Инфоурок Физика КонспектыДополнительный материал Сварочные дуги с неплавящимся электродом

Дополнительный материал Сварочные дуги с неплавящимся электродом

Скачать материал

Сварочные дуги с неплавящимся электродом

В качестве неплавящихся электродов при дуговой сварке при­меняют главным образом вольфрамовые электроды, значительно реже – угольные (графитовые) и охлаждаемые медные электроды. Наибольшее распространение получила дуговая сварка вольфра­мовым электродом (W-электродом) в среде аргона, гелия и их смеси.

Вольфрам, нагреваясь от дуги до температур, близких к тем­пературе плавления, становится весьма восприимчивым к воздейст­вию активных газов. Поэтому в целях экономии электродов и для обеспечения стабилизации процесса обычно при сварке W-электродом используют инертные газы с содержанием кислорода не бо­лее 0,001 % объемной доли.

Аргонодуговая сварка w-электродом

Аргонодуговая сварка W-электродом широко применяется для сварки ответственных конструкций из коррозионно-стойких ста­лей, цветных металлов, алюминиевых и других сплавов. Сварку обычно ведут на постоянном токе прямой полярности (исключая сварку алюминия) от источника с крутопадающей внешней харак­теристикой.

W-дуги могут быть с катодным пятном и без катодного пятна (так называемые нормальные дуги). Несмотря на различие механизмов катодного процесса (заключающееся в значительной доле электростатической эмиссии в дугах с катод­ным пятном), статические характеристики и тепловые балансы обеих дуг сходны. Нормальная дуга всегда может быть по­лучена на полукруглом торце катода из чистого вольфрама. При нагреве электрода дуга с катодным пятном может сама перейти в термоэмиссионную нормальную дугу.

Образованию пятна на катоде способствуют введение добавки тория, иттрия или лантана к вольфраму (обычно до 1 – 2 %), луч­ший теплоотвод (меньший вылет) электрода и более острая заточ­ка его рабочего конца. Поверхность торированного, иттрированного или лантанированного вольфрама, имеющего по сравнению с чистым вольфрамом пониженную рабочую температуру, практи­чески не оплавляется в широком диапазоне токов (100 – 400 А). Коническая вершина электрода сохраняет свою форму, что обес­печивает сжатие дуги у катода.

Дуга с катодным пятном имеет несколько повышенное (при­мерно на 10 %) напряжение (катодное и общее) и большую (на 10 – 20%) температуру столба. Температура катода в дуге с катодным пятном ниже температуры поверхности электрода нормальной W-дуги, где катодное пятно занимает всю сфериче­скую поверхность электродного стержня.

 

W-дуга в гелии

По теплофизическим свойствам гелий имеет более высокий потенциал ионизации (24,6 вместо 15,7 эВ) и в 10-15 раз большую теплопроводность. Кроме того, он легче аргона примерно в 10 раз. Достаточно высокая для существования дуги ионизация аргона происходит примерно при температуре 16 000 К, для гелия – при 25 000 К. Все эти особен­ности существенно влияют на свойства W-дуги в гелии. Например, добавление к аргону гелия постепенно превращает конусную дугу в сферическую.

Высокая средняя электриче­ская напряженность Е в плазме гелия, достигающая 2 В/мм про­тив 0,8 – 1,2 В/мм в плазме аргона, обусловливает высокое напряже­ние на дуге.

 

Уникальность W-дуг среди газовых разрядов обусловлена тем, что они могут гореть при напряжениях меньших, чем потенциал ионизации проводящего газа.

При малых мощностях значительная доля энергии (до 40 %) может выделяться на катоде и лишь от 20 до 30 % - на аноде. Это связано с тем, что температура катода низ­ка и на эмиссию требуется большая затрата мощности источника. С увеличением тока доля катодной теплоты уменьшается обычно до 25 % и даже до 8 – 12 %, а доля анодной теплоты достигает от 80 до 85 % общей мощности дуги.

Расход W-электрода при сварке на постоянном токе прямой по­лярности может значительно увеличиться при слишком большом токе или при подключении его на обратную полярность, а также при недостаточной защите электрода инертным газом или возбуждении дуги касанием. Допускаемые плотности тока для W-электродов самые высокие на постоянном токе прямой полярности (от 20 до 30 А/мм2), примерно в 2 раза ниже на переменном токе и еще ниже (в 3-8 раз) – при сварке на постоянном токе обратной полярности.

Для электродов в гелии допустима меньшая плотность тока, т.к. температура гелиевой плазмы выше, чем плазмы аргона, и теплопередача на катод больше. С увеличением диаметра W-элект­родов допустимая плотность тока уменьшается обратно пропор­ционально.

 

Дуга с полым неплавящимся катодом в вакууме

Дуговой разряд с полым катодом (ДРПК) в вакууме применя­ется для сварки ответственных изделий из химически активных металлов и сплавов. Сварку ведут на постоянном токе прямой по­лярности, от источника с крутопадающей внешней характеристи­кой. Процесс сварки осуществляется стабильно в диапазоне давлений в камере от 1 до 10-2 Па при подаче (через полость катода) аргона 1 – 2 мг/с.

Характерной особенностью нормального режима является значительное проникание плазмы разряда в полость катода и немо­нотонное распределение темпера­туры по длине катода с максиму­мом, расположенным на некото­ром расстоянии r от выходного торца катода. Участок вблизи максимума температуры нагрева полого катода принято называть активной зоной (A3).

Наблюдения за положением A3 показали, что в случае изме­нения какого-либо из параметров режима ДРПК происходит увели­чение статического давления р перед входом в полый катод (например, увеличение подачи плазмообразующего газа или тока) и A3 смещается в сторону его выходного сечения. Вместе с тем ста­тическое давление р в A3 практически не зависит от этих пара­метров и изменяется в диапазоне р∞ = 900 – 1100 Па. При этом плазма как бы вытесняется из катодной полости, а напряжение ДРПК несколько снижается. Положение A3 существенно зависит от тока ДРПК. При I = 10 – 20 А центр A3 уходит в глубь катода на 1,5 – 2 см и более, а в случае тока свыше 50 А он смещается ближе к выходному торцу на расстояние 0,4 – 0,8 см от него.

С увеличением длины дугового промежутка (расстояние от вы­ходного торца катода до анода) от 0,5 до 1 см центр A3 смещает­ся ближе к выходному сечению катода. Особенно это заметно при токах ДРПК свыше 50 А, когда столб дуги имеет цилиндрическую форму. При дальнейшем увеличении длины дугового промежутка смещение положения центра A3 практически не наблюдается.

Основная доля полной мощности ДРПК (от 70 до 90 %) выде­ляется на положительном электроде (аноде). С увеличением тока дуги доля выделяющейся на аноде мощности, как правило, увеличивается примерно до 90 %. По сравнению со свароч­ными дугами при атмосферном давлении ДРПК в вакууме являет­ся по доле выделяющейся на аноде мощности одним из самых эф­фективных источников энергии.

Энергетический баланс полого катода показал, что потери мощности в нем происходят за счет излучения, эмиссии электро­нов, теплопроводности и испарения материала катода. Наиболее существенны потери на излучение, составляющие 45 – 75 % пол­ной мощности, выделяющейся на катоде за счет бомбардировки ионами и выделения джоулевой теплоты. Потери на теплопровод­ность не превышают 8 – 14 %; потери на эмиссию электронов со­ставляют 17 – 40 % мощности, выделяющейся на катоде. Суммар­ная мощность потерь в полом катоде с увеличением тока как бы достигает своего насыщения и составляет по отношению к полной мощности дугового разряда 7 – 13 %.

Потери в столбе ДРПК в основном определяются давлением в камере и характером процессов в межэлектродном промежутке. ДРПК в вакууме на токах свыше 200 А отличается весьма вы­сокой концентрацией энергии, что приближает его к электронно­лучевому источнику энергии для сварки.

 

Просмотрено: 0%
Просмотрено: 0%
Скачать материал
Скачать материал "Дополнительный материал Сварочные дуги с неплавящимся электродом"

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Эксперт по оценке имущества

Получите профессию

Фитнес-тренер

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Краткое описание документа:

Данный документ содержит материал, предназначенный для изучения в системе СПО по профессии "Сварщик". Может идти как дополнение к изучаемым общеобразовательным предметам (химия, физика).


"В качестве неплавящихся электродов при дуговой сварке при­меняют главным образом вольфрамовые электроды, значительно реже – угольные (графитовые) и охлаждаемые медные электроды. Наибольшее распространение получила дуговая сварка вольфра­мовым электродом (W-электродом) в среде аргона, гелия и их смеси."


Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 664 462 материала в базе

Материал подходит для УМК

Скачать материал

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 29.05.2018 690
    • DOCX 38 кбайт
    • Оцените материал:
  • Настоящий материал опубликован пользователем Дубовикова Алена Валериевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Дубовикова Алена Валериевна
    Дубовикова Алена Валериевна
    • На сайте: 7 лет и 7 месяцев
    • Подписчики: 0
    • Всего просмотров: 83395
    • Всего материалов: 89

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Экскурсовод

Экскурсовод (гид)

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

Особенности подготовки к сдаче ЕГЭ по физике в условиях реализации ФГОС СОО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 49 человек из 25 регионов
  • Этот курс уже прошли 457 человек

Курс повышения квалификации

Теоретическая механика: векторная графика

36 ч. — 180 ч.

от 1580 руб. от 940 руб.
Подать заявку О курсе

Курс повышения квалификации

Особенности подготовки к сдаче ОГЭ по физике в условиях реализации ФГОС ООО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 81 человек из 33 регионов
  • Этот курс уже прошли 569 человек

Мини-курс

Современное инвестирование: углубленное изучение инвестиций и финансовых рынков

8 ч.

1180 руб. 590 руб.
Подать заявку О курсе
  • Сейчас обучается 26 человек из 13 регионов

Мини-курс

Основы работы в After Effects

3 ч.

780 руб. 390 руб.
Подать заявку О курсе

Мини-курс

Созависимые отношения и способы их преодоления

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 44 человека из 22 регионов
  • Этот курс уже прошли 32 человека