Инфоурок Информатика Другие методич. материалыОПЕРАЦИОННЫЕ СИСТЕМЫ, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И СРЕДСТВА ИХ ОБЕСПЕЧЕНИЯ, КАК ОБЪЕКТЫ ИНФОРМАЦИОННЫХ ПРАВООТНОШЕНИЙ

ОПЕРАЦИОННЫЕ СИСТЕМЫ, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И СРЕДСТВА ИХ ОБЕСПЕЧЕНИЯ, КАК ОБЪЕКТЫ ИНФОРМАЦИОННЫХ ПРАВООТНОШЕНИЙ

Скачать материал

Тема 2. ОПЕРАЦИОННЫЕ СИСТЕМЫ, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И СРЕДСТВА ИХ ОБЕСПЕЧЕНИЯ, КАК ОБЪЕКТЫ ИНФОРМАЦИОННЫХ ПРАВООТНОШЕНИЙ

цель: Данная тема предполагает изучение операционных систем. В этой связи, перед лекцией целесообразно ставить следующие дидактические, воспитательные и познавательные цели:

¾   обеспечить усвоение основных понятий и закономерностей, характеризующих операционные системы;

¾   повышать уровень общеобразовательной культуры обучаемых, развивать их творческое мышление, позволяющее на основе приобретённых знаний;

формировать у обучаемых готовность к практическому осуществлению социально значимых функций в процессе профессиональной деятельности.

 

Задание:

1.     Составить конспект

2.     Тестовые задания (25 вопросов и три варианта ответов)

3.     Создать презентацию 25 слайдов

4.     Составить СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ (для выполнения задания использовать ЭБС ЮРАЙТ, ЭБС IPRbooks и т.д.) не менее 8 источников

 

 

Операцио́нная систе́ма, сокр. ОС (англ. operating system, OS) — комплекс взаимосвязанных программ, предназначенных для управления ресурсами компьютера и организации взаимодействия с пользователем.

В логической структуре типичной вычислительной системы операционная система занимает положение между устройствами с их микроархитектурой, машинным языком и, возможно, собственными (встроенными) микропрограммами (драйверами) — с одной стороны — и прикладными программами с другой.

Разработчикам программного обеспечения операционная система позволяет абстрагироваться от деталей реализации и функционирования устройств, предоставляя минимально необходимый набор функций (см.: интерфейс программирования приложений).

В большинстве вычислительных систем операционная система является основной, наиболее важной (а иногда и единственной) частью системного программного обеспечения. С 1990-х годов наиболее распространёнными операционными системами являются системы семейства Windows, UNIX и UNIX-подобные системы.

История операционных систем

Предшественником операционных систем следует считать служебные программы (загрузчики и мониторы), а также библиотеки часто используемых подпрограмм, начавшие разрабатываться с появлением универсальных компьютеров 1-го поколения (конец 1940-х годов). Служебные программы минимизировали физические манипуляции оператора с оборудованием, а библиотеки позволяли избежать многократного программирования одних и тех же действий (осуществления операций ввода-вывода, вычисления математических функций и т. п.).

В 1950—1960-х годах сформировались и были реализованы основные идеи, определяющие функциональность ОС: пакетный режим, разделение времени и многозадачность, разделение полномочий, реальный масштаб времени, файловые структуры и файловые системы.

Пакетный режим

Необходимость оптимального использования дорогостоящих вычислительных ресурсов привела к появлению концепции «пакетного режима» исполнения программ. Пакетный режим предполагает наличие очереди программ на исполнение, причём система может обеспечивать загрузку программы с внешних носителей данных в оперативную память, не дожидаясь завершения исполнения предыдущей программы, что позволяет избежать простоя процессора.

Разделение времени и многозадачность

Уже пакетный режим в своём развитом варианте требует разделения процессорного времени между выполнением нескольких программ.

Необходимость в разделении времени (многозадачности, мультипрограммировании) проявилась ещё сильнее при распространении в качестве устройств ввода-вывода телетайпов (а позднее, терминалов с электронно-лучевыми дисплеями) (1960-е годы). Поскольку скорость клавиатурного ввода (и даже чтения с экрана) данных оператором много ниже, чем скорость обработки этих данных компьютером, использование компьютера в «монопольном» режиме (с одним оператором) могло привести к простою дорогостоящих вычислительных ресурсов.

Разделение времени позволило создать «многопользовательские» системы, в которых один (как правило) центральный процессор и блок оперативной памяти соединялся с многочисленными терминалами. При этом часть задач (таких как ввод или редактирование данных оператором) могла исполняться в режиме диалога, а другие задачи (такие как массивные вычисления) — в пакетном режиме.

Разделение полномочий

Распространение многопользовательских систем потребовало решения задачи разделения полномочий, позволяющей избежать возможности изменения исполняемой программы или данных одной программы в памяти компьютера другой программой (намеренно или по ошибке), а также изменения самой системы прикладной программой.

Реализация разделения полномочий в операционных системах была поддержана разработчиками процессоров, предложивших архитектуры с двумя режимами работы процессора — «реальным» (в котором исполняемой программе доступно всё адресное пространство компьютера) и «защищённым» (в котором доступность адресного пространства ограничена диапазоном, выделенным при запуске программы на исполнение).

Масштаб реального времени

Операционная система реального времени

Применение универсальных компьютеров для управления производственными процессами потребовало реализации «масштаба реального времени» («реального времени») — синхронизации исполнения программ с внешними физическими процессами.

Включение функции масштаба реального времени позволило создавать решения, одновременно обслуживающие производственные процессы и решающие другие задачи (в пакетном режиме и/или в режиме разделения времени).

Файловые системы и структуры

Постепенная замена носителей с последовательным доступом (перфолент, перфокарт и магнитных лент) накопителями произвольного доступа (на магнитных дисках).

Файловая система — способ хранения данных на внешних запоминающих устройствах.

Основные функции:

·                     Исполнение запросов программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.).

·                     Загрузка программ в оперативную память и их выполнение.

·                     Стандартизированный доступ к периферийным устройствам (устройства ввода-вывода).

·                     Управление оперативной памятью (распределение между процессами, организация виртуальной памяти).

·                     Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе.

·                     Обеспечение пользовательского интерфейса.

·                     Сохранение информации об ошибках системы.

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/IBM360-65-1.corestore.jpg/220px-IBM360-65-1.corestore.jpg

OS/360 использовалась на большинстве компьютеров IBM начиная с 1966, включая те компьютеры, которые помогали NASA отправить человека на Луну.

Дополнительные функции:

·                     Параллельное или псевдопараллельное выполнение задач (многозадачность).

·                     Эффективное распределение ресурсов вычислительной системы между процессами.

·                     Разграничение доступа различных процессов к ресурсам.

·                     Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам.

·                     Взаимодействие между процессами: обмен данными, взаимная синхронизация.

·                     Защита самой системы, а также пользовательских данных и программ от действий пользователей (злонамеренных или по незнанию) или приложений.

·                     Многопользовательский режим работы и разграничение прав доступа (см.: аутентификация, авторизация).

Понятие

Существуют две группы определений операционной системы: «набор программ, управляющих оборудованием» и «набор программ, управляющих другими программами». Обе они имеют свой точный технический смысл, который связан с вопросом, в каких случаях требуется операционная система.

Есть приложения вычислительной техники, для которых операционные системы излишни. Например, встроенные микрокомпьютеры, содержащиеся во многих бытовых приборах, автомобилях (иногда по десятку в каждом), простейших сотовых телефонах, постоянно исполняют лишь одну программу, запускающуюся по включении. Многие простые игровые приставки — также представляющие собой специализированные микрокомпьютеры — могут обходиться без операционной системы, запуская при включении программу, записанную на вставленном в устройство «картридже» или компакт-диске.

Операционные системы нужны:

·                     если нужен универсальный механизм сохранения данных;

·                     для предоставления системным библиотекам часто используемых подпрограмм;

·                     для распределения полномочий;

·                     необходима возможность имитации «одновременного» исполнения нескольких программ на одном компьютере;

·                     для управления процессами выполнения отдельных программ.

Таким образом, современные универсальные операционные системы можно охарактеризовать, прежде всего, как:

·                     использующие файловые системы (с универсальным механизмом доступа к данным),

·                     многопользовательские (с разделением полномочий),

·                     многозадачные (с разделением времени).

Многозадачность и распределение полномочий требуют определённой иерархии привилегий компонентов в самой операционной системе. В составе операционной системы различают три группы компонентов:

·                     ядро, содержащее планировщик; драйверы устройств, непосредственно управляющие оборудованием; сетевая подсистема, файловая система;

·                     системные библиотеки;

·                     оболочка с утилитами.

Большинство программ, как системных (входящих в операционную систему), так и прикладных, исполняются в непривилегированном («пользовательском») режиме работы процессора и получают доступ к оборудованию (и, при необходимости, к другим ресурсам ядра, а также ресурсам иных программ) только посредством системных вызовов. Ядро исполняется в привилегированном режиме: именно в этом смысле говорят, что система (точнее, её ядро) управляет оборудованием.

В определении состава операционной системы значение имеет критерий операциональной целостности (замкнутости): система должна позволять полноценно использовать (включая модификацию) свои компоненты. Поэтому в полный состав операционной системы включают и набор инструментальных средств (от текстовых редакторов до компиляторов, отладчиков и компоновщиков).

Ядро операционной системы

Ядро — центральная часть операционной системы, управляющая выполнением процессов, ресурсами вычислительной системы и предоставляющая процессам координированный доступ к этим ресурсам. Основными ресурсами являются процессорное время, память и устройства ввода-вывода. Доступ к файловой системе и сетевое взаимодействие также могут быть реализованы на уровне ядра.

Как основополагающий элемент операционной системы, ядро представляет собой наиболее низкий уровень абстракции для доступа приложений к ресурсам вычислительной системы, необходимым для их работы. Как правило, ядро предоставляет такой доступ исполняемым процессам соответствующих приложений за счёт использования механизмов межпроцессного взаимодействия и обращения приложений к системным вызовам ОС.

Описанная задача может различаться в зависимости от типа архитектуры ядра и способа её реализации.

Объекты ядра ОС:

·                     процессы,

·                     файлы,

·                     события,

·                     потоки,

·                     семафоры,

·                     мьютексы,

·                     каналы,

·                     файлы, проецируемые в память.

Существующие операционные системы

UNIX, стандартизация операционных систем и POSIX

К концу 1960-х годов отраслью и научно-образовательным сообществом был создан целый ряд операционных систем, реализующих все или часть очерченных выше функций. К ним относятся Atlas (Манчестерский университет), CTTS и ITSS (Массачусетский технологический институт, MIT), THE (Эйндховенский технологический университет), RS4000 (Университет Орхуса) и др. (всего эксплуатировалось более сотни различных ОС).

Наиболее развитые операционные системы, такие как OS/360 (IBM), SCOPE (CDC) и завершённый уже в 1970-х годах Multics (MIT и Bell Labs), предусматривали возможность исполнения на многопроцессорных компьютерах.

Эклектичный характер разработки операционных систем привёл к нарастанию кризисных явлений, прежде всего, связанных с чрезмерными сложностью и размерами создаваемых систем. Системы были плохо масштабируемыми (более простые не могли использовать все возможности крупных вычислительных систем; более развитые неоптимально исполнялись на малых или не могли исполняться на них вовсе) и полностью несовместимыми между собой, их разработка и совершенствование затягивались.

Задуманная и реализованная в 1969 году Кеном Томпсоном при участии нескольких коллег (включая Денниса Ритчи и Брайана Кернигана), операционная система UNIX (первоначально UNICS, что обыгрывало название Multics) вобрала в себя многие черты более ранних систем, но обладала целым рядом свойств, отличающих её от большинства предшественниц:

·                     простая метафорика (два ключевых понятия: вычислительный процесс и файл);

·                     компонентная архитектура: принцип «одна программа — одна функция» плюс мощные средства связывания различных программ для решения возникающих задач («оболочка»);

·                     минимизация ядра (кода, выполняющегося в «реальном» (привилегированном) режиме процессора) и количества системных вызовов;

·                     независимость от аппаратной архитектуры и реализация на машиннонезависимом языке программирования (язык программирования Си стал побочным продуктом разработки UNIX);

·                     унификация файлов.

UNIX, благодаря своему удобству прежде всего в качестве инструментальной среды (среды разработки), обрела популярность сначала в университетах, а затем и в отрасли, получившей прототип единой операционной системы, которая могла использоваться на самых разных вычислительных системах и, более того, могла быть быстро и с минимальными усилиями перенесена на любую вновь разработанную аппаратную архитектуру.

В конце 1970-х годов сотрудники Калифорнийского университета в Беркли внесли ряд усовершенствований в исходные коды UNIX, включая работу с протоколами TCP/IP. Их разработка стала известна под именем BSD (Berkeley Software Distribution).

Задачу разработать независимую (от авторских прав Bell Labs) реализацию той же архитектуры поставил и Ричард Столлман, основатель проекта GNU.

Благодаря конкурентности реализаций архитектура UNIX стала вначале фактическим отраслевым стандартом, а затем обрела статус и стандарта юридического — ISO/IEC 9945 (POSIX).

Только системы, отвечающие спецификации Single UNIX Specification, имеют право носить имя UNIX. К таким системам относятся AIX, HP-UX, IRIX, Mac OS X, SCO OpenServer, Solaris, Tru64 и z/OS.

Операционные системы, следующие стандарту POSIX или опирающиеся на него, называют «POSIX-совместимыми» (чаще встречается словоупотребление «UNIX-подобные» или «семейство UNIX», но оно противоречит статусу торгового знака «UNIX», принадлежащего консорциуму The Open Group и зарезервированному для обозначения только операционных систем, строго следующих стандарту). Сертификация на совместимость со стандартом платная, из-за чего некоторые системы не проходили этот процесс, однако считаются POSIX-совместимыми по существу.

К UNIX-подобным относятся операционные системы, основанные на последней версии UNIX, выпущенной Bell Labs (System V), на разработках университета Беркли (FreeBSD, OpenBSD, NetBSD), на основе Solaris (OpenSolaris, BeleniX, Nexenta), а также Linux, разработанная в части утилит и библиотек проектом GNU и в части ядра — сообществом, возглавляемым Линусом Торвальдсом.

Стандартизация операционных систем преследует цель упрощения замены самой системы или оборудования при развитии вычислительной системы или сети и упрощении переноса прикладного программного обеспечения (строгое следование стандарту предполагает полную совместимость программ на уровне исходного текста; из-за профилирования стандарта и его развития некоторые изменения бывают всё же необходимы, но перенос программы между POSIX-совместимыми системами обходится на порядки дешевле, чем между альтернативными), а также преемственность опыта пользователей.

Самым заметным эффектом существования этого стандарта стало эффективное разворачивание Интернета в 1990-х годах.

Пост-UNIX-архитектуры

Коллектив, создавший UNIX, развил концепцию унификации объектов операционной системы, включив в исходную концепцию UNIX «устройство — это тоже файл» также и процессы, и любые другие системные, сетевые и прикладные сервисы, создав новую концепцию: «что угодно — это файл». Эта концепция стала одним из основных принципов системы Plan 9 (название было позаимствовано из фантастического триллера «План 9 из открытого космоса» Эдварда Вуда-младшего), призванной преодолеть принципиальные недостатки дизайна UNIX и сменившей «рабочую лошадку» UNIX System V на компьютерах сети Bell Labs в 1992 году.

Кроме реализации всех объектов системы в виде файлов и размещения их на едином и персональном для каждого терминала вычислительной сети пространстве (namespace), были пересмотрены другие архитектурные решения UNIX. Например, в Plan 9 отсутствует понятие «суперпользователь», и, соответственно, исключаются любые нарушения режима безопасности, связанные с нелегальным получением прав суперпользователя в системе. Для представления (хранения, обмена) информации Роб Пайк и Кен Томпсон разработали универсальную кодировку UTF-8, на сегодняшний день ставшую стандартом де-факто. Для доступа к файлам используется единый универсальный протокол 9P, по сети работающий поверх сетевого протокола (TCP или UDP). Таким образом, для прикладного ПО сети не существует — доступ к локальным и к удалённым файлам единообразен. 9P — байт-ориентированный протокол, в отличие от других подобных протоколов, являющихся блок-ориентированными. Это также результат работы концепции: доступ побайтно — к унифицированным файлам, а не поблочно — к разнообразным и сильно изменяющимися с развитием технологий устройствам. Для контроля доступа к объектам не требуется иных решений, кроме уже существующего в операционной системе контроля доступа к файлам. Новая концепция системы хранения избавила администратора системы от изнурительного труда по сопровождению архивов и предвосхитила современные системы управления версиями файлов.

Операционные системы, созданные на базе или идеях UNIX, такие как всё семейство BSD и системы Linux, постепенно перенимают новые идеи из Bell Labs. Возможно, эти новые идеи ждёт большое будущее и признание ИТ-разработчиков.

Новые концепции были использованы Робом Пайком в Inferno.

На основе Plan 9 в Испании разрабатываются системы Off++ и Plan B, носящие экспериментальный характер.

К попыткам создать пост-UNIX-архитектуру можно также отнести разработку языка программирования и операционной среды Оберон в Швейцарской высшей технической школе (ETH Zurich) под руководством профессора Никлауса Вирта.

ПРИКЛАДНЫЕ ЮРИДИЧЕСКИЕ ПРОГРАММЫ

Основные понятия и определения

Информационная система (ИС) — организационно упорядоченная совокупность документов (массивов документов) и информационных технологий, в том числе с использованием средств вычислительной техники и связи, реализующих информационные процессы.

Информационные системы предназначены для хранения, обработки, поиска, распространения, передачи и представления информации.

Автоматизированная (информационная) система (АС) — совокупность программных и аппаратных средств, предназначенных для хранения и/или управления данными и информацией и производства вычислений и управляемая человеком-оператором (в этом главное отличие автоматизированной системы от автоматической).

Многоуровневое представление ИС — модель представления информационной системы в виде совокупности взаимосвязанных уровней, разделенных по функциональному назначению (рис. 1).

http://www.4stud.info/ppp/img/m18d677bc.gif

Рис. Многоуровневое представление информационных систем.

Аппаратное обеспечение ИС — комплекс электронных, электрических и механических устройств, входящих в состав информационной системы или сети.

Программное обеспечение (ПО) — совокупность программ и данных, предназначенных для решения определенного круга задач и хранящиеся на машинных носителях.

Программа — последовательность формализованных инструкций, представляющих алгоритм решения некоторой задачи и предназначенная для исполнения устройством управления вычислительной машины. Инструкции программы записываются при помощи машинного кода или специальных языков программирования. В зависимости от контекста термин «программа» может относится к исходным текстам, при помощи которых записывается алгоритм, или к исполняемому машинному коду.

Программист — специалист, занимающийся разработкой и проверкой программ. Различают системных и прикладных программистов.

Пользователь — человек, принимающий участие в управлении объектами и системами некоторой предметной области и являющийся составным элементом автоматизированной системы.

Прикладное программное обеспечение — программное обеспечение, ориентированное на конечного пользователя и предназначенное для решения пользовательских задач. Прикладное ПО состоит из:

·                     отдельных прикладных программ и пакетов прикладных программ, предназначенных для решения различных задач пользователей;

·                     автоматизированных систем, созданных на основе этих пакетов.

Пакет прикладных программ — комплект программ, предназначенных для решения задач из определенной проблемной области. Обычно применение пакета прикладных программ предполагает наличие специальной документации: лицензионного свидетельства, паспорта, инструкции пользователя и т.п.

Классификация программного обеспечения

Любая классификация подразумевает выбор некоторого группировочного признака (или нескольких), на основании которого и производится отнесение объектов к тому или иному классу. Так, при классификации программного обеспечения по способу распространения можно выделить следующие категории список не полный):

·                     Commercial Software — коммерческое (с ограниченными лицензией возможностями на использование), разрабатываемое для получения прибыли.

·                     Freeware — свободное ПО, распространяемое без ограничений на использование, модификацию и распространение.

·                     Shareware — условно-бесплатное ПО, с частичными ограничениями при работе в ознакомительном режиме (например, определенное количество запусков программы).

·                     Abandonware — «заброшенное» ПО, поддержка которого непосредственным разработчиком прекращена, но продолжается третьими лицами (например, партнерами или энтузиастами).

·                     Adware — ПО, в код которого включены рекламные материалы. Такое ПО распространяется бесплатно, но для отключения рекламных блоков необходима оплата.

·                     Careware — «благотворительное» ПО, оплату за которое разработчик (или распространитель) просит переводить на благотворительные нужды.

При классификации программного обеспечения по назначению в качестве критерия используют уровень представления ИС, на который ориентирована та или иная программа. Соответственно выделяют следующие классы ПО:

·                     Системное ПО — решает задачи общего управления и поддержания работоспособности системы в целом. К этому классу относят операционные системы, менеджеры загрузки, драйверы устройств, программные кодеки, утилиты и программные средства защиты информации.

·                     Инструментальное ПО включает средства разработки (трансляторы, отладчики, интегрированные среды, различные SDK и т.п.) и системы управления базами данных (СУБД).

·                     Прикладное ПО — предназначено для решения прикладных задач конечными пользователями.

Прикладное ПО — самый обширный класс программ, в рамках которого возможна дальнейшая классификация, например по предметным областям. В этом случае группировочным признаком является класс задач, решаемых программой. Приведем несколько примеров:

·                     Офисные приложения — предназначены для автоматизации офисной деятельности (текстовые редакторы и процессоры, электронные таблицы, редакторы презентаций и т.п.)

·                     Корпоративные информационные системы — бухгалтерские программы, системы корпоративного управления, системы управления проектами (Project Management), инструменты автоматизации документооборота (EDM-системы) и управления архивами документов (DWM-системы)

·                     Системы проектирования и производства — системы автоматизированного проектирования (САПР, CAD/CAM-системы), системы управления технологическими (SCADA) и производственными (MES) процессами

·                     Научное ПО — системы математического и статистического расчета, анализа и моделирования

·                     Геоинформационные системы (ГИС)

·                     Системы поддержки принятия решений (СППР)

·                     Клиенты доступа к сетевым сервисам (электронная почта, веб-браузеры, передача сообщений, чат-каналы, клиенты файлообменных сетей и т.п.)

·                     Мультимедийное ПО — компьютерные игры, средства просмотра и редактирования аудио- и видеоинформации, графические редакторы и вьюеры, анимационные редакторы и т.п.

С точки зрения конечного пользователя такая классификация оправданна и наглядна, для разработчика же более значимым фактором является структура прикладной программы, в общем случае состоящей из нескольких компонентов. Назначение этих компонентов, связи между ними и способность к взаимодействию определяют интеграцию прикладного ПО. Чем теснее связаны программные компоненты, тем выше степень интеграции.

В зависимости от степени интеграции многочисленные прикладные программные средства можно классифицировать следующим образом:

1.                 отдельные прикладные программы;

2.                 библиотеки прикладных программ;

3.                 пакеты прикладных программ;

4.                 интегрированные программные системы.

Отдельная прикладная программа пишется, как правило, на некотором высокоуровневом языке программирования (Pascal, Basic и т.п.) и предназначается для решения конкретной прикладной задачи. Такая программа может быть реализована в виде набора модулей, каждый из которых выполняет некоторую самостоятельную функцию (например модуль пользовательского интерфейса, модуль обработки ошибок, модуль печати и т.п.). При этом доступ к функциям модулей из внешних программ невозможен.

Библиотека представляет собой набор отдельных программ, каждая из которых решает некоторую прикладную задачу или выполняет определенные вспомогательные функции (управление памятью, обмен с внешними устройствами и т.п.). Библиотеки программ зарекомендовали себя эффективным средством решения вычислительных задач. Они интенсивно используются при решении научных и инженерных задач с помощью ЭВМ. Условно их можно разделить на библиотеки общего назначения и специализированные библиотеки.

Пакет прикладных программ (ППП) — это комплекс взаимосвязанных программ, ориентированный на решение определенного класса задач. Формально такое определение не исключает из числа пакетов и библиотеки программ, однако у ППП, как отдельной категории, есть ряд особенностей, среди которых: ориентация на решение классов задач, унифицированный интерфейс, наличие языковых средств.

Интегрированная программная система — это комплекс программ, элементами которого являются различные пакеты и библиотеки программ. Примером служат системы автоматизированного проектирования, имеющие в своем составе несколько ППП различного назначения. Часто в подобной системе решаются задачи, относящиеся к различным классам или даже к различным предметным областям.

Понятие пакета прикладных программ

Итак, пакет прикладных программ (ППП) – это комплекс взаимосвязанных программ для решения определенного класса задач из конкретной предметной области. На текущем этапе развития информационных технологий именно ППП являются наиболее востребованным видом прикладного ПО. Это связано с упомянутыми ранее особенностями ППП. Рассмотрим их подробней:

·                     Ориентация на решение класса задач. Одной из главных особенностей является ориентация ППП не на отдельную задачу, а на некоторый класс задач, в том числе и специфичных, из определенной предметной области. Так например, офисные пакеты ориентированы на офисную деятельность, одна из задач которой — подготовка документов (в общем случае включающих не только текстовую информацию, но и таблицы, диаграммы, изображения). Следовательно, офисный пакет должен реализовывать функции обработки текста, представлять средства обработки табличной информации, средства построения диаграмм разного вида и первичные средства редактирования растровой и векторной графики.

·                     Наличие языковых средств. Другой особенностью ППП является наличие в его составе специализированных языковых средств, позволяющих расширить число задач, решаемых пакетом или адаптировать пакет под конкретные нужды. Пакет может представлять поддержку нескольких входных языков, поддерживающих различные парадигмы. Поддерживаемые языки могут быть использованы для формализации исходной задачи, описания алгоритма решения и начальных данных, организации доступа к внешним источникам данных, разработки программных модулей, описания модели предметной области, управления процессом решения в диалоговом режиме и других целей. Примерами входных языков ППП являются VBA в пакете MS Office, AutoLISP/VisualLISP в Autodesk AutoCAD, StarBasic в OpenOffice.org

·                     Единообразие работы с компонентами пакета. Еще одна особенность ППП состоит в наличии специальных системных средств, обеспечивавших унифицированную работу с компонентами. К их числу относятся специализированные банки данных, средства информационного обеспечения, средства взаимодействия пакета с операционной системой, типовой пользовательский интерфейс и т.п.

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "ОПЕРАЦИОННЫЕ СИСТЕМЫ, ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И СРЕДСТВА ИХ ОБЕСПЕЧЕНИЯ, КАК ОБЪЕКТЫ ИНФОРМАЦИОННЫХ ПРАВООТНОШЕНИЙ"

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Специалист по переработке нефти и газа

Получите профессию

Менеджер по туризму

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 666 010 материалов в базе

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 04.11.2021 572
    • DOCX 64.3 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Музыченко Валерия Валерьевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Музыченко Валерия Валерьевна
    Музыченко Валерия Валерьевна
    • На сайте: 2 года и 9 месяцев
    • Подписчики: 0
    • Всего просмотров: 41788
    • Всего материалов: 39

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Копирайтер

Копирайтер

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Особенности подготовки к сдаче ОГЭ по информатике и ИКТ в условиях реализации ФГОС ООО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 102 человека из 39 регионов
  • Этот курс уже прошли 806 человек

Курс повышения квалификации

Методика преподавания информатики в начальных классах

72 ч. — 180 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Этот курс уже прошли 67 человек

Курс повышения квалификации

Использование нейросетей в учебной и научной работе: ChatGPT, DALL-E 2, Midjourney

36/72 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 610 человек из 77 регионов
  • Этот курс уже прошли 970 человек

Мини-курс

Стартап: от идеи к успеху

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 28 человек из 17 регионов

Мини-курс

Figma: основные принципы дизайна и композиции

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 106 человек из 40 регионов
  • Этот курс уже прошли 16 человек

Мини-курс

Социальная и поведенческая психология

6 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 29 человек из 17 регионов