Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Презентации / Презентация на тему "Квадратичная функция"

Презентация на тему "Квадратичная функция"

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика
Функция вида y = x2
x - 3 -2 -1 0 1 2 3 y 9 4 1 0 1 4 9
Графиком функции является парабола. Ось y – ось симметрии параболы. Точки с к...
1 из 6

Описание презентации по отдельным слайдам:

№ слайда 1 Функция вида y = x2
Описание слайда:

Функция вида y = x2

№ слайда 2 x - 3 -2 -1 0 1 2 3 y 9 4 1 0 1 4 9
Описание слайда:

x - 3 -2 -1 0 1 2 3 y 9 4 1 0 1 4 9

№ слайда 3 Графиком функции является парабола. Ось y – ось симметрии параболы. Точки с к
Описание слайда:

Графиком функции является парабола. Ось y – ось симметрии параболы. Точки с координатами: (-1;1) и (1;1) (-2;4) и (2;4) (-3; 3) и (3;3) симметричны Точка (0;0) – вершина параболы Свойства функции: x=0, y=0 y > 0 при x > 0 и при x< 0 y наим=0, y наиб не существует Убывает на луче (- ∞; 0], возрастает на луче [0; +∞)

№ слайда 4
Описание слайда:

№ слайда 5
Описание слайда:

№ слайда 6
Описание слайда:

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Краткое описание документа:

Функция, заданная формулой y = ax2 + bx + c , где x и y - переменные, а a, b, c - заданные числа, причем a=0 , называется квадратичной функцией.

График квадратичной функции - парабола. Если a > 0 , то ветви параболы направлены вверх. Если a < 0 , то ветви параболы направлены вниз.

Свойства квадратичной функции y=x2

1) Областью определения функции является множество всех действительных чисел, т.е.

2) Множеством значений функции является промежуток

3) Значение функции y=0 является наименьшим, а наибольшего значения функция не имеет.

4) Функция является четной, график симметричен относительно оси Оу.

5) Функция непериодическая.

6)Парабола имеет с осями координат единственную общую точку (0;0) - начало координат.

7) Значение аргумента x=0 является нулем функции.

8) На промежутке функция убывающая, а на промежутке - возрастающая.

9) Функция принимает положительные значения на множестве , т.е. все точки параболы, кроме начала координат.

Автор
Дата добавления 23.06.2015
Раздел Математика
Подраздел Презентации
Просмотров178
Номер материала 573882
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх