Инфоурок Физика ПрезентацииПрезентация по физике на тему "Электронная проводимость металлов"

Презентация по физике на тему "Электронная проводимость металлов"

Скачать материал
Скачать материал "Презентация по физике на тему "Электронная проводимость металлов""

Получите профессию

Методист-разработчик онлайн-курсов

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Методические разработки к Вашему уроку:

Получите новую специальность за 3 месяца

Системный администратор

Описание презентации по отдельным слайдам:

  • Экспериментальное доказательство существования свободных  дви­жением свободн...

    1 слайд


    Экспериментальное доказательство существования свободных дви­жением свободных электронов, было дано в опытах Л. И. Мандельштама и Н. Д. Папалекси (1913), Б. Стюар­том и Р. Толменом (1916).

    Опыт:
    На катушку наматывают проволоку, концы которой припаивают к двум металличе­ским дискам, изолированным друг от друга (рис. 1) . К концам дисков при помощи скользящих контактов присоединяют гальванометр. Катушку приводят в быстрое движение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относи­тельно проводника по инерции и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тор­мозятся и упорядоченное движение частиц, образующее ток, прекращается.. Направление тока говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд про­порционален отношению заряда частиц, создающих ток, к их массе, т. е. Iq /m. Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8- 1011Кл/кг. Эта величина сов­падает с отношением заряда электрона к его массе е/т, найденным
    ранее из других опытов.

    ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ МЕТАЛЛОВ
    Носителями свободных зарядов в металлах являются электроны. Их концентрация велика — порядка 1028 1/м3
    Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью концах проводника: l~U. В этом состоит качественное объ­яснение закона Ома на основе электронной теории проводимости металлов.

  • Движение электронов в металле. 


      Электроны под влиянием по­стоянно...

    2 слайд




    Движение электронов в металле.


    Электроны под влиянием по­стоянной силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения. Эта скорость не увеличивается в дальнейшем со временем, так как со стороны ионов кристаллической решетки на электроны действует не­которая тормозящая сила.
    Эта сила подобна силе сопротивления, действующей на камень, когда он тонет в воде. В результате средняя скорость упорядоченного движения электронов пропорциональна на­пряженности электрического поля в проводнике v—Е и, следовательно, разности потенциалов на концах проводника, так как E=U/l, где l — длина проводника. Cила тока пропорциональна разности потенциалов на концах проводника: l~U.
    В этом состоит качественное объ­яснение закона Ома на основе электронной теории проводимости металлов.


  • движения электронов в металле на основе законов классической механики не­возм...

    3 слайд

    движения электронов в металле на основе законов классической механики не­возможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для опи­сания этого движения.
    Наиболее наглядно это видно из следующего примера.
    Если экспериментально определить среднюю кинетическую энер­гию теплового движения электронов в металле при комнатной тем­пературе и найти соответствующую этой энергии температуру по формуле m•v/2=3/2 K•T, то получим температуру порядка 105—106 К.. Такая температура существует внутри звезд. Движение электронов в металле подчиняется законам квантовой механики.

    Вывод:
    Экспериментально доказано, что носителями свободных зарядов в металлах являются электроны. Под действием электрического поля электроны движутся с постоянной средней скоростью из-за тормо­жения со стороны кристаллической решетки. Скорость упорядочен­ного движения прямо пропорциональна напряженности поля в про­воднике.


  • ЗАВИСИМОСТЬ  СОПРОТИВЛЕНИЯ ПРОВОДНИКА  ОТ ТЕМПЕРАТУРЫРазличные вещества имеют...

    4 слайд

    ЗАВИСИМОСТЬ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ОТ ТЕМПЕРАТУРЫ
    Различные вещества имеют различные удельные сопротивления . Зависит ли сопротивление от состояния проводника; от его температуры? Ответ должен дать опыт.

    Опыт:
    Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется. Если при температуре, равной О°С, сопротивление проводника равно R0, а при температуре t оно равно R, то относительное из­менение сопротивления, как показывает опыт, прямо пропорциональ­но изменению температуры t:
    R-R0/R= α•t
    (1)
    Коэффициент пропорциональности α называют температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры. Температур­ный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К.
    Для всех металлических проводников α >0 и незначительно меняется с изменением температуры.








  • Сверхпроводимость    Сопротивление проводников зависит от температуры. Сопр...

    5 слайд


    Сверхпроводимость

    Сопротивление проводников зависит от температуры. Сопротив­ление металлов уменьшается с уменьшением температуры. Что про­изойдет при стремлении температуры к абсолютному нулю?

    В 1911 г. голландский физик Камерлинг-Оннес открыл замеча­тельное явление — сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре 4,1 К очень резко падает до нуля. Это явление было названо сверхпроводимостью. Позже было открыто много других сверхпроводников.

    Сверхпроводимость наблюдается при очень низких температу­рах — около 25 К.Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем устранить источник электрического тока, то сила этого тока не меняется сколь угодно долго. В обычном же несверхпроводящем проводнике электрический ток в этом случае прекращается. Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые со­здают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения теплоты в сверхпроводящей обмотке не происходит.
    Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя.
    Очень сильное магнитное поле
    разрушает сверхпроводящее состояние.
    Такое поле может быть создано током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая сверхпроводящего состояния, нельзя. Сверхпроводящие магниты используются в ускорителях элементарных частиц, магнитогидродинамических генераторах, преобразующих механическую энергию струи раскаленного ионизованного газа, движущегося в магнитном поле, в электрическую энергию.

  • Если бы удалось создать сверхпроводящие материалы при тем­пературах,  близких...

    6 слайд

    Если бы удалось создать сверхпроводящие материалы при тем­пературах, близких к комнатным, то была бы решена важнейшая техническая проблема — передача энергии по проводам без по­терь. В настоящее время физики работают над ее решением.


    Объяснение сверхпроводимости возможно только на основе кван­товой теории. Оно было дано лишь в 1957 г. американскими учеными Дж. Бардиным, Л. Купе ром, Дж. Шриффером и советским ученым, академиком Н. Н. Боголюбовым.
    В 1986 г. была открыта высокотемпературная сверхпроводимость. Получены сложные оксидные соединения лантана, бария и других элементов (керамики) с температурой перехода в сверхпроводящее состояние около 100 К. Это выше температуры кипения жидкого азота при атмосферном давлении.
    Высокотемпературная сверхпроводимость в недалеком будущем приведет наверняка к новой технической революции во всей электротехнике, радиотехнике, конструировании ЭВМ. Сейчас прогресс в этой области тормозит необходимость охлаждения проводников до температур кипения дорогого газа — гелия.

    Вывод:
    Многие металлы и сплавы при температурах ниже 25 К полностью теряют сопротивление — становятся сверхпроводниками.
    Недавно была открыта высокотемпературная сверхпроводимость.


Получите профессию

Технолог-калькулятор общественного питания

за 6 месяцев

Пройти курс

Рабочие листы
к вашим урокам

Скачать

Скачать материал

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 672 174 материала в базе

Скачать материал

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

  • Скачать материал
    • 15.09.2015 7499
    • PPTX 101.5 кбайт
    • 170 скачиваний
    • Рейтинг: 3 из 5
    • Оцените материал:
  • Настоящий материал опубликован пользователем Карпова Нелля Ивановна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

    Удалить материал
  • Автор материала

    Карпова Нелля Ивановна
    Карпова Нелля Ивановна
    • На сайте: 8 лет и 7 месяцев
    • Подписчики: 0
    • Всего просмотров: 123910
    • Всего материалов: 30

Ваша скидка на курсы

40%
Скидка для нового слушателя. Войдите на сайт, чтобы применить скидку к любому курсу
Курсы со скидкой

Курс профессиональной переподготовки

Менеджер по туризму

Менеджер по туризму

500/1000 ч.

Подать заявку О курсе

Курс повышения квалификации

ЕГЭ по физике: методика решения задач

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 116 человек из 44 регионов
  • Этот курс уже прошли 1 119 человек

Курс повышения квалификации

Особенности подготовки к сдаче ЕГЭ по физике в условиях реализации ФГОС СОО

36 ч. — 180 ч.

от 1700 руб. от 850 руб.
Подать заявку О курсе
  • Сейчас обучается 49 человек из 25 регионов
  • Этот курс уже прошли 457 человек

Курс повышения квалификации

Информационные технологии в деятельности учителя физики

72/108 ч.

от 2200 руб. от 1100 руб.
Подать заявку О курсе
  • Сейчас обучается 117 человек из 46 регионов
  • Этот курс уже прошли 867 человек

Мини-курс

Маркетинг в сфере услуг: от управления до рекламы

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Сейчас обучается 30 человек из 14 регионов

Мини-курс

Политическое проектирование и международные отношения"

4 ч.

780 руб. 390 руб.
Подать заявку О курсе
  • Этот курс уже прошли 10 человек

Мини-курс

Стратегии успешного B2C маркетинга: от MoSCoW до JTBD

6 ч.

780 руб. 390 руб.
Подать заявку О курсе