Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015

Опубликуйте свой материал в официальном Печатном сборнике методических разработок проекта «Инфоурок»

(с присвоением ISBN)

Выберите любой материал на Вашем учительском сайте или загрузите новый

Оформите заявку на публикацию в сборник(займет не более 3 минут)

+

Получите свой экземпляр сборника и свидетельство о публикации в нем

Инфоурок / Математика / Другие методич. материалы / Учебный проект по математике "Оставьте мне свои координаты"
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Математика

Учебный проект по математике "Оставьте мне свои координаты"

Выбранный для просмотра документ Мой проект.docx

библиотека
материалов

hello_html_2b7175cc.gifhello_html_m68466607.gifhello_html_m6475128c.gifhello_html_m546dbdd.gifhello_html_m4459a504.gifhello_html_m6c45f63c.gifhello_html_1f32c5a0.gifhello_html_mb419d65.gifhello_html_8aaf6bb.gifhello_html_13f7a63.gifhello_html_m1258450.gifhello_html_m63e27022.gifПроект учащихся 6 «А» и 6 «Б классов МБОУСОШ

станицы Терской»

«Оставьте мне свои координаты».



Всё в этой жизни легко найти: дом чей-то, офис, цветы и грибы,

Место в театре, в классе свой стол, ты лишь узнай координатный закон.

Краткая аннотация проекта:

Материал по теме "Координатная плоскость" изучается в курсе математики 6 класса. На изучение темы отводится 4 часа. Эта тема по времени приходится на конец апреля – начало мая, когда учитель и дети загружены работой по завершению учебного года. Умения хорошо ориентироваться в координатной плоскости имеют важное значение для последующей работы над темой «Графики», поэтому 4-х часов для изучения материала недостаточно. Материал интересен для обучающихся и позволяет использовать метод проектной деятельности. Поэтому работа над этой темой была начата раньше срока в режиме опережающего обучения. Учащиеся получали краткую информацию по теме проекта, индивидуальные и групповые задания. В результате они смогли проявить самостоятельность в приобретении знаний по данной теме, показать свою творческую активность, проявить фантазию в подборе и оформлении дополнительного материала. Работа над проектом дала возможность учащимся активно использовать полученные умения на практике. Они научились определять координаты различных объектов, пользуясь системой координат. Дети с интересом выполняли рисунки на координатной плоскости. Данная тема является подготовительным этапом для построения графиков функций, а данный проект – это первый этап более объёмного проекта «Графики улыбаются», работа над которым планируется в первом полугодии следующего учебного года.

Предметы, с которыми связана тема «Координатная плоскость»

Математика (Координатная плоскость); география (Географические координаты; Определение место нахождения на карте, ); Астрономия ( звездные координаты); Химия - построение таблицы Менделеева (положение каждого элемента в таблице определяется тоже координатами: ряд и столбец)

Вопросы, направляющие проект

Основополагающий вопрос:

Как «сухая» математика позволяет ориентироваться в окружающей нас среде?

Проблемные вопросы

Является ли система координат чисто математическим понятием?





Учебные вопросы

  • Что такое координатная плоскость?

  • Что такое система координат?

  • Под каким углом пересекаются координатные прямые Х и Y, образующие систему координат на плоскости?

  • Как называют каждую из этих прямых?

  • Как называют точку пересечения этих прямых?

  • Как называют пару чисел, определяющих положение точки на плоскости?

  • Как называют первое число? Второе число?

  • Как найти абсциссу и ординату?

  • Как построить точку по ее координатам?

  • Кто впервые ввел координатную плоскость?

  • Где используется система координат?

Методические задачи:

Ввести понятие системы координат на плоскости, понятие координатной плоскости, осей координат

Научить выполнять построение точки на плоскости по ее координатам и находить координаты точек

Научить рисовать по координатам и определять координаты точек рисунка.

Научить кратко излагать свои мысли устно и письменно

Научить читать простые графики.



Проект «Оставьте мне свои координаты»

Структура проекта



Координатор проекта – Яшина Н.П.

Учащиеся 6-х классов Терской СОШ



ста





Теоретики

Практики

Исследователи

Методические материалы

Дидактические материалы





Рисуем по координатамУчимся строить график

Кто открыл координаты?

Подготовить тест Координатная плоскость

Вводная презентация

Рисуем по координатам



Математический кроссворд



План реализации проекта





План проведения проекта



Организационно-подготовительный этап

  • Вводная беседа учителя :

  • Что надо знать, чтобы найти нужного вам человека?

  • Как найти своё место в классе? В театре?

  • Знаете ли вы, как найти клад?

  • Как можно помочь тонущему судну?

  • Как найти на небе интересующую вас звезду?



Практический этап.

Задания для групп учащихся, желающих принять участие в проекте:

1.Историки: Найти и изучить информацию об истории возникновения координатной плоскости, приготовить сообщение по теме.

2.Теоретики: Подготовить теоретические сведения о системе координат. Проверить усвоение материала в форме теста.

3.Исследователи: Определить географические координаты г. Москвы и г. Моздока.

Узнать, как таблица Менделеева связана с координатной плоскостью.

4.Практики: а) Построить изображение созвездий Малой и Большой Медведицы в координатах.

б) Организовать конкурс «Рисуем по координатам».

в) Построить график изменения температуры в течение суток 26 апреля (Каждый ученик получил задание записать температуру в определённое время суток).











Содержание итогового урока по защите проекта.

Зачем и где нужны людям координаты

В повседневной жизни в речи взрослых мы иногда слышим такую фразу: “Оставьте мне свои координаты”. Это выражение означает, что собеседник должен оставить свой адрес или номер телефона, что и считается в этом случае координатами человека. Главное здесь в том, что по этим данным можно найти человека. Именно в этом и состоит суть координат или, как обычно говорят, системы координат: это правило, по которому определяется положение того или иного объекта.

Системы координат пронизывают всю практическую жизнь человека. Кроме почтовых адресов и номеров телефонов, мы уже знакомы с системой координат в зрительном зале кинотеатра (номер ряда и номер места), в поезде (номер вагона и номер места), с системой географических координат (долгота и широта). Если бы не было географической системы координат, невозможно было бы помочь тонущему судну. При изучении астрономии тоже используется система координат для определения месторасположения звёзд. На уроках химии, изучая таблицу Менделеева, мы также встретимся с системой координат. Те из вас, кто играл в “морской бой”, пользовались при этом соответствующей системой координат. Каждая клетка на игровом поле определяется буквой и цифрой. Буквами помечены горизонтали игрового поля, а цифрами – вертикали. Аналогичная система координат используется в шахматах. Такого рода “клеточные координаты” обычно используются на военных, морских, геологических картах. Так что знание системы координат необходимо не только на уроках математики.

Термин “координаты” произошел от латинского слова и означает – упорядоченный.

Группа «Историки» Как люди изобрели систему координат?

Во II веке до н.э. греческий ученый Гиппарх предложил опоясать на карте земной шар параллелями и меридианами, покрыв его как бы условной сеткой, и ввести географические координаты - широту и долготу.

Правда, еще до этого астрономы использовали данный прием, изучая небесный свод. Все созвездия на небе можно отыскать по координатам.

Во II веке н.э. знаменитый древнегреческий астроном и математик Клавдий Птолемей активно пользовался долготой и широтой в качестве географических координат. Но систематизировал эти понятия в 17 веке французский математик, философ, физик и физиолог…

Чтобы узнать его имя, надо разгадать кроссворд:

кроссворд 1

  • По горизонтали:

  1. Вспомните компоненты действия деления. Как называется то число, которое делим?

  2. Значение переменной, которое обращает уравнение в верное числовое равенство.

  3. Параллелепипед, в котором все ребра равны.

  4. Вспомните компоненты действия сложения. Как называется число, которое складывают?

  5. Равенство, содержащее неизвестное число, обозначенное буквой.

  6. Результат действия деления.

Найдите получившуюся по вертикали фамилию человека, имя которого и носит современная система координат

КРОССВОРД2



Рене́ Дека́рт (1596 — 1650) — французский математик, философ, физик и физиолог.

Именно он придумал в 1637 году систему координат, которая используется во всем мире и известна каждому школьнику. Ее называют также «Декартова система координат». Используя систему координат, можно указать местоположение любого объекта. Для этого необходима пара чисел.

  • Группа «Теоретики» Что такое координатная плоскость?

Для того, чтобы определить положение какой-либо точки на плоскости необходимо знать две ее координаты. Для этого на плоскости строится система координат. Через данную точку О проводят две взаимно перпендикулярные прямые – х и у, которые иначе называются осями координат. Точку пересечения О называют – началом координат. Она служит началом отсчета единичных отрезков для каждой из осей.

Положительное направление показывают стрелками (ось Ох –“слева направо”, ось Оу – “снизу вверх”). Ось Ох –называют осью абсцисс, а Оу – ось ординат. Плоскость, на которой задана система координат, называется координатной плоскостью. Оси координат делят плоскость на четыре части, называемые координатными четвертями. Их нумеруют против часовой стрелки.

Определим положение точки на координатной плоскости. Пусть на координатной плоскости отмечена некоторая точка А(-3; 2). Проведем из нее перпендикуляр на ось Ох (ось абсцисс). Точка их пересечения на оси Ох имеет координату равную -3: х=--3. Число 3 называют абсциссой или первой координатой точки А.Проводим из точки А перпендикуляр к оси Оу (оси ординат), получаем, что ордината (или вторая координата) точки А равна 2: у = 2.Числа -3 и 2 определяют положение точки А на координатной плоскости. Их называют координатами точки на плоскости. Указать только одну координату точки недостаточно, так как абсциссу х=-3 имеют еще и другие точки,также обстоит дело с ординатой точки. Координаты точки записывают в скобках: А (х;у), пример В() При этом абсцисса точки всегда пишется на первом месте, а ордината - на втором. Описанная система координат называется прямоугольной. Часто также ее называют декартовой системой координат в честь французского философа и математика Рене Декарта, который впервые применил ее в своих исследованиях.

ТЕСТ по теме «Координатная плоскость»

1)      Под каким углом пересекаются координатные прямые, образующие систему координат на плоскости?

  • Под острым углом  

  • Под прямым углом

  • Под тупым углом

  • Под развернутым углом

2)      Как называется горизонтальная прямая?

  • Аппликата

  • Ордината

  • Абсцисса

  • Биссектриса




3)      Как называется вертикальная прямая?

  • Ордината

  • Абсцисса

  • Аппликата

  • Биссектриса


4)      Как называют точку пересечения этих прямых?

  • Начало всех начал

  • Середина

  • Начало отсчета

  • Разделитель


5)      Как называют пару чисел, определяющих положение точек на плоскости?

  • Координаты точки

  • Числа на плоскости

  • Числа для точки

  • Показатели точки


6)      Что показывают стрелки на координатных прямых?

  • Что прямые можно продолжить

  • Положительное направление

  • Отрицательное направление

  • Ничего не показывают


7)      В какой координатной четверти может находится точка, имеющая координаты с разными знаками?

  • В 1 или во 2

  • Только во 2

  • Во 2 или в 3

  • Во 2 или в 4


8)      Как правильно записываются координаты?

  • (х;у)

  • (у;х)

  • х, у

  • В любом порядке



Группа «Исследователи»

Участники группы рассказывают, как применяется система координат в географии. Показывают слайд с изображением карты Моздокского района и называют координаты города.

Группа «Практики»

Участники группы «Практики» представляют свои работы:

а) Изображение на координатной плоскости созвездий Малой медведицы и Большой медведицы. Рассказывают легенду об этих созвездиях.

Мифов о созвездиях очень много. Познакомимся с несколькими из них: Созвездия Большой и Малой Медведиц. Ревнивая Юнона превратила Каллисто в медведицу и спрятала в горах Аркадии. У Каллисто родился медвежонок-сын Аркад. Когда Юпитер, наконец, нашел возлюбленную с ребенком, в награду за страдания, которые им выпали, он перенес медведицу и медвежонка на небо.

б) Показывают рисунки, построенные по координатам точек.

в) Показывают построенный график изменения температуры в течение суток 26 апреля.

Вывод: Всё живое и неживое во Вселенной имеет свои координаты









Приложения.

Рисуем по координатам.

«Рыбка». (3; 3); (0; 3); (-3; 2); (-5;2);

(-7;4); (-8;3); (-7;1); (-8;-1);

(-7;-2);       (-5;0); (-1;-2); (0;-4); (2;-4);

(3;-2); (5;-2); (7;0); (5;2); (3;3); (2;4);

(-3;4); (-4;2); глаз(5;0).

. «Утёнок».(3; 0); (1; 2); (-1;2); (3;5); (1;7); (-3;6); (-5;7); (-3;4);

(-6;3); (-3;3);    (-5;2); (-5;-2); (-2;-3);

(-4;-4); (1;-4); (3;-3); (6;1); (3;0);

глаз (-1;5).


Белочка


(1;-4)


(-1;0)


(-3;3)


(9;0)


(1;-6)


(-3;0)


(-1;4)


(9;-4)


(-4;-6)


(-3;-1)


(0;6)


(6;-4)


(-3;-5)


(-4;-1)


(1;4)


(5;-1)


(-1;-5)


(-4;0)


(1;2)


(4;-1)


(-3;-4)


(-3;1)


(3;4)


(1;-4)


(-3;-3)


(-1;1)


(6;5)


(-1;3)


(-1;-1)


(-1;2)


(9;2)


Глаз



«Медвежонок»


(-4;5)


(0;7)


(2;-3)


(-2;-1)


(-3;5)


(1;7)


(3;-4)




(-3;6)


(2;6)


(2;-4)

(-6;-1)


(-2;7)


(2;4)


(1;-8)


(-3;1)


(-1;7)


(1;3)


(-2;-8)


(-2;2)


(-1;8)


(1;2)


(-1;-7)


(-2;3)


(0;8)


(2;1)


(-1;-3)


(-3;3)








(-4;4)

(_4;5)








(-2;5)






Глаз



 Постройте в одной координатной плоскости созвездие “Малой Медведицы”:

(6; 6), (3; 7), (0; 8), (-3; 6), (-6; 4), (-8; 6), (-5; 8), (-3; 6)

и “Большой Медведицы”:

(-15; -5), (-10; -3), (-6;-3), (-3; -4), (6; -4), (5; -8), (-1; -8), (-3; -4).



Лиса


(-5;-5)


(1;5)


(5;4)


(-4;-3)


(-4;5)


(1;4)


(6;2)


(-5;-3)


(-3;6)


(0;3)


(6;0)


(-3;-1)


(-2;6)


(0;2)


(3;-3)


(-4;0)


(-1;7)


(2;0)


(-1;-3)


(-4;3)


(-1;6)


(2;-1)


(-1;-2)


(-3;4)


(0;6)


(4;3)


(-2;-1)


(-3;5)








Глаз



Рыбка


(3;3)


(-8;-1)


(7;0)


(0;3)


(-7;-2)


(5;2)


(-3;2)


(-5;0)


(3;3)


(-5;2)


(-1;-2)


(2;4)


(-7;4)


(0;-4)


(-3;4)


(-8;3)


(3;-2)


(-4;2)


(-7;1)


(5;-2)


(5;0)






Глаз



Белочка 2


(-2;4)


(2;-3)


(10;4)


(-2;-4)


(0;6)


(5;4)


(3;-6)


(-1;0)


(0;5)


(7;5)


(2;-6)


(-4;0)


(1;6)


(7;6)


(0;-7)


(-1;1)


(1;5)


(8;7)


(-4;-7)


(-1;2)


(2;3)


(9;7)


(-1;-6)


(-2;3)


(1;2)


(10;6)


(-2;-5)


(0;4)








Глаз



Зайчик


(1;7)


(-8;0)


(-1;3)


(3;5)


(0;10)


(-9;1)


(0;-2)


(2;6)


(-1;11)


(-9;0)


(1;-2)


(1;9)


(-2;10)


(-7;-2)


(0;0)


(0;10)


(0;7)


(-2;-2)


(0;3)


(1;6)


(-2;5)


(-3;-1)


(1;4)


Глаз


(-7;3)


(-4;-1)


(2;4)









C:\Documents and Settings\Петровна\Рабочий стол\картинки\кот.png

Дракоша

hello_html_me0d6692.gif

----------------------------------------------------------------------------------------------------------------------------------------

П 45 31 Лебедь М 6

hello_html_768c5260.gif

------------------------------------------------------------------------------------------------------------------------------------------

П 45 53 Змейка М 6

hello_html_618dd0ca.gifи hello_html_26730cd0.gif и hello_html_5e25c799.gif

hello_html_74d567c1.gifи

hello_html_19a37abf.gifи hello_html_m4c976400.gif и hello_html_m1c56d70c.gif

П 45 37 Бегемот М 6

hello_html_m15c96e05.gif-----------------------------------------------------------------------------------------------------------------------------------------

П 45 48 Колокольчик М 6

hello_html_554fd6e4.gif---------------------------------------------------------------------------------------------------------------------------------------------



П





C:\Documents and Settings\Петровна\Рабочий стол\картинки\заяц.png

C:\Documents and Settings\Петровна\Рабочий стол\картинки\медведица.jpg

C:\Documents and Settings\Петровна\Рабочий стол\проект графики\рисунки\15.jpg

C:\Documents and Settings\Петровна\Рабочий стол\картинки\голубь.png

C:\Documents and Settings\Петровна\Рабочий стол\картинки\дельфин.png

C:\Documents and Settings\Петровна\Рабочий стол\проект графики\рисунки\8.jpg

C:\Documents and Settings\Петровна\Рабочий стол\проект графики\рисунки\10.jpg

C:\Documents and Settings\Петровна\Рабочий стол\проект графики\рисунки\11.jpg C:\Documents and Settings\Петровна\Рабочий стол\проект графики\рисунки\12.jpg





C:\Documents and Settings\Петровна\Рабочий стол\проект графики\рисунки\14.gif







C:\Documents and Settings\Петровна\Рабочий стол\картинки\123.png

C:\Documents and Settings\Петровна\Рабочий стол\картинки\кит.jpg

C:\Documents and Settings\Петровна\Рабочий стол\картинки\утка.png

C:\Documents and Settings\Петровна\Рабочий стол\картинки\лев.jpg























































х

у

9

3

7

1

1?





х

у

5

4

6

4

2?





х

у

6

5

7

3

3?



1. –2х + 19 = 5х – 16 (х; 1)

2. 8х – 25 = 3х + 20 (х; 0)

3. 6 – у = 3(3у – 8) (5; у)

4. 5(у + 1,2) = 7у + 4 (1; у)

5. 4(х – 3) – 16 = 5(х – 5) (х; 3)

6. 3х – 17 = 8х + 18 (х; 0)

7. 11 – 5у = 12 – 6у (–3; у)

8. 4у + (11,8 – у) = 3,8 – 5у (1; у)

9. 3х + 16 = 8х – 9 (х; 1)

1. 3х + 5 = 8х – 15 (х; 0)

2. 3х + 16 = 8х – 9 (х; 4)

3. 4 + 25у = 6 + 24у (2; у)

4. 4(х – 3) – 16 = 5(х – 5) (х; 3)

5. 5х + 27 = 4х + 21 (х; 0)

6. 4(3 – 2у) – 42 = 2(3 + 2у) (–3; у)

7. 3(4х – 8) = 3х – 6 (х; –2)

8. 1 – 5(1,5 + х) = 6 – 7,5х (х; –4)

9. 3(5 – х) + 13 = 4(3х – 8) (х; 0)

1. 15х – 3 = 10х + 12 (х; 1)

2. –2х – 25 = –5х – 7 (х; 1)

3. 4(5 – 2у) = 2(1 – у) (3; у)

4. 3у + 16 = 8у – 9 (1; у)

5. 4х + (11,8 – х) = 3,8 – 5х (х; 1)

6. 3у + 2(2у – 3) = 8 – 7(у – 2) (–7; у)

7. 2 – 5х = х + 14 (х; –3)

8. 5(у – 7) = 3(у – 4) – 29 (2; у)

9. 11 – 5у = 12 – 6у (3; у)

Соедините последовательно точки, координаты которых узнаете,
решив все уравнения:

Соедините последовательно точки, координаты которых узнаете,
решив все уравнения:

Соедините последовательно точки, координаты которых узнаете,
решив все уравнения:

х

у

6

7

5

7

4?





х

у

5

8

6

7

6?





х

у

3

8

3

7

7?



1. –12х – 3 = 11х – 3 (х; 2)

2. 1,4 – 0,6у = 0,7 – 0,5у (2; у)

3. 16 – 3х = 4 – 7х (х; 2)

4. 4х + (11,8 – 3х) = 5,8 – 5х (х; 0)

5. 4у + 12 = 3у + 8 (–5; у)

6. 3(4х – 5) = 3х – 6 (х; –2)

7. 3у – 17 = 8у + 18 (6; у)

8. 0,18х – 2,83 = 0,19х – 2,89 (х; –4)

9. 5(у + 7) = 3(у + 4) + 27 (0; у)







1. 6х + 10 = 4х + 12 (х; 3)

2. 7х + 25 = 10х + 16 (х; 6)

3. 3у + 16 = 8у – 9 (5; у)

4. 0,4(6у – 7) = 0,5(3у + 7) (5; у)

5. 4(2 – х) = 7(2х – 4) (х; 8)

6. 3(2х – 1) + 7 = 4 (х; 6)

7. 5у – 7 = 11 + 2у (–1; у)

8. 9,6 – (2,6 – х) = 4 (х; 8)

9. 1,7 – 0,6у = 0,3 – 0,4у (–6; у)

10. 17 – 4х = 5 – 6х (х; 5)

11. 2,8 – 3,2х = –4,8 – 5,1х (х; 6)

12. 0,2(5х – 2) = 0,3(2х – 1) – 0,9 (х; 3)

13. 2у – 1,5(у – 1) = 3 (1; у)

14. 1 – 5(1,5 + х) = 6 – 7,5х (х; –4)

15. 3у – 18 = 8у + 17 (4; у)

16. 4(1 – 0,5х) = –2(3 + 2х) (х; –7)

17. 5х + 27 = 4х + 21 (х; –4)

18. у – 15 = 4(3 – 2у) (–2; у)

1. 3(х – 5) + 10 = 2(3 + х) – 14 (х; 1)

2. 1,2(2х – 4) + 0,6 = 3х – 3,6 (х; 1)

3. 16у – 4 = 12у + 8 (–1; у)

4. 5(7 – 2х) + 13 = 9х + 48 (х; 3)

5. 4(3 – 7у) + 10 = –10у – 86 (–1; у)

6. 6у – 72 = 4у – 56 (0; у)

7. 5х + (13,4 – 2х) = 16,4х (х; 5)

8. 12 – (4х + 5) = 7 + х (х; 3)

9. 5(2х – 3) + 11 = 6х (х; 3)

10. –2(7 – у) + 13 = у (1; у)

11. 5 – 3(2х – 1) = 4х – 22 (х; 1)

12. 1,2х – 7 = 6х – 16,6 (х; 0)

13. 2(1,2у + 5) – 1 = 2у + 6,6 (2; у)

14. 1,7х + 0,9 = 2х (х; –7)

15. 9 – 2(х + 4) = 2х + 13 (х; –7)

16. –4(2 + 3х) + 11 = –15х – 3 (х; –6)

17. 5у + 12 = –3у + 12 (–2; у)

18. 0,2(3у + 2) = 2,6у – 1,6 (–3; у)

Соедините последовательно точки, координаты которых узнаете,
решив все уравнения:





х

у

6

9

3

1

5?







1. 6 – 2у = 8 – 3у (1; у)

2. 15х + 3 = 10х – 12 (х; 2)

3. –5х – 11 = –6х – 12 (х; –1)

4. 3х + 5 = 8х – 15 (х; –1)

5. 5(х + 3) = 27 + 3х (х; 2)

6. 3у + (4 – 2у) = 6 (1; у)

7. 5у – (13 + у) = у + 14 (1; у)

8. 3(2х – 4) – 2(х + 3) = –2 (х; 4)

9. 4у – 3 = 2(7 – у) + 1 (1; у)











1. «Чайка»

hello_html_m2425dfdc.gif

5. «Кораблик»

hello_html_5ba6284b.gif

2. «Рыбка»

hello_html_5c0215f4.gif

6. «Платье»

hello_html_7fb28850.gif

3. «Утка»

hello_html_m5b51bd2c.gif

7. «Свеча»

hello_html_m45206b73.gif

4. «Пикирующий самолет»

hello_html_mc9cef3.gif

8. «Олень»

hello_html_2650ec2f.gif



Выбранный для просмотра документ Оставьте мне свои координаты [Автосохраненный].pptx

библиотека
материалов
Оставьте мне свои координаты Проект по математике учащихся 6-х классов МБОУСО...
Всё в этой жизни легко найти: дом чей-то, офис, цветы и грибы, Место в театре...
Система координат в жизни людей
Сообщите свои координаты!!!
Координаты звёздного неба
Игра «Морской бой» Координаты клеток - цифры на одной оси, буквы - на второй.
Шахматы Вертикали – цифры, горизонтали – латинские буквы.
История возникновения систем координат Во II веке до н.э. греческий ученый Г...
История возникновения систем координат Во II веке н.э. знаменитый древнегреч...
Математический кроссворд По горизонтали: Вспомните компоненты действия делен...
Математический кроссворд Найдите получившуюся по вертикали фамилию человека,...
Рене Декарт Рене́ Дека́рт (1596 — 1650) — французский математик, философ, фи...
Прямоугольная система координат
Тест по теме «Координатная плоскость» 1) Под каким углом пересекаются координ...
Определяем координаты географических объектов
Координаты города Моздока на карте: 43 градуса 44 минуты с. ш.; 44 градуса 41...
Конкурс «Рисуем по координатам» Активные участники конкурса 6 «А» класс Актив...
Рисуем по координатам Рисунок «Дракоша» выполнили Лобанова Юлия и Соина Татья...
Рисуем по координатам
Решаем уравнения и рисуем по координатам Соедините последовательно точки, коо...
На рисунке изображен график температуры воздуха в течение суток t, ч Найдите...
Самостоятельная работа Презентацию «Легенда о созвездиях» подготовил Алиев Ма...
Вывод: Всё живое и неживое во Вселенной имеет свои координаты 2012-2013 учебн...
Наши координаты: МБОУСОШ станицы Терской, 6 «А» и 6 «Б» классы
СПАСИБО ВСЕМ УЧАСТНИКАМ ПРОЕКТА!
29 1

Описание презентации по отдельным слайдам:

№ слайда 1 Оставьте мне свои координаты Проект по математике учащихся 6-х классов МБОУСО
Описание слайда:

Оставьте мне свои координаты Проект по математике учащихся 6-х классов МБОУСОШ станицы Терской 2012-2013 г. Учитель Яшина Н.П.

№ слайда 2
Описание слайда:

№ слайда 3 Всё в этой жизни легко найти: дом чей-то, офис, цветы и грибы, Место в театре
Описание слайда:

Всё в этой жизни легко найти: дом чей-то, офис, цветы и грибы, Место в театре, в классе свой стол, ты лишь узнай координатный закон.

№ слайда 4 Система координат в жизни людей
Описание слайда:

Система координат в жизни людей

№ слайда 5
Описание слайда:

№ слайда 6 Сообщите свои координаты!!!
Описание слайда:

Сообщите свои координаты!!!

№ слайда 7 Координаты звёздного неба
Описание слайда:

Координаты звёздного неба

№ слайда 8
Описание слайда:

№ слайда 9 Игра «Морской бой» Координаты клеток - цифры на одной оси, буквы - на второй.
Описание слайда:

Игра «Морской бой» Координаты клеток - цифры на одной оси, буквы - на второй.

№ слайда 10 Шахматы Вертикали – цифры, горизонтали – латинские буквы.
Описание слайда:

Шахматы Вертикали – цифры, горизонтали – латинские буквы.

№ слайда 11 История возникновения систем координат Во II веке до н.э. греческий ученый Г
Описание слайда:

История возникновения систем координат Во II веке до н.э. греческий ученый Гиппарх предложил опоясать на карте земной шар параллелями и меридианами, покрыв его как бы условной сеткой, и ввести географические координаты - широту и долготу. Правда, еще до этого астрономы использовали данный прием, изучая небесный свод.

№ слайда 12 История возникновения систем координат Во II веке н.э. знаменитый древнегреч
Описание слайда:

История возникновения систем координат Во II веке н.э. знаменитый древнегреческий астроном и математик Клавдий Птолемей активно пользовался долготой и широтой в качестве географических координат. Но систематизировал эти понятия в 17 веке французский математик, философ, физик и физиолог… Чтобы узнать его имя, надо разгадать кроссворд.

№ слайда 13 Математический кроссворд По горизонтали: Вспомните компоненты действия делен
Описание слайда:

Математический кроссворд По горизонтали: Вспомните компоненты действия деления. Как называется то число, которое делим? Значение переменной, которое обращает уравнение в верное числовое равенство. Параллелепипед, в котором все ребра равны. Вспомните компоненты действия сложения. Как называется число, которое складывают? Равенство, содержащее неизвестное число, обозначенное буквой. Результат действия деления.

№ слайда 14 Математический кроссворд Найдите получившуюся по вертикали фамилию человека,
Описание слайда:

Математический кроссворд Найдите получившуюся по вертикали фамилию человека, имя которого и носит современная система координат

№ слайда 15 Рене Декарт Рене́ Дека́рт (1596 — 1650) — французский математик, философ, фи
Описание слайда:

Рене Декарт Рене́ Дека́рт (1596 — 1650) — французский математик, философ, физик и физиолог. Именно он придумал в 1637 году систему координат, которая используется во всем мире и известна каждому школьнику. Ее называют также «Декартова система координат».

№ слайда 16 Прямоугольная система координат
Описание слайда:

Прямоугольная система координат

№ слайда 17 Тест по теме «Координатная плоскость» 1) Под каким углом пересекаются координ
Описание слайда:

Тест по теме «Координатная плоскость» 1) Под каким углом пересекаются координатные прямые, образующие систему координат на плоскости? а) Под острым углом   б) Под прямым углом в) Под тупым углом г) Под развернутым углом 2)      Как называются горизонтальная и вертикальная прямые? а) Аппликата в) Абсцисса б) Ордината г) Биссектриса 3)      Как называют точку пересечения этих прямых? а) Начало всех начал в) Середина б) Начало отсчета г) Разделитель 4)      Как называют пару чисел, определяющих положение точек на плоскости? а) Координаты точки б) Числа на плоскости в) Числа для точки г) Показатели точки 5)      Что показывают стрелки на координатных прямых? а) Что прямые можно продолжить б) Положительное направление в) Отрицательное направление г) Ничего не показывают 6)      В какой координатной четверти может находиться точка, имеющая координаты с разными знаками? а) В 1 или во 2 в) Только во 2 б) Во 2 или в 3 г) Во 2 или в 4 7)      Как правильно записываются координаты? а) (х;у) в) (у;х) б) х, у г) В любом порядке

№ слайда 18 Определяем координаты географических объектов
Описание слайда:

Определяем координаты географических объектов

№ слайда 19 Координаты города Моздока на карте: 43 градуса 44 минуты с. ш.; 44 градуса 41
Описание слайда:

Координаты города Моздока на карте: 43 градуса 44 минуты с. ш.; 44 градуса 41 минута в. Д.

№ слайда 20 Конкурс «Рисуем по координатам» Активные участники конкурса 6 «А» класс Актив
Описание слайда:

Конкурс «Рисуем по координатам» Активные участники конкурса 6 «А» класс Активные участники конкурса 6 «Б» класс

№ слайда 21 Рисуем по координатам Рисунок «Дракоша» выполнили Лобанова Юлия и Соина Татья
Описание слайда:

Рисуем по координатам Рисунок «Дракоша» выполнили Лобанова Юлия и Соина Татьяна Рисунок «Лебедь» выполнили Нестерова Инна и Кучерявенко Анастасия

№ слайда 22 Рисуем по координатам
Описание слайда:

Рисуем по координатам

№ слайда 23 Решаем уравнения и рисуем по координатам Соедините последовательно точки, коо
Описание слайда:

Решаем уравнения и рисуем по координатам Соедините последовательно точки, координаты которых узнаете, решив все уравнения: 1. 6 – 2у = 8 – 3у (1; у) 2. 15х + 3 = 10х – 12 (х; 2) 3. –5х – 11 = –6х – 12 (х; –1) 4. 3х + 5 = 8х – 15 (х; –1) 5. 5(х + 3) = 27 + 3х (х; 2) 6. 3у + (4 – 2у) = 6 (1; у) 7. 5у – (13 + у) = у + 14 (1; у) 8. 3(2х – 4) – 2(х + 3) = –2 (х; 4) 9. 4у – 3 = 2(7 – у) + 1 (1; у)

№ слайда 24 На рисунке изображен график температуры воздуха в течение суток t, ч Найдите
Описание слайда:

На рисунке изображен график температуры воздуха в течение суток t, ч Найдите температуру воздуха в различное время суток, заполнив таблицу: 7 -1 22 -2 20 0 1 17 4 19 Т С о t,ч T, C

№ слайда 25 Самостоятельная работа Презентацию «Легенда о созвездиях» подготовил Алиев Ма
Описание слайда:

Самостоятельная работа Презентацию «Легенда о созвездиях» подготовил Алиев Марат Каждая звезда имеет свои координаты на карте звёздного неба  Постройте в одной координатной плоскости созвездие “Малой Медведицы”: (6; 6), (3; 7), (0; 8), (-3; 6), (-6; 4), (-8; 6), (-5; 8), (-3; 6) и “Большой Медведицы”: (-15; -5), (-10; -3), (-6;-3), (-3; -4), (6; -4), (5; -8), (-1; -8), (-3; -4).

№ слайда 26
Описание слайда:

№ слайда 27 Вывод: Всё живое и неживое во Вселенной имеет свои координаты 2012-2013 учебн
Описание слайда:

Вывод: Всё живое и неживое во Вселенной имеет свои координаты 2012-2013 учебный год

№ слайда 28 Наши координаты: МБОУСОШ станицы Терской, 6 «А» и 6 «Б» классы
Описание слайда:

Наши координаты: МБОУСОШ станицы Терской, 6 «А» и 6 «Б» классы

№ слайда 29 СПАСИБО ВСЕМ УЧАСТНИКАМ ПРОЕКТА!
Описание слайда:

СПАСИБО ВСЕМ УЧАСТНИКАМ ПРОЕКТА!

Краткое описание документа:

Данный материал представляет собой описание проектной деятельности шестиклассников по теме "Координатная плоскость". Творческое названия проекта "Оставьте мне свои координаты". В процессе работы над проектом учащиеся узнают, что всё в этом мире имеет свой "адрес", называемый координатами. Ребята получают задания узнать, как появилась координатная плоскость и почему она названа Декартовой. Они учатся строить точки по координатам и определять координаты точки. Неподдельный интерес вызвал конкурс "Рисуем по координатам". Учащиеся составляли сами рисунки и находили их в интернете. На защите проекта была организована выставка рисунков по координатам. В приложении даны образцы рисунков по координатам.

Автор
Дата добавления 23.01.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров5461
Номер материала 332103
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх