Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Информатика / Презентации / Логические выражения и логические операции
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Информатика

Логические выражения и логические операции

библиотека
материалов
Логические выражения и логические операции
Исследования в алгебре логики тесно связаны с изучением высказываний (хотя вы...
Простым высказыванием называют повествовательное предложение, относительно ко...
Следующие предложения высказываниями не являются: Давай пойдем гулять. 2*x>8....
Примеры высказываний: Сегодня светит солнце. Трава растет. Каждое из этих выс...
В математической логике не рассматривается конкретное содержание высказывани...
Простые высказывания назвали логическими переменными, а сложные - логическим...
Однако определение истинности высказывания далеко не простой вопрос. Наприме...
В булевой алгебре простым высказываниям ставятся в соответствие логические п...
Сложные (составные) высказывания представляют собой набор простых высказыван...
Конъюнкция - логическое умножение (от латинского conjunctio - союз, связь): в...
В алгебре множеств конъюнкции соответствует операция пересечения множеств, т....
Итак, если два высказывания соединены союзом "И", то полученное сложное выска...
Дизъюнкция - логическое сложение (от латинского disjunctio - разобщение, разл...
В алгебре множеств дизъюнкции соответствует операция объединения множеств, т....
Итак, если два высказывания соединены союзом "ИЛИ", то полученное сложное выс...
Рассмотренные выше операции были двуместными (бинарными), т.е. выполнялись на...
В алгебре множеств логическому отрицанию соответствует операция дополнения до...
Итак, если исходное выражение истинно, то результат отрицания будет ложным, и...
19 1

Описание презентации по отдельным слайдам:

№ слайда 1 Логические выражения и логические операции
Описание слайда:

Логические выражения и логические операции

№ слайда 2 Исследования в алгебре логики тесно связаны с изучением высказываний (хотя вы
Описание слайда:

Исследования в алгебре логики тесно связаны с изучением высказываний (хотя высказывание — предмет изучения формальной логики).  Высказывание — это языковое образование, в отношении которого имеет смысл говорить о его истинности или ложности (Аристотель).

№ слайда 3 Простым высказыванием называют повествовательное предложение, относительно ко
Описание слайда:

Простым высказыванием называют повествовательное предложение, относительно которого имеет смысл говорить, истинно оно или ложно. Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным. Примеры высказываний: Москва – столица России. Число 27 является простым. Волга впадает в Каспийское море. Высказывания 1 и 3 являются истинными. Высказывание 2 – ложным , потому что число 27 составное 27=3*3*3.

№ слайда 4 Следующие предложения высказываниями не являются: Давай пойдем гулять. 2*x>8.
Описание слайда:

Следующие предложения высказываниями не являются: Давай пойдем гулять. 2*x>8. a*x2+b*x+c=0. Который час? Итак, отличительным признаком высказывания является свойство быть истинным или ложным, последние четыре предложения этим свойством не обладают. С помощью высказываний устанавливаются свойства, взаимосвязи между объектами. Высказывание истинно, если оно адекватно отображает эту связь, в противном случае оно ложно.

№ слайда 5 Примеры высказываний: Сегодня светит солнце. Трава растет. Каждое из этих выс
Описание слайда:

Примеры высказываний: Сегодня светит солнце. Трава растет. Каждое из этих высказываний характеризует свойства или состояние конкретного объекта (в пермом предложении - погоды, во втором - окружающего мира). Каждое из этих высказываний несет значение «истина» или «ложь».

№ слайда 6 В математической логике не рассматривается конкретное содержание высказывани
Описание слайда:

В математической логике не рассматривается конкретное содержание высказывания, важно только, истинно оно или ложно. Поэтому высказывание можно представить некоторой переменной величиной, значением которой может быть только 0 или 1. Если высказывание истинно, то его значение равно 1, если ложно - 0.

№ слайда 7 Простые высказывания назвали логическими переменными, а сложные - логическим
Описание слайда:

Простые высказывания назвали логическими переменными, а сложные - логическими функциями. Значения логической функции также только 0 или 1. Для простоты записи высказывания обозначаются латинскими буквами А, В, С.

№ слайда 8 Однако определение истинности высказывания далеко не простой вопрос. Наприме
Описание слайда:

Однако определение истинности высказывания далеко не простой вопрос. Например, высказывание «Число 1 +22 = 4294 967297 — простое», принадлежащее Ферма (1601-1665), долгое время считалось истинным, пока в 1732 году Эйлер (1707-1783) не доказал, что оно ложно. В целом, обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания «Сумма углов треугольника равна 180°» устанавливается геометрией, причем в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского — ложным.

№ слайда 9 В булевой алгебре простым высказываниям ставятся в соответствие логические п
Описание слайда:

В булевой алгебре простым высказываниям ставятся в соответствие логические переменные, значение которых равно 1, если высказывание истинно, и 0, если высказывание ложно. Обозначаются логические переменные, большими буквами латинского алфавита. Существуют разные варианты обозначения истинности и ложности логических переменных:  Истина И True T 1 Ложь Л False F 0

№ слайда 10 Сложные (составные) высказывания представляют собой набор простых высказыван
Описание слайда:

Сложные (составные) высказывания представляют собой набор простых высказываний (по крайней мере двух) связанных логическими операциями. С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением). Логическое выражение - это символическая запись высказывания, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками). Связки "НЕ", "И", "ИЛИ" заменяются логическими операциями инверсия, конъюнкция, дизъюнкция. Это основные логические операции, при помощи которых можно записать любое логическое выражение. 

№ слайда 11 Конъюнкция - логическое умножение (от латинского conjunctio - союз, связь): в
Описание слайда:

Конъюнкция - логическое умножение (от латинского conjunctio - союз, связь): в естественном языке соответствует союзу «И» в алгебре высказываний обозначение «&» в языках программирования обозначение «And». Конъюнкция - это логическая операция, ставящая в соответствие каждым двум простым (или исходным) высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказывания истинны. Если хотя бы одно из составляющих высказываний ложно, то и полученное из них с помощью союза «И»сложное высказывание также считается ложным.

№ слайда 12 В алгебре множеств конъюнкции соответствует операция пересечения множеств, т.
Описание слайда:

В алгебре множеств конъюнкции соответствует операция пересечения множеств, т.е. множеству получившемуся в результате умножения множеств А и В соответствует множество, состоящее из элементов, принадлежащих одновременно двум множествам.  Таблица истинности Диаграмма Эйлера-Венна A B  А&В  1  1 1  1  0 0   0  1 0   0  0 0 

№ слайда 13 Итак, если два высказывания соединены союзом "И", то полученное сложное выска
Описание слайда:

Итак, если два высказывания соединены союзом "И", то полученное сложное высказывание истинно тогда и только тогда, когда истинны оба исходных высказывания.

№ слайда 14 Дизъюнкция - логическое сложение (от латинского disjunctio - разобщение, разл
Описание слайда:

Дизъюнкция - логическое сложение (от латинского disjunctio - разобщение, различие): в естественном языке соответствует союзу «ИЛИ» в алгебре высказываний обозначение «V» или «+» в языках программирования обозначение «Or». Дизъюнкция - это логическая операция, которая каждым двум простым (или исходным) высказываниям ставит в соответствие составное высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны и истинным, когда хотя бы одно из двух образующих его высказываний истинно.

№ слайда 15 В алгебре множеств дизъюнкции соответствует операция объединения множеств, т.
Описание слайда:

В алгебре множеств дизъюнкции соответствует операция объединения множеств, т.е. множеству получившемуся в результате сложения множеств А и В соответствует множество, состоящее из элементов, принадлежащих либо множеству А, либо множеству В.  Таблица истинности Диаграмма Эйлера-Венна A B  A + B   1  1 1  1  0  1  0  1  1  0  0  0

№ слайда 16 Итак, если два высказывания соединены союзом "ИЛИ", то полученное сложное выс
Описание слайда:

Итак, если два высказывания соединены союзом "ИЛИ", то полученное сложное высказывание истинно когда истинно хотя бы одно из составляющих высказываний

№ слайда 17 Рассмотренные выше операции были двуместными (бинарными), т.е. выполнялись на
Описание слайда:

Рассмотренные выше операции были двуместными (бинарными), т.е. выполнялись над двумя операндами (высказываниями). В алгебре логики определена и широко используется и одноместная (унарная) операция отрицание. Инверсия - отрицание (от латинского disjunctio - разобщение, различие): в естественном языке соответствует словам «неверно, что...» и частице «не» в алгебре высказываний обозначение «¬» или «-» в языках программирования обозначение «Not». Отрицание - логическая операция, которая с помощью связки «не» каждому исходному высказыванию ставит в соответствие составное высказывание, заключающееся в том, что исходное высказывание отрицается.

№ слайда 18 В алгебре множеств логическому отрицанию соответствует операция дополнения до
Описание слайда:

В алгебре множеств логическому отрицанию соответствует операция дополнения до универсального множества, т.е. множеству получившемуся в результате отрицания множества А соответствует множество, дополняющее его до универсального множества.  Таблица истинности Диаграмма Эйлера-Венна A ¬ А  0  1  1  0

№ слайда 19 Итак, если исходное выражение истинно, то результат отрицания будет ложным, и
Описание слайда:

Итак, если исходное выражение истинно, то результат отрицания будет ложным, и наоборот, если исходное выражение ложно, то результат отрицания будет истинным.

Краткое описание документа:

Простым высказыванием называют повествовательное предложение, относительно которого имеет смысл говорить, истинно оно или ложно.

Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.

Примеры высказываний:

Москва – столица России.

Число 27 является простым.

Волга впадает в Каспийское море.

 

Высказывания 1 и 3 являются истинными. Высказывание 2 – ложным , потому что число 27 составное 27=3*3*3.

Следующие предложения высказываниями не являются:

Давай пойдем гулять.

2*x>8.

a*x2+b*x+c=0.

Который час?

    Итак, отличительным признаком высказывания является свойство быть истинным или ложным, последние четыре предложения этим свойством не обладают.

 

    С помощью высказываний устанавливаются свойства, взаимосвязи между объектами. Высказывание истинно, если оно адекватно отображает эту связь, в противном случае оно ложно.

Автор
Дата добавления 25.02.2015
Раздел Информатика
Подраздел Презентации
Просмотров387
Номер материала 409345
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх