Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / ОБЛАСТИ ПРИМЕНЕНИЯ МАТЕМАТИЧЕСКИХ МЕТОДОВ В МЕДИЦИНЕ И БИОЛОГИИ.

ОБЛАСТИ ПРИМЕНЕНИЯ МАТЕМАТИЧЕСКИХ МЕТОДОВ В МЕДИЦИНЕ И БИОЛОГИИ.



57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


  • Математика

Поделитесь материалом с коллегами:

ОБЛАСТИ ПРИМЕНЕНИЯ МАТЕМАТИЧЕСКИХ МЕТОДОВ В МЕДИЦИНЕ И БИОЛОГИИ.

Различные конкретные математические методы применяются к таким областям биологии и медицины, как таксономия, экология, теория эпидемий, генетика, медицинская диагностика и организация медицинской службы. В том числе методы классификации в применении к задачам биологической систематики и медицинской диагностики, модели генетического сцепления, распространения эпидемии и роста численности популяции, использованию методов исследования операций в организационных вопросах, связанных с медицинским обслуживанием, Пользуются также математические модели для таких биологических и физиологических явлений, в которых вероятностные аспекты играют подчиненную роль и которые связаны с аппаратом теории управления или эвристического программирования. Существенно, важен вопрос о том, в каких областях применимы математические методы. Потребность в математическом описании появляется при любой попытке вести обсуждение в точных понятиях и что это касается даже таких сложных областей как искусство и этика. Мы несколько конкретнее рассмотрим области применения математики в биологии и медицине. До сих пор мы имели в виду главным образом те медицинские исследования, которые требуют более высокого уровня абстракции, чем физика и химия, но тесно связаны с этими последними. Далее мы перейдем к проблемам, связанным с поведением животных и психологией человека, т. е. к использованию прикладных наук для достижения некоторых более общих целей. Эту область довольно расплывчато называют исследованием операций. Пока мы лишь отметим, что речь будет идти о применении научных методов при решении административных и организационных задач, особенно тех, которые непосредственно или косвенно связаны с медициной. 6 В медицине часто возникают сложные проблемы, связанные с применением лекарственных препаратов, которые еще находятся на стадии испытания. Морально врач обязан предложить своему больному наилучший из существующих препаратов, но фактически он не может сделать выбор. Пока испытание не будет закончено. В этих случаях применение правильно спланированных последовательностей статистических испытаний позволяет сократить время, требуемое для получения окончательных результатов. Этические проблемы при этом не снимаются, однако такой математический подход несколько облегчает их решение Простейшее исследование повторяющихся эпидемий вероятностными методами показывает, что такого рода математическое описание позволяет в общих чертах объяснить важное свойство таких эпидемий - периодическое возникновение вспышек примерно одинаковой интенсивности, тогда как детерминистская модель дает ряд затухающих колебаний, что не согласуется с наблюдаемыми явлениями. При желании разработать более детальные, реалистические модели мутаций у бактерий или повторяющихся эпидемий эта информация, полученная с помощью предварительных упрощенных моделей, будет иметь очень большую ценность. В конечном счете, успех всего направления научных исследований определяется возможностями моделей, построенных для объяснения и предсказания реальных наблюдений. Одно из больших преимуществ, правильно построенной математической модели состоит в том, что она дает довольно точное описание структуры исследуемого процесса. С одной стороны, это позволяет осуществлять ее практическую проверку с помощью соответствующих физических, химических или биологических экспериментов. С другой стороны, математический анализ образом, чтобы в ней с самого начала была предусмотрена соответствующая статистическая обработка данных. Разумеется, множество глубоких биологических и медицинских исследований было успешно выполнено без особого внимания к статистическим тонкостям. Но во многих случаях планирование эксперимента, предусматривающее достаточное использование статистики, значительно повышает эффективность работы и обеспечивает получение большего объема информации о большем числе факторов при меньшем числе наблюдений. В противном случае эксперимент может оказаться неэффективным и неэкономичным и даже привести к неверным выводам. В этих случаях новые гипотезы, построенные на таких необоснованных выводах, не смогут выдержать проверку временем. Отсутствием статистического подхода можно в какой-то мере объяснить периодическое появление "модных" препаратов или метод лечения. Очень часто врачи ухватываются за те или иные новые препараты или методы лечения и начинают широко применять только на основании кажущихся благоприятных результатов, полученных на небольших выборках данных и обусловленных чисто случайными колебаниями. По мере того как у медицинского персонала накапливается опыт применения этих препаратов или методов в больших масштабах, выясняется, что возлагавшиеся, на них надежды не оправдываются. Однако для такой проверки требуется очень много времени и она весьма ненадежна и неэкономична; в большинстве случаев этого можно избежать путем правильно спланированных испытаний на самом начальном этапе. В настоящее время специалисты в области биоматематики настоятельно рекомендуют применять различные статистические методы при проверке гипотез, оценке параметров, планировании экспериментов и обследований, принятии решений или изучении работы сложных систем.

Перечислим самые значимые первые работы учёных в этом направлении. Кетле (1796-1874),  Гальтон (1822-1911) и Пирсон (1857-1936) применили теорию вероятностей и статистику; Фишер (1890-1962) разработал метод, называемый дисперсионным анализом. 

Н.Бейли «Математика в медицине и в биологии».    Когда автор этой книги работал консультантом по вопросам математической статистики в небольшой медицинской научно-исследовательской группе, разговоры о возможности проложить математическую тропинку через густые дебри экологических факторов часто заканчивались довольно скептическим покачиванием головой и утверждением, что "медицина - это все-таки искусство". Отчасти это, конечно, верно в том смысле, что интуиция и воображение для врача действительно необходимы. В то же время большинство больных и потенциальных больных, несомненно, надеются на непрерывное развитие и расширение научных аспектов медицины. А наука означает применение математики.

Существенно важен вопрос о том, в каких областях применимы математические методы. В разд. 1.1 мы уже отмечали, что потребность в математическом описании появляется при любой попытке вести обсуждение в точных понятиях и что это касается даже таких сложных областей, как искусство и этика. В настоящем разделе мы несколько конкретнее рассмотрим области применения математики в биологии и медицине.

Хорошо известно, что один из подходов к описанию картины природы - это построение иерархии уровней организации, изучаемых различными науками; по уровню абстракции, свойственному каждой из них, эти науки можно расположить в такой последовательности: физика, химия, биохимия, физиология, психология, социология. Мы начинаем с основных материальных элементов реального мира, т. е. с субатомного уровня, и заканчиваем необычайно разносторонними проявлениями духовной жизни человеческого общества. В этой последовательности уровней организация и сложность непрерывно повышаются. На каждом уровне действуют свои собственные законы, и поэтому их можно изучать до некоторой степени независимо друг от друга. Однако любой из них нерасторжимо связан с закономерностями, действующими на более низких уровнях. Так, законы физики и химии отчасти распространяются и на психологию, хотя понятия и законы последней выходят за пределы физических и химических законов.

Проблемы, касающиеся организации и деятельности больниц, следует отнести к более высокому уровню абстракции, чем, скажем, физиологию и патологию человека. Но хотя в определенной степени логическое содержание этого более высокого уровня независимо от более низкого, вопросы физиологии и патологии неизбежно должны учитываться при решении любой проблемы, касающейся организации больничных служб. Мы не собираемся углубляться здесь в эти философские рассуждения или обсуждать отдельные их детали, а хотим лишь подчеркнуть, что описанная последовательность уровней приближенно соответствует порядку возрастания трудностей при использовании научных методов и проведении математических исследований.

Как мы уже отмечали, прикладная математика добилась крупных и бесспорных успехов в области физики и химии, однако в данной книге мы не будем касаться этих вопросов. В разд. 1.2 было показано, что математические описания, связанные с биологическими формами, охватывают широкий круг вопросов и могут быть проведены достаточно точно. В разд. 1.3 мы познакомились с динамическими моделями развития и коснулись проблем, связанных со случайными колебаниями численности популяций. Изложение этих вопросов требовало достаточной степени абстракции, однако именно использование упрощающих допущений позволило нам получить некоторое представление о законах, регулирующих рост популяций. Было отмечено, что при рассмотрении такого рода проблем неизбежно приходится сталкиваться с фактором статистической изменчивости, подробное обсуждение которого переносится в гл. 2.

При переходе на более высокие уровни абстракции мы сталкиваемся не только с более сложными вопросами, но и с возрастающей степенью изменчивости, по большей части непредсказуемой. Например, полная картина конкуренции между несколькими видами, обитающими в определенной среде, включает огромное множество факторов. В области научных экологических описаний, выполненных главным образом в словесной форме, достигнуты значительные успехи, однако разработка математических моделей находится здесь еще на самом элементарном уровне. Другим примером может служить область медицинской диагностики. Для постановки диагноза врач совместно с другими специалистами часто бывает вынужден учитывать самые разнообразные факты, опираясь отчасти на свой личный опыт, а отчасти на материалы, приводимые в многочисленных медицинских руководствах и журналах. 

Общее количество информации увеличивается со все возрастающей интенсивностью, и есть такие болезни, о которых уже столько написано, что один человек не в состоянии в точности изучить, оценить, объяснить и использовать всю имеющуюся информацию при постановке диагноза в каждом конкретном случае. Разумеется, хороший диагност, используя свой большой опыт и интуицию, может отобрать необходимую часть важных данных и дать достаточно точное заключение. Однако, как это ни парадоксально звучит, по мере накопления знаний положение ухудшается.

Именно в такого рода ситуациях, когда разум одного человека не способен справиться со сложностями стоящих перед ним задач и описать их решение даже в общей словесной форме, специалисты в области так называемых неточных наук (включая, разумеется, биологию и медицину) часто утверждают, что математический анализ несовершенен, неуместен, приводит к ошибочным заключениям или невозможен, и поэтому его лучше избегать. Это возражение содержит рациональное зерно в том смысле, что современная математика, возможно, еще недостаточно совершенна; однако пройдет время, и мы увидим, что справедливо как раз обратное. 

В тех случаях, когда задача содержит большое число существенных взаимозависимых факторов, каждый из которых в значительной мере подвержен естественной изменчивости, только с помощью правильно выбранного статистического метода можно точно описать, объяснить и углубленно исследовать всю совокупность взаимосвязанных результатов измерений. Если число факторов или важных результатов настолько велико, что человеческий разум не в состоянии их обработать даже при введении некоторых статистических упрощений, то обработка данных может быть произведена на электронной вычислительной машине. Использование статистических методов и вычислительной техники рассматривается в гл. 2 и 5 соответственно.

Основная причина недоверия к математическим и вычислительным методам, по-видимому, состоит в следующем. Математическая модель некоторого биологического явления будет приемлемой для биолога только в том случае, если выраженная в словесной форме информация об этом явлении, которой он располагает, достаточно полна для того, чтобы можно было судить об адекватности модели. Ясно, что получение такой информации представляет собой первый и наиболее важный этап биологического исследования и что на этом этапе математика играет второстепенную роль. Естественно, возникает мысль, что по мере того, как вопросы становятся более трудными и сложными, математика приобретает все меньшее и меньшее значение. Однако не всегда учитывается то обстоятельство, что, достигнув достаточной степени сложности, математика развивается далее по своим собственным законам и дает биологу понятия и образ мышления, которых у него раньше не было. Будем надеяться, что эта книга хотя бы в некоторой степени проиллюстрирует справедливость этого утверждения.

До сих пор мы имели в виду главным образом те биологические и медицинские исследования, которые требуют более высокого уровня абстракции, чем физика и химия, но тесно связаны с этими последними. Далее мы перейдем к проблемам, связанным с поведением животных и психологией человека, т. е. к использованию прикладных наук для достижения некоторых более общих целей. Эту область довольно расплывчато называют исследованием операций, и более детально она рассматривается в гл. 4. Пока мы лишь отметим, что речь будет идти о применении научных методов при решении административных и организационных задач, особенно тех, которые непосредственно или косвенно связаны с биологией и медициной. Лесоводство, животноводство, общие вопросы сельскохозяйственного производства, проектирование больниц и организация медицинского обслуживания - таковы лишь немногие вопросы, относящиеся к этой категории.

Разумеется, не все задачи административного управления можно решить на научной основе, используя методы исследования операций. Однако применение этих методов там, где оно возможно (а они применимы ко многим задачам такого рода), имеет большие преимущества, так как позволяет расширить область точных исследований и сократить область неопределенных словесных рассуждений. Благодаря этому интуиция и здравый смысл человека могут быть направлены на решение тех вопросов, где невозможно применение шаблонных методов. Еще более сложны вопросы, к которым примешиваются какие-либо этические соображения. Но иногда математический анализ может помочь даже и в этих случаях.

Например, в медицине часто возникают сложные проблемы, связанные с применением лекарственных препаратов, которые еще находятся на стадии испытания. Морально врач обязан предложить своему больному наилучший из существующих препаратов, но фактически он не может сделать выбор, пока испытание не будет закончено. В этих случаях применение правильно спланированных последовательностных статистических испытаний позволяет сократить время, требуемое для получения окончательных результатов. Этические проблемы при этом не снимаются, однако такой математический подход несколько облегчает их решение. О последовательностных методах более подробно говорится в разд. 2.3.

Основное положение настоящего раздела состоит в том, что математические методы применимы к самому широкому кругу вопросов - от физики элементарных частиц до моральных проблем. Удобно (хотя вовсе не обязательно) рассматривать некую иерархию уровней. По мере перехода на более абстрактные уровни математические методы оказываются менее разработанными и применять их становится все труднее. Тем не менее при правильном применении математический подход не отличается существенно от подхода, основанного просто на здравом смысле. Математические методы просто более точны и в них используются более четкие формулировки и более широкий набор понятий, но в конечном счете они должны быть совместимы с обычными словесными рассуждениями, хотя, вероятно, и идут дальше их.


Вольтерр (1860-1940) применил дифференциальные и интегральные уравнения;  Ляпунов (1911-1973) - методы математического моделирования, а Гельфанд (1913–2009) - методы оптимизации.

Применяется математика в двух направлениях: производится количественный анализ, и строятся математические модели. Но, применяя математику, необходимо не забывать о пределах её применения.

Многие эксперименты либо дорогостоящие, либо пока проводить вовсе невозможно. Поэтому в наши дни интенсивно развивается математическое моделирование процессов.

С учётом школьных программ биологии и математики, в этой работе ставилась цель возможности применения математических методов в биологии и в медицине с использованием информационно-компьютерных технологий. Представим некоторые из них из опыта работ автора строк в общеобразовательных классах и в школе дополнительного образования.

·        Генетика. Покажем применение элементов теории графов и теории вероятностей на уроках биологии. Если пары генов g1и g2передаются от родителей потомку, тогда он получает эти гены в одной из комбинаций g1g1, g2g2, g1g2(генетически комбинации g1g2и g2g1не отличаются). С помощью деревьев можно наглядно представить наследование генов g1и g2(генеалогическое дерево).

Пусть ген g1передаётся с вероятностью n, а ген g2– с вероятностью m(и от матери и от отца), тогда n+m=1. Комбинацию g1g1получим с вероятностью n2, g1g2– с вероятностью 2nm, а g2g2– с вероятностью m2. Из условия n+m=1 следует, что n2+2nm+m2=1. Предположим, что передачи генов g1и g2равновероятны, то есть n=m=0,5 (более точные значения nи определяются в результате эксперимента).

От родителей перейдём к родителям родителей, то есть к «бабушкам» и «дедушкам». Через p0обозначим вероятность того, что потомок примет от своих родителей пару одинаковых генов g1g1или g2g2. Тогда «коэффициент кровного родства» определяется по формуле [1, стр. 103].

·        Антропометрия. Пo известным в медицине способам можно приближённо определить долженствующую массу ребёнка от одного месяца до 5 лет и рост от одного месяца до 8 лет, если известны масса и рост при рождении. Известны также методы вычисления количества пищи в кг (объёмный метод) и в мл (калорийный метод) в зависимости от массы тела ребёнка до 1 года.

Составлена компьютерная программа, которая определяет все указанные показатели, если задавать массу и рост ребёнка при рождении. Показатели можно оценить с помощью центильных таблиц, которые могут отличаться для разных регионов.

·        Сестринское дело. Определим цену деления шприца, если подсчитано число делений до максимального числа на шприце. Если n– максимальное число на шприце, а m– число делений, то цена деления шприца в мл равна n/m.

·        Акушерство. Если пульс равен n, а систолическое давление m, то шоковый индекс (индекс Алговера) равен отношению пульса к систолическому давлению, т. е. n/m. Если он приблизительно равен 0,5, то это свидетельствует об отсутствии дефицита объёма циркулирующей крови (ОЦК).

Повышение шокового индекса приводит к разным степеням кровопотери. Компьютерная программа вычисляет шоковый индекс и во всех случаях выводит соответствующее сообщение.

·        Педиатрия. Если ребёнок родился весом nг, а на третьи сутки его масса составила mг, то процент потери массы равен 100(n-m)/n. Процент потери веса в норме, если он не превышает 10%.

Пусть вес ребёнка в три месяца равен kг. В норме должен весить n+600+2∙800=n+2200 г. Если k

100(n-k+2200)/(n+2200) – процент дефицита массы. Из этого процентного значения определяется степень гипотрофии.

С помощью компьютерной программы можно определить процент потери веса, а также степень гипотрофии или получить ответ об её отсутствии.

Следующая компьютерная программа определяет систолическое артериальное давление (D) в мм рт. ст., суточную калорийность пищи (K) в ккал и количество мочи в мл за сутки (V) у ребёнка в возрасте более 1 года по известным формулам D=80+2n, K=1000+100n, V=600+100(n-1), где n– возраст ребёнка.

·        Фармакология. Пусть во флаконе ампициллина  (оксациллина, пенициллина) находится nг (nединиц) сухого лекарственного средства. Требуется взять растворитель нужного объёма, чтобы в mмл раствора было kг (kединиц) сухого вещества. Вычисление осуществляется компьютерной программой по формуле x=k∙m/n.

·        Хирургия. Исходя из опыта хирургов, можно составить математическую модель конфликтной ситуации и применить математическую теорию игр (см. [3]).

Старшеклассники, желающие поступить на биологический факультет или получить медицинское образование, в большинстве случаев без старания учат математику. Они откладывают усвоение математики, часто не зная об этом.

Результаты данной работы можно применять как на уроках биологии, так и на уроках математики и информатики, а также для проведения бинарных уроков. Компьютерные программы написаны на языке программирования  VisualС++ автором строк.

Список использованных источников

  1. Березина Л. Ю. Графы и их применение. Пособие для учителей.- М.: «Просвещение», 1979

  2. Беккер М. С. Методическое пособие по дисциплине «Математика» по теме: «Применение математических методов в медицине». Кисловодск, 2011

  3. Хай Г. А. Теория игр в хирургии.- Л.: Медицина, 1978

  4. Статья. Абдулжалиева А. К., Долгополова А. Ф. Применение математических методов в естествознании. Ставропольский государственный аграрный университет.

  5. Н.Бейли «Математика в медицине и в биологии».   ИЗДАТЕЛЬСТВО "МИР" Москва 1970. 





57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Краткое описание документа:

Различные конкретные математические методы применяются к таким областям биологии и медицины, как таксономия, экология, теория эпидемий, генетика, медицинская диагностика и организация медицинской службы. В том числе методы классификации в применении к задачам биологической систематики и медицинской диагностики, модели генетического сцепления, распространения эпидемии и роста численности популяции, использованию методов исследования операций в организационных вопросах, связанных с медицинским обслуживанием, Пользуются также математические модели для таких биологических и физиологических явлений, в которых вероятностные аспекты играют подчиненную роль и которые связаны с аппаратом теории управления или эвристического программирования. Существенно, важен вопрос о том, в каких областях применимы математические методы. Потребность в математическом описании появляется при любой попытке вести обсуждение в точных понятиях и что это касается даже таких сложных областей как искусство и этика. Мы несколько конкретнее рассмотрим области применения математики в биологии и медицине. До сих пор мы имели в виду главным образом те медицинские исследования, которые требуют более высокого уровня абстракции, чем физика и химия, но тесно связаны с этими последними. 

Автор
Дата добавления 14.04.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров3491
Номер материала 483469
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх