросы.

1. Что такое отношение, пропорция?

2. Как называются числа в отношении, пропорции?

3. Что показывает отношение 2-х чисел?

В) Составить по изученной теме стихотворение, используя метод развития критического мышления - прием Синквейн – «белый стих, стих не в рифму», все что изучили на уроке представить в 6-7 строках ( 1 строчка- тема, 1 существительное; 2 строчка – определение, 2 прилагательных; 3 строчка – действие, 3 глагола; 4 строчка – ассоциации, 4 существительных; 5 строчка – действие, 3 глагола; 6 строчка – определение, 2 прилагательных; 7 строчка – 1 существительное). У кого что получилось, опрос каждого ученика.

Можно предложить такой вариант:

отношения

равные, однородные

делить, преобразовать, сравнить

равенство, гармония, соразмерность, соотношение

пропорция, члены.

Оценка работы каждого учащегося, отметки за урок.

Вывод по уроку: Знания, полученные на сегодняшнем уроке, помогут решать все типы задач на проценты с помощью пропорции. Позже с помощью пропорции вы будете решать задачи по химии, физике и геометрии.


Литература:

  1. Учебник под редакцией Н. Я. Виленкина – математика 6 класс

  2. Учебник под редакцией С. М. Никольского -– математика 6 класс

  3. Большой энциклопедический словарь.

  4. И. Ф. Шарыгин «Наглядная геометрия» 5-6класс, стр.99-101


















Приложение 1


hello_html_66223b1c.png




hello_html_92eb315.pngПриложение 2



Подайте заявку сейчас на любой интересующий Вас курс переподготовки, чтобы получить диплом со скидкой 50% уже осенью 2017 года.


Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Краткое описание документа:

Конспект урока "Отношения и пропорции" - математика 6 класс под редакцией Н.Я. Виленкина. Урок изучения нового материала. Знания, полученные на уроке помогут решать задачи по математике, химии, физике, гометрии и т.д. Задачи на %  и на уроке,  и в повседневной  жизни хорошо и удобно решаются с помощью пропорции. Всю жизнь приходится сталкиваться с %. С понятием "пропорция" связывается и мысль о порядке и красоте в природе, о созвучных аккордах в музыке и гармонии во вселенной. Пропорциональность является непременным условием правильного и красивого изображения предмета. В урок включено много исторического материала.

Автор
Дата добавления 21.11.2014
Раздел Математика
Подраздел Конспекты
Просмотров1919
Номер материала 144413
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх