Логотип Инфоурока

Получите 30₽ за публикацию своей разработки в библиотеке «Инфоурок»

Добавить материал

и получить бесплатное свидетельство о размещении материала на сайте infourok.ru

Инфоурок Астрономия КонспектыЛекция по астрономии. физическая природа звезд

Лекция по астрономии. физическая природа звезд

Скачать материал
библиотека
материалов

Дисциплина «Астрономия»

Специальность 08.02.01 «Строительство и эксплуатация зданий и сооружений»

курс III группа: 1с1, 2с1, 3с1, 4с1

Преподаватель: Жданова Наталия Владимировна

ЛЕКЦИЯ 15. Физическая природа звезд. Эволюция звезд. (2 часа)

План лекции:

  1. Измерение расстояний до звезд

  2. Видимые звездные величины

  3. Цвет и температура звезд

  4. Эволюция звезд

Измерение расстояний до звезд

Звезды находятся в миллионы раз дальше, чем Солнце, поэтому горизонтальные параллаксы звезд соответственно в миллионы раз меньше, и измерить такие малые углы еще никому не удавалось. Для измерения расстояний до звезд астрономы вынуждены определять годичные параллаксы, связанные с орбитальным движением Земли вокруг Солнца.

hello_html_mbd4cfe5.jpg


Годичный параллакс можно измерять только в течение нескольких месяцев, пока Земля, а вместе с ней и телескоп, двигаясь вокруг Солнца, не переместится в космическом пространстве.

Годичные параллаксы звезд астрономы пытались определять еще во времена Коперника, что могло стать неоспоримым доказательством обращения Земли вокруг Солнца и подтверждением гелиоцентрической системы мира. Но только в 1837 г. В. Струве в Пулковской астрономической обсерватории (Россия) определил годичный параллакс звезды Вега (Лиры). Самый большой параллакс у ближайшей к нам звезды Проксимы Кентавра р = 0,76", но ее в Европе не видно. Из ярких звезд, которые можно наблюдать в Украине, ближе всего к нам находится звезда Сириус (Большого Пса), годовой параллакс которой р = 0,376".

Расстояние до звезд измеряют в световых годах, но в астрономии еще используют единицу парсек (пк) — расстояние, для которого годичный параллакс р = 1" (парсек — сокращение от параллакс-секунда).

Видимые звездные величины

Впервые термин звездная величина был введен для определения яркости звезд во II в. до н. э. греческим астрономом Гиппархом. Тогда астрономы полагали, что звезды находятся на одинаковом расстоянии от Земли, поэтому их яркость зависит от размеров этих светил. Сейчас мы знаем, что звезды даже в одном созвездии располагаются на разных расстояниях (рис. 2.2), поэтому видимая звездная величина определяет только некоторое количество энергии, которую регистрирует наш глаз за какой-то промежуток времени. Гиппарх разделил все видимые звезды по яркости на 6 своеобразных классов — 6 звездных величин. Самые яркие звезды были названы звездами первой звездной величины, более слабые — второй, а самые слабые, еле видные на ночном небе,— шестой. В XIX в. английский астроном Н. Погсон (1829—1891) дополнил определение звездной величины еще одним условием: звезды первой звездной величины должны быть в 100 раз ярче звезды шестой величины

Видимая звездная величина m определяет количество света, попадающего от звезды в наши глаза. Самые слабые звезды, которые еще можно увидеть невооруженным глазом, имеют звездную величину m = +6m. Уравнение (13.4) называют формулой Погсона. Яркость Е фактически определяет освещенность, создаваемую звездой на поверхности Земли, поэтому величину Е можно измерять люксами — единицами освещенности, применяющимися в физике. Согласно формуле (13.4), если разница звездных величин двух светил равна единице, то отношение яркости будет ~2,512.

Для определения видимых звездных величин небесных светил астрономы приняли за стандарт так называемый северный полярный ряд — это 96 звезд вокруг Северного полюса мира. Самая яркая среди них — Полярная, имеет звездную величину m = +2m (рис. 13.2). Относительно этого стандарта слабые звезды, которые еще можно увидеть невооруженным глазом, имеют звездную величину +6m, в бинокль видны звезды до +8m, в школьный телескоп видны светила до +11m, а при помощи самых больших телескопов современными методами можно зарегистрировать слабые галактики до +28m. Очень яркие небесные светила имеют отрицательную звездную величину. Например, самая яркая звезда нашего неба Сириус имеет видимую звездную величину m = -1,6m, для самой яркой планеты Венеры m = -4,5m, а для Солнца m = -26,7m.

Абсолютные звездные величины и светимость звезды

Хотя Солнце является самым ярким светилом на нашем небе, это не значит, что оно излучает больше энергии, чем другие звезды. Из курса физики известно, что освещенность, создаваемая источниками энергии, зависит от расстояния до них, так небольшая лампочка в вашей комнате может казаться гораздо ярче, чем дальний прожектор. Для определения светимости, или общей мощности излучения, астрономы вводят понятие абсолютной звездной величины М. Звездную величину, которую имела бы звезда на стандартном расстоянии r0=10 пк, называют абсолютной звездной величиной. Примерно на таком расстоянии (11 пк, или 36 световых лет) от нас находится звезда Арктур, она имеет видимую звездную величину, почти равную абсолютной. Солнце на расстоянии 10 пк имело бы 'вид достаточно слабой звезды пятой звездной величины, то есть абсолютная звездная величина Солнца ~5m

Абсолютная звездная величина М определяет яркость, которую имела бы звезда на стандартном расстоянии в 10 пк.

Светимость звезды определяет мощность излучения звезды. За единицу светимости принимается мощность излучения Солнца 4-1026 Вт

Светимость звезды определяет количество энергии, излучаемое звездой за единицу времени, то есть мощность излучения звезды. За единицу светимости в астрономии принимают мощность излучения Солнца 4-1026 Вт.

Цвет и температура звезд

Температуру звезды можно определить при помощи законов излучения черного тела. Самый простой метод измерения температуры звезды заключается в определении ее цвета. Правда, невооруженным глазом можно определить только цвет ярких звезд, так как чувствительность нашего глаза к восприятию цветов при слабом освещении очень мала. Цвет слабых звезд можно определить при помощи бинокля или телескопа, которые собирают больше света, поэтому в окуляре телескопа звезды кажутся нам более яркими.

За температурой звезды разделили на 7 спектральных классов, которые обозначили буквами латинского алфавита: О, В, A, F, G, К, М.

Цвета звезд определяют 7 основных спектральных классов. Самые горячие звезды голубого цвета относятся к спектральному классу О, холодные красные звезды — к спектральному классу М. Солнце имеет температуру фотосферы +5780 К, желтый цвет и относится к спектральному классу G.

Самую высокую температуру на поверхности имеют голубые звезды спектрального класса О, которые излучают больше энергии в синей части спектра. Каждый спектральный класс делится на 10 подклассов: АО, А1..А9.

Интенсивность излучения космических тел с разной температурой. Горячие звезды излучают больше энергии в синей части спектра, холодные звезды — в красной. Планеты излучают энергию преимущественно в инфракрасной части спектра.

Обычно в спектре каждой звезды есть темные линии поглощения, которые образуются в разреженной атмосфере звезды и в атмосфере Земли и показывают химический состав этих атмосфер. Оказалось, что все звезды имеют почти одинаковый химический состав, так как основные химические элементы во Вселенной — водород и гелий, а основное отличие различных спектральных классов обусловлено температурой звездных фотосфер.

Радиусы звезд

Для определения радиуса звезды нельзя использовать геометрический метод, потому что звезды находятся настолько далеко от Земли, что даже в большие телескопы еще до недавнего времени невозможно было измерить их угловые размеры — все звезды имеют вид одинаковых светлых точек. Для определения радиуса звезды астрономы используют закон Стефана-Больцмана

Радиус звезды можно определить, измеряя ее светимость и температуру поверхности.

Оказалось, что существуют звезды, которые имеют радиус в сотни раз больший радиуса Солнца, и звезды, имеющие радиус меньший, чем радиус Земли.

Диаграмма спектр-светимость

Солнце по физическим параметрам относится к средним звездам — оно имеет среднюю температуру, среднюю светимость и т. д. По статистике, среди множества различных тел больше всего таких, которые имеют средние параметры. Например, если измерить рост и массу большого количества людей различного возраста, то больше будет людей со средними величинами этих параметров. Астрономы решили проверить, много ли в космосе таких звезд, как наше Солнце. Для этой цели Э. Герцшпрунг (1873—1967) и Г. Рессел (1877—1955) предложили диаграмму, на которой можно обозначить место каждой звезды, если известны ее температура и светимость. Ее назвали диаграмма спектр-светимость, или диаграмма Герцшпрунга-Рессела. Она имеет вид графика, на котором по оси абсцисс отмечают спектральный класс или температуру звезды, а по оси ординат — светимость.

hello_html_52ac41a1.jpg

Диаграмма Герцшпрунга-Рессела. По оси абсцисс отмечена температура звезд, по оси ординат — светимость. Солнце имеет температуру 5780 К и светимость 1. Холодные звезды на диаграмме расположены справа (красного цвета), а более горячие — слева (синего цвета). Звезды, излучающие больше энергии, находятся выше Солнца, а звезды-карлики — ниже. Большинство звезд, к которым относится и Солнце, находятся в узкой полосе, которую называют главной последовательностью звезд.

Если Солнце — средняя звезда, то на диаграмме должно быть скопление точек вблизи того места, которое занимает Солнце. То есть большинство звезд должны быть желтого цвета с такой же светимостью, как Солнце. Каково же было удивление астрономов, когда оказалось, что в космосе не нашли звезды, которую можно считать копией Солнца. Большинство звезд на диаграмме оказались в узкой полосе, которую называют главной последовательностью. Диаметры звезд главной последовательности отличаются в несколько раз, а их светимость по закону Стефана-Больцмана определяется температурой поверхности. В эту полосу вошли Солнце и Сириус. Существенная разница в температуре на поверхности звезд различных спектральных классов объясняется разной массой этих светил: чем больше масса звезды, тем больше ее светимость. Например, звезды главной последовательности спектральных классов О и В в несколько раз массивнее Солнца, а красные карлики имеют массу в десятки раз меньшую, чем солнечная.

Белые карлики — звезды, имеющие радиус в сотни раз меньший солнечного и плотность в миллионы раз большую плотности воды.

Красные карлики — звезды с массой меньшей, чем у Солнца, но большей, чем у Юпитера. Температура и светимость этих звезд остаются постоянными на протяжении десятков миллиардов лет.

Красные гиганты — звезды, имеющие температуру 3000-4000 К и радиус в десятки раз больший солнечного. Масса этих звезд ненамного больше массы Солнца. Такие звезды не находятся в состоянии равновесия.

Отдельно от главной последовательности на диаграмме находятся белые карлики и красные сверхгиганты, которые имеют примерно одинаковую массу, но значительно отличаются по размерам. Гиганты спектрального класса М имеют почти такую же массу, как белые карлики спектрального класса В, поэтому средние плотности этих звезд существенно различаются. Например, радиус красного гиганта Бетельгейзе в 400 раз больший радиуса Солнца, но масса этих звезд почти одинакова, поэтому красные гиганты спектрального класса М имеют среднюю плотность в миллионы раз меньшую, чем плотность земной атмосферы. Типичным представителем белых карликов является спутник Сириуса.

Главная загадка диаграммы спектр-светимость заключается в том, что в космосе астрономы еще не нашли хотя бы две звезды с одинаковыми физическими параметрами — массой, температурой, светимостью, радиусом. Наверное, в течение эволюции звезды меняют свои физические параметры, поэтому маловероятно, что мы сможем отыскать в космосе еще одну звезду, которая зародилась одновременно с нашим Солнцем, имея тождественные начальные параметры.

Выводы

Физические характеристики звезд: светимость, температура, радиус, плотность — существенно разнятся между собой. Между этими характеристиками существует взаимосвязь, отражающая эволюционный путь звезды. Солнце по своим параметрам относится к желтым звездам, находящимся в состоянии равновесия, и не меняющим своих размеров в течение миллиардов лет. В космосе существуют звезды-гиганты, которые в тысячи раз больше Солнца, и звезды-карлики, радиус которых меньший радиуса Земли.

Тесты

  1. Какими единицами астрономы измеряют расстояние до звезд?

А. Километрами.
Б. Астрономическими единицами.
В. Параллаксами.
Г. Световыми годами.
Д. Парсеками.

  1. Видимая звездная величина определяет:

А. Светимость звезды.
Б. Радиус звезды.
В. Яркость звезды.
Г. Освещенность, которую создает звезда на Земле.
Д. Температуру звезды.

  1. На каком расстоянии абсолютная и видимая звездные величины имеют одинаковое значение?

А. 1 а. е.
Б. 10 а. е.
В. 1 св. год.
Г. 10 св. лет.
Д. 1 пк.
Е. 10 пк.

  1. Какие из приведенных спектральных классов звезд имеют на поверхности наивысшую температуру?

А. А;
Б. В;
В. F;
Г. G;
Д. К.

  1. Выберите температуру на поверхности и спектральный класс, к которому относится Солнце:

А. А +10000 К;
Б. В. +10000 К;
В. С. +6000 К;
Г. G. +6000 К;
Д. М. +3000 К.

  1. Какие звезды имеют самую высокую температуру на поверхности и какому спектральному классу они принадлежат?

  2. В чем состоит разница между видимой и абсолютной звездными величинами?

  3. Как астрономы измеряют температуру звезд?

  4. Звезды какого цвета имеют самую высокую температуру на поверхности? Наименьшую температуру?

  5. Существуют ли звезды, масса которых меньше массы Земли? Радиус которых меньше радиуса Земли?

Ключевые понятия и термины:

Абсолютная звездная величина, видимая звездная величина, диаграмма спектр-светимость, парсек, северный полярный ряд, светимость звезды, спектральные классы.





Эволюция звезд

Зарождение звезд

Астрономы создали теорию эволюции звезд благодаря тому, что в космосе можно наблюдать миллиарды звезд разного возраста. Это немного похоже на то, как за несколько часов можно описать рост и развитие дерева, которое растет десятки лет, — надо только пойти в лес и изучить деревья разных возрастов. Вселенная — это своеобразный космический парк, в котором звезды рождаются, некоторое время светят, а затем погибают.

Туманность Ориона можно увидеть даже невооруженным глазом. Расстояние до нее около 1000 св. лет.

Трудно увидеть звезду до ее рождения, пока она не начнет светиться в видимой части спектра. Звезды зарождаются вместе с планетами с разреженных газопылевых облаков, которые образуются после взрыва старых звезд. При помощи современных телескопов астрономы обнаружили в космосе сотни таких огромных газопылевых туманностей, где происходит образование молодых миров. Например, такие своеобразные «ясли» новорожденных звезд можно увидеть в созвездии Орион и звездном скоплении Плеяды.

Судьба звезды и продолжительность ее жизни зависят от начальной массы зародыша звезды — протозвезды. Если она была в несколько раз больше, чем масса Солнца, то во время гравитационного сжатия образуются горячие звезды спектральных классов О и В. Протозвезды с такой начальной массой, как масса Солнца, во время гравитационного сжатия нагреваются до температуры 6000 К.

Протозвезды с массой в несколько раз меньшей, чем солнечная, могут превратиться только в красных карликов. Наименьшая масса, необходимая для начала термоядерных реакций в недрах звезды, равна почти 0,08 массы Солнца. Объекты меньшей массы никогда в звезды не превратятся — они будут излучать энергию только в инфракрасной части спектра. Такие космические тела мы наблюдаем даже в Солнечной системе — это планеты-гиганты Юпитер, Сатурн, Нептун. Возможно, что в межзвездном пространстве количество таких холодных инфракрасных тел (их еще называют коричневыми карликами) может быть намного больше, чем видимых звезд.

Звезда в состоянии гравитационного равновесия

В течение своей долгой жизни каждая звезда может как увеличивать, так и уменьшать свои основные параметры — температуру, светимость и радиус. Звезды главной последовательности находятся в состоянии гравитационного равновесия, когда внешние слои за счет гравитации давят к центру, в то время как давление нагретых газов действует в противоположном направлении — от центра.

Звезда в состоянии гравитационного равновесия не изменяет своих параметров, поскольку интенсивное излучение энергии с поверхности компенсируется источником энергии в недрах — термоядерными реакциями. Такой процесс продолжается до тех пор, пока половина водорода в ядре не превратится в гелий, и тогда интенсивность термоядерных реакций может уменьшиться. Продолжительность такой стационарной фазы в жизни звезды, когда ее параметры долгое время остаются постоянными, зависит опять же от ее массы. Расчеты показывают, что такие звезды, как Солнце, в состоянии равновесия светят не менее 10 млрд лет. Более массивные звезды спектральных классов О, В, в недрах которых термоядерные реакции протекают интенсивнее, в равновесии светят 100 млн лет, а дольше всего «мерцают» маленькие красные карлики — их возраст может превосходить 1011 лет.

Переменные звезды

Переменные звезды в течение некоторого времени могут изменять свою яркость. Различают следующие типы переменных звезд:

  • блеск звезды может изменяться в кратных системах, когда происходят периодические затмения объектов, имеющих разную светимость. Примером такой переменной звезды является Алголь — известная двойная звезда Персея;

  • другой тип переменных звезд называют физически переменными. Изменение яркости таких звезд связано с тем, что термоядерные реакции в центре звезды со временем будут протекать не так интенсивно, тогда нарушение гравитационного равновесия будет заметно в изменении ее размеров и температуры на поверхности — на диаграмме спектр-светимость такие звезды не имеют постоянного положения и смещаются с главной последовательности вправо.

Из различных типов физически переменных звезд привлекают внимание цефеиды. Их название происходит от созвездия, в котором впервые заметили такую переменную звезду — Цефея. Расчеты периода изменения яркости показали, что цефеиды меняют свой радиус, поэтому их можно считать своеобразными маятниками, которые колеблются в своем гравитационном поле. Период пульсаций зависит от массы и радиуса звезды, например, Цефея пульсирует с периодом 5,4 суток. Пульсации приводят к тому, что цефеида со временем превращается в гиганта, который может постепенно сбрасывать свою оболочку. Такие объекты астрономы ошибочно назвали планетарными туманностями — когда-то считали, что так рождается новая планетная система. Горячее ядро такой планетарной туманности постепенно сжимается и превращается в белый карлик.

Планетарная туманность образуется, когда нарушается равновесие и звезда сбрасывает внешние слои.

Новые и Сверхновые звезды

Звезды с массой в несколько раз большей, чем солнечная, заканчивают свою жизнь грандиозным взрывом. В 1054 г. китайские астрономы наблюдали чрезвычайно яркую новую звезду, которую было видно днем в течение нескольких недель. Эту необычную звезду заметили также летописцы в Киевской Руси, так как это был год смерти Ярослава Мудрого. Считалось, то появление новой звезды предсказывало «Божье знамение» на печальное событие в жизни Руси. Сегодня на том месте, где вспыхнула эта таинственная звезда, видна туманность Краб.

Туманность Краб, образовавшаяся после возгорания Сверхновой в 1054 г.

Звезды спектральных классов О и В, которые в течение нескольких дней увеличивают свою яркость в сотни миллионов раз, называют Новыми. Иногда Новая излучает почти столько же энергии, сколько выделяют вместе все звезды в галактике — такие звезды называются Сверхновыми. Туманность Краб в созвездии Тельца является остатком такой Сверхновой, вспыхнувшей 4 июля 1054 г. Вернее, если учесть, что туманность Краб находится на расстоянии 6500 св. лет от Земли, то вспышка Сверхновой произошла еще 7500 лет назад.

Последнюю вспышку Сверхновой астрономы наблюдали в прошлом тысячелетии 24 февраля 1987 г. в соседней галактике — Большом Магеллановом Облаке. Взорвалась гигантская звезда спектрального класса В, которая несколько недель светила ярче всех звезд в галактике.

Вспышка Сверхновой в соседней галактике Большое Магелланово Облако (1987 г.)

Примерно за 20 часов перед вспышкой Сверхновой была зарегистрирована ударная волна нейтринного потока, который длился 13 с и по мощности был в десятки тысяч раз больше, чем энергия в оптическом диапазоне. Таким образом, в 1987 г. астрономы впервые получили информацию о далеком космическом событии, которое произошло почти 200000 лет назад.

Новая звезда — взрывная переменная двойная звезда, которая внезапно увеличивает свою светимость в 100—10000000 раз (102—107раз).

Сверхновая — звезда, светимость которой увеличивается за несколько дней в миллиарды раз.

После вспышки звезды все планеты, обращающиеся вокруг нее, испаряются и превращаются в газопылевую туманность, из которой в будущем может образоваться новое поколение звезд. То есть во Вселенной наблюдается своеобразный круговорот вещества: звезды — вспышка звезд — туманность — и снова рождение молодых звезд.

После вспышки Новой или Сверхновой остается ядро, в котором отсутствует источник энергии. Такая звезда постепенно уменьшает свой радиус и светит только благодаря гравитационному сжатию — потенциальная энергия звезды превращается в тепло. При сжатии масса остается постоянной, поэтому увеличивается плотность, и звезда превращается в белый карлик. Если начальная масса звезды была в несколько раз больше, чем солнечная, то белый карлик может превратиться в нейтронную звезду, радиус которой не превышает нескольких десятков километров, а плотность достигает фантастической величины 1015 г/см3. Первую нейтронную звезду случайно открыли в Кембриджском университете в 1967 г. При помощи небольшой антенны астрономы зарегистрировали радиосигнал, который повторялся с постоянным периодом 1 с. Ночью в том направлении, откуда поступали импульсы, не было видно ни одной звезды, поэтому астрономы даже выдвинули гипотезу, что радиосигнал искусственного происхождения от внеземной цивилизации. Затем наблюдения показали, что такие периодические сигналы поступают на Землю от сотен других невидимых источников, которые были названы пульсарами. Один из пульсаров был обнаружен даже в центре знаменитой туманности Краб.

Пульсары и нейтронные звезды

Современные теоретические расчеты показывают, что пульсары и нейтронные звезды — одни и те же объекты. Вследствие сжатия нейтронной звезды должен действовать закон сохранения момента импульса. Этот закон часто используют на льду фигуристы, когда надо вызвать быстрое вращение своего тела вокруг оси. Спортсмены сначала начинают медленно обращаться вокруг оси с вытянутыми в стороны руками. Затем постепенно подводят руки к туловищу, при этом угловая скорость обращения резко возрастает. Такой же рост угловой скорости наблюдается при уменьшении радиуса звезды. Например, сейчас Солнце обращается вокруг своей оси с периодом примерно 28 суток. Если бы радиус Солнца уменьшился до 10 км, то его период обращения равнялся бы 1 с.

При гравитационном сжатии возрастает напряженность магнитного поля звезды, она «выпускает» излучение только через магнитные полюса в виде своеобразных «прожекторов», которые описывают в космосе огромный конус. Возможно, что в Галактике существуют миллионы нейтронных звезд, но зарегистрировано только несколько сотен в виде пульсаров, поскольку большинство таких «прожекторов» не направлены на Землю.

Пульсар — источник электромагнитных волн, который излучает энергию в виде импульсов с определенным периодом.

Черные дыры

Черные дыры образуются на последней стадии эволюции звезд с массой большей чем 3. Такое странное название связано с тем, что эти тела должны быть невидимыми, так как не выпускают за свои пределы свет. Кроме того, такие объекты втягивают все из окружающего пространства.

Если космический корабль попадает на границу черной дыры, то вырваться из ее поля тяготения он не сможет, потому что вторая космическая скорость у ее поверхности равна скорости света 300000 км/с.

Черная дыра не выпускает из поля тяготения ни элементарных частиц, ни электромагнитные волны.

Эволюция Солнца

Теоретические расчеты показывают, что такие звезды, как Солнце, никогда не станут черными дырами, поскольку они имеют недостаточную массу для гравитационного сжатия до критического радиуса. В состоянии гравитационного равновесия Солнце может светить 1010, но мы не можем точно определить его возраст, то есть сколько времени прошло от момента его образования. Правда, при помощи радиоактивного распада тяжелых химических элементов можно определить примерный возраст Земли — 4,5 млрд лет, но Солнце могло образоваться раньше, чем сформировались планеты.

Солнечная система образовалась 5 млрд лет назад из огромного газопылевого облака.

Если все же звезды и планеты формируются одновременно, то Солнце может светить в будущем еще 5 млрд лет. После того как в ядре весь водород превратится в гелий, нарушится равновесие в недрах Солнца, и оно может превратиться в переменную пульсирующую звезду — цефеиду. Затем из-за нестабильности радиус Солнца начнет увеличиваться, а температура фотосферы снизится до 4000 К — Солнце превратится в красного гиганта. На небосклоне Земли будет светить гигантский красный шар, угловой диаметр которого увеличится в 10 раз по сравнению с современным Солнцем и будет достигать 5°. Голубого неба на Земле не станет, потому что светимость будущего Солнца вырастет в десятки раз, а температура на поверхности нашей планеты будет больше чем 1000 К. Выкипят океаны, и Земля превратится в страшную горячую пустыню, чем-то похожую на современную Венеру. В Солнечной системе такая температура, которая сейчас на Земле, будет только на окраинах — на спутниках Сатурна и Урана. В стадии красного гиганта Солнце будет светить примерно 100 млн лет, после чего верхняя оболочка оторвется от ядра и начнет расширяться в межзвездное пространство в виде планетарной туманности.

Эволюция Солнца в будущем. Солнце может светить еще 5 млрд лет. Затем оно преобразуется в красного гиганта, который сожжет все живое на Земле

При расширении наверняка испарятся все планеты земной группы, и на месте Солнца останется белый карлик — маленькое горячее ядро, в котором когда-то протекали термоядерные реакции. Радиус белого карлика будет не больше, чем у Земли, но плотность достигнет 1010 кг/м3. Белый карлик не имеет источников энергии, поэтому температура его поверхности постепенно понизится. Последняя стадия эволюции нашего Солнца — холодный черный карлик.

Солнечная система образовалась 5 млрд лет назад из гигантского облака газа и пыли. А раньше вместо этого облака существовала звезда, которая взорвалась как Сверхновая. То есть наше Солнце относится уже ко второму (а возможно и третьему) поколению звезд, имеющих много тяжелых химических элементов, из которых образовались планеты земной группы.

Выводы

В космосе постоянно происходит рождение молодых звезд из газопылевых туманностей и взрывы старых, когда образуются новые туманности. Солнечная система образовалась около 5 млрд лет назад из гигантского газопылевого облака, возникшего на месте взрыва старой звезды. В состоянии равновесия Солнце будет светить еще несколько миллиардов лет, а потом превратится в красный гигант, который уничтожит все живое на Земле.

Тесты

  1. Какие из этих звезд светят дольше всех?

A. Гиганты спектрального класса О.
Б. Белые звезды спектрального класса А.
B. Солнце.
Г. Красные гиганты спектрального класса М.
Д. Красные карлики спектрального класса М.

  1. Звезды какого спектрального класса имеют самую краткую жизнь?

А. А.
Б. В.
В. F.
Г. G.
Д. К.
Е. М.

  1. Какой космический объект называют пульсаром?

А. Красный гигант.
Б. Нейтронную звезду.
В. Белый карлик.
Г. Пульсирующую звезду.
Д. Красный карлик.

  1. Термин «новая звезда» означает:

A. В космосе образовалась молодая звезда.
Б. Взорвалась старая звезда.
B. Периодически увеличивается яркость звезды.
Г. Происходят столкновения звезд.
Д. Космические катастрофы с неизвестным источником энергии.

  1. В будущем Солнце может превратиться:

А. В черную дыру.
Б. В нейтронную звезду.
В. В пульсар.
Г. В красный гигант.
Д. В красный карлик.
Е. В белый карлик.

  1. Когда параметры звезды остаются постоянными?

  2. Какие звезды светят дольше всего?

  3. Сколько времени может светить Солнце в состоянии равновесия?

  4. Как гибнут звезды большой массы?

  5. Может ли звезда красный карлик превратиться в белый карлик?

  6. Почему пульсары периодически изменяют интенсивность излучения?

Ключевые понятия и термины:

Переменная звезда, коричневый карлик, круговорот вещества, сверхновая звезда, нейтронная звезда, новая звезда, протозвезда, планетарная туманность, пульсар, цефеида, черная дыра.

 Список литературы:

  1. Астрономия. Базовый уровень. 11 класс: учебник / Б. А. Воронцов-Вельяминов, Е. К. Страут. – 5-е изд., пересмотр. – М.: Дрофа, 2018.

  2. Астрономия. 11 класс. Методическое пособие к учебнику Б. А. Воронцова-Вельяминова, Е. К. Страута «Астрономия. Базовый уровень. 11 класс»/ М. А. Кунаш. — М.: Дрофа, 2018.

  3. Н.Н. Гомулина. Открытая астрономия/ Под ред. В.Г. Сурдина. – Электронный образовательный ресурс. http://www.college.ru/astronomy/course/content/index.htm

  4. В.Г. Сурдин. Астрономические задачи с решениями/ Издательство ЛКИ, 2017 г.

  5. Вселенная в вопросах и ответах. Задачи и тесты по астрономии и космонавтике. В.Г. Сурдин. 2017

  6.  http://www.astronet.ru/

  7. https://v-kosmose.com/

  • Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
    Пожаловаться на материал
Скачать материал
Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Проверен экспертом
Общая информация
Учебник: «Астрономия (базовый уровень)», Воронцов-Вельяминов Б.А., Страут Е.К.
Тема: § 23. Массы и размеры звёзд

Номер материала: ДБ-1046584

Скачать материал

Вам будут интересны эти курсы:

Курс повышения квалификации «Подростковый возраст - важнейшая фаза становления личности»
Курс повышения квалификации «Этика делового общения»
Курс повышения квалификации «Специфика преподавания астрономии в средней школе»
Курс профессиональной переподготовки «Организация маркетинга в туризме»
Курс повышения квалификации «Использование активных методов обучения в ВУЗе в условиях реализации ФГОС»
Курс профессиональной переподготовки «Астрономия: теория и методика преподавания в образовательной организации»
Курс профессиональной переподготовки «Управление сервисами информационных технологий»
Курс профессиональной переподготовки «Разработка эффективной стратегии развития современного вуза»
Курс повышения квалификации «Актуальные вопросы банковской деятельности»
Курс повышения квалификации «Финансовые инструменты»
Курс профессиональной переподготовки «Методика организации, руководства и координации музейной деятельности»
Курс профессиональной переподготовки «Эксплуатация и обслуживание общего имущества многоквартирного дома»
Курс профессиональной переподготовки «Организация и управление службой рекламы и PR»
Курс профессиональной переподготовки «Управление качеством»

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.