Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Рабочие программы / Рабочая программа ФГОС "Геометрия, 7-9"

Рабочая программа ФГОС "Геометрия, 7-9"



Осталось всего 4 дня приёма заявок на
Международный конкурс "Мириады открытий"
(конкурс сразу по 24 предметам за один оргвзнос)


  • Математика

Поделитесь материалом с коллегами:


I. Пояснительная записка

Предлагаемая рабочая программа составлена на основе рабочей программы по геометрии к учебнику «Геометрия 7-9 классы», авторы Л. С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И. Юдина; М.: Просвещение, 2014г.

Данная линия учебников соответствует Федеральному государственному образовательному стандарту основного общего образования, одобрена РАО и РАН, имеет гриф «Рекомендовано» включена в Федеральный перечень.


Изучение геометрии в7-9 классах направлено на достижение следующих целей:

- Овладение системой геометрических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования.

- Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

Практическая значимость школьного курса геометрии обусловлена тем, что ее объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С ее помощью моделируются и изучаются явления и процессы, происходящие в природе. Геометрия обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышления при изучении геометрии способствует также усвоению предметов гуманитарного цикла. Практические умения и навыки необходимы для трудовой деятельности и профессиональной подготовки школьников.

- Формирование научного мировоззрения.

Развитие у учащихся правильных представлений о происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

- Интеллектуальное развитие, продолжение формирований качеств личности, свойственных математической деятельности: ясности и точности мышления, критичности мышления, интуиции как свернутого сознания, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности(настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

При изучении геометрии формируются умения и навыки умственного труда – планирование своей работы, поиск рациональных путей ее выполнения, критическая оценка ее результатов. В процессе изучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и емко, приобрести навыки четкого, аккуратного и грамотного выполнения математических записей.

В ходе изучения геометрии развивается логическое мышление учащихся.Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить четкие определения, развивают логическую интуицию, кратко и наглядно показывают механизм логических построений и учат их применению.

- Воспитание культуры личности, отношения к математике как к части общечеловеческой культуры.

Геометрия раскрывает внутреннюю гармонию математики, формирует понимание красоты и изящества математических рассуждений, способствует восприятию геометрических форм, усвоению понятия симметрия. Ее изучение развивает воображение, существенно обогащает и развивает пространственные представления.



II. Общая характеристика учебного предмета

В курсе геометрии можно выделить следующие основные содержательные линии: «Наглядная геометрия», «Геометрические фигуры», Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии»

Линия «Наглядная геометрия» ( элементы наглядной стереометрии)- способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также практических.

Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Особенностью линии «Логика и множества» является то, что представленный здесь материал изучается преимущественно при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно. Сжато и ясно излагать мысли в устной и письменной речи.

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно- исторической среды обучения.

III. Место предмета в учебном плане

Базисный учебный (общеобразовательный) план на изучение геометрии в 7-9 классах основной школы отводит 2 учебных часа в неделю в течение каждого года обучения, всего 210 уроков.

IV.Личностные, метапредметные и предметные результаты освоения содержания курса

Программа обеспечивает достижение следующих результа­тов освоения образовательной программы основного общего образования:

личностные:

  1. формирование ответственного отношения к учению, го­товности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и по­знанию, выбору дальнейшего образования на базе ориен­тировки в мире профессий и профессиональных предпоч­тений, осознанному построению индивидуальной образова­тельной траектории с учётом устойчивых познавательных интересов;

  2. формирование целостного мировоззрения, соответствую­щего современному уровню развития науки и общественной практики;

  3. формирование коммуникативной компетентности в обще­нии и сотрудничестве со сверстниками, старшими и млад­шими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятель­ности;

  4. умение ясно, точно, грамотно излагать свои мысли в уст­ной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  5. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу ох факта;

  6. креативность мышления, инициатива, находчивость, актив­ность при решении геометрических задач;

  7. умение контролировать процесс и результат учебной мате­матической деятельности;

  8. способность к эмоциональному восприятию математиче­ских объектов, задач, решений, рассуждений;

метапредметные:

1) умение самостоятельно планировать альтернативные пу­ти достижения целей, осознанно выбирать наиболее эф­фективные способы решения учебных и познавательных задач;

  1. умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;

  2. умение адекватно оценивать правильность или ошибоч­ность выполнения учебной задачи, её объективную труд­ность и собственные возможности её решения;

  3. осознанное владение логическими действиями определе­ния понятий, обобщения, установления аналогий, класси­фикации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;

  4. умение устанавливать причинно-следственные связи, стро­ить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;

  5. умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;

  6. умение организовывать учебное сотрудничество и сов­местную деятельность с учителем и сверстниками: опре­делять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: нахо­дить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнё­ра; формулировать, аргументировать и отстаивать своё мнение;

  7. формирование и развитие учебной и общепользователь­ской компетентности в области использования информа­ционно-коммуникационных технологий (ИКТ-компетентности);

  8. первоначальные представления об идеях и о методах ма­тематики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;


  1. умение видеть математическую задачу в контексте про­блемной ситуации в других дисциплинах, в окружающей жизни;

  2. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятност­ной информации;

  3. умение понимать и использовать Математические средства наглядности (рисунки, чертежи, схемы и др.) для иллю­страции, интерпретации, аргументации;

  4. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  1. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  2. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алго­ритмом;

  3. умение самостоятельно ставить цели, выбирать и созда­вать алгоритмы для решения учебных математических проблем;

  4. умение планировать и осуществлять деятельность, на­правленную на решение задач исследовательского ха­рактера;

предметные:

  1. овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучае­мых понятиях (число, геометрическая фигура) как важ­нейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

  2. умение работать с геометрическим текстом (анализиро­вать, извлекать необходимую информацию), точно и гра­мотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символи­ки, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

  3. овладение навыками устных, письменных, инструменталь­ных вычислений;

  4. овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, разви­тие пространственных представлений и изобразительных умений, приобретение навыков геометрических построе­ний;

  5. усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематиче­ские знания о них для решения геометрических и практи­ческих задач;

  6. умение измерять длины отрезков, величины углов, исполь­зовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;

  7. умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.


V. Содержание курса

Наглядная геометрия. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Примеры разверток многогранников, цилиндра, конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Сравнение отрезков и углов. Смежные и вертикальные углы и их свойства. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Углы с соответственно параллельными и перпендикулярными сторонами. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Медиана, биссектриса и высота треугольника, средняя линия треугольника. Равнобедренный и равносторонний треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношение между сторонами и углами треугольника.

Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобные треугольники. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус и тангенс, котангенс острого угла прямоугольного треугольника углов от 0 до 1800; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс и котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанные угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанная и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие равенства геометрических фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Построение с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трем сторонам; построение перпендикуляра к прямой, построение биссектрисы угла; деление отрезка на n равных частей.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности, число π; длина дуги окружности.

Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площади прямоугольника, параллелограмма, треугольника, трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с использованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные вектора. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

Теоретико – множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Подмножество. Объединение и пересечение множеств.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление логических связок если…, то…, в том и только в том случае, логические связки и, или.

Геометрия в историческом развитии. От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н.И. Лобачевский. История пятого постулата.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.


VI. Тематическое планирование и виды деятельности учащихся


7 класс


Номер параг

рафа

Разделы программы

Всего часов

Характеристика основных видов деятельности ученика

(на уровне учебных действий)

Глава I. Начальные геометрические сведения


7

Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, развернутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальным; формулировать и обосновывать утверждения о смежных и вертикальных углах; объяснять, какие прямые называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах; решать простейшие задачи, связанные с этими простейшими фигурами.

1,2

Прямая и отрезок. Луч и угол

1

3

Сравнение отрезков и углов

1

4,5

Измерение отрезков. Измерение углов

2

6

Перпендикулярные прямые

1


Решение задач по теме «Начальные геометрические сведения»

1


Контрольная работа №1 «Начальные геометрические сведения»

1

Глава II. Треугольники

14

Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы, периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными. Изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведенным из данной точки к данной прямой. Формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника. Формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника. Формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные простейшие. Сопоставлять полученный результат с условием задачи; анализировать возможные случаи.

1

Первый признак равенства треугольников

3

2

Медианы, биссектрисы и высоты треугольника

3

3

Второй и третий признаки равенства треугольников

3

4

Задачи на построение

2


Решение задач на применение признаков равенства треугольников

2


Контрольная работа №2 по теме: «Треугольники»

1

Глава III. Параллельные прямые

9

Формулировать определение параллельных прямых. Объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрестлежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых. Объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из нее. Формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, связанных с накрестлежащими, соответственными и односторонними углами. В связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме. Объяснять, в чем заключается метод доказательства от противного; приводить примеры использования этого метода. Решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми.

1

Признаки параллельности двух прямых

3

2

Аксиома параллельных прямых

3


Решение задач по теме «Параллельные прямые»

2


Контрольная работа №3 по теме: «Параллельные прямые»

1

Глава IV. Соотношения между сторонами и углами треугольника

16

Формулировать и доказывать теорему о сумме углов треугольника и ее следствие о внешнем угле треугольника. Проводить классификацию треугольников по углам. Формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника(прямое и обратное утверждения) и следствие из нее, теорему о неравенстве треугольника. Формулировать и доказывать теоремы о свойствах прямоугольных треугольников(прямоугольный треугольник с углом 300, признаки равенства прямоугольных треугольников). Формулировать определения расстояния от точки до прямой, расстояния между параллельными прямыми. Решать задачи на вычисление, доказательство и построение, связанные с соотношениями между сторонами и углами треугольника и расстоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительные построения, сопоставлять полученный результат с условием задачи. В задачах на построение исследовать возможные случаи.

1

Сумма углов треугольника

2

2

Соотношения между сторонами и углами треугольника

3


Контрольная работа №4 «Соотношения между углами и сторонами треугольника»

1

3

Прямоугольные треугольники

4

4

Построение треугольника по трем элементам

2


Решение задач на построение

3


Контрольная работа №5 по теме: «Прямоугольные треугольники»

1

Повторение. Решение задач

4



8 класс


Разделы программы

Всего часов

Характеристика основных видов деятельности ученика

(на уровне учебных действий)

Глава V. Четырехугольники.

14

Объяснять, что такое ломанная, многоугольник, его вершины, смежные стороны, диагонали, изображать четырехугольники на чертежах; изображать и распознавать многоугольники на чертежах. Показывать элементы многоугольника, его внутреннюю и внешнюю области; формулировать определение выпуклого многоугольника; изображать и распознавать выпуклые и невыпуклые многоугольники. Формулировать и доказывать утверждение о сумме углов выпуклого многоугольника. Объяснять, какие стороны(вершины) называются противоположными. Формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапеций, прямоугольника, ромба, квадрата; распознавать и изображать эти четырехугольники. Формулировать и доказывать утверждения о свойствах и признаках указанных четырехугольников. Решать задачи на вычисление, доказательство и построение, связанные с этими видами четырехугольников. Объяснять, какие две точки называются симметричными относительно прямой(точки), в каком случае фигура называется симметричной относительно прямой(точки) и что такое ось(центр) симметрии фигуры. Приводить примеры фигур, обладающих осевой(центральной) симметрией, а также приводить примеры осевой и центральной симметрии в окружающей нас обстановке.

1

Многоугольники

2

2

Параллелограмм и трапеция

6

3

Прямоугольник, ромб, квадрат

4


Решение задач по теме: «Четырехугольники»

1


Контрольная работа №1 по теме: «Четырехугольники»

1

Глава VI. Площадь.

14

Объяснять, как производится измерение площадей многоугольников; формулировать основные свойства площадей. Выводить формулы площадей параллелограмма, треугольника, трапеции, с помощью формул площадей прямоугольника и квадрата. Формулировать и доказывать теорему об отношении площадей треугольников, имеющих по равному углу. Формулировать и доказывать теорему Пифагора и обратную ей. Выводить формулу Герона для площади треугольника. Решать задачи на вычисление, доказательство и построение, связанные с формулами площадей и теоремой Пифагора.

1

Площадь многоугольника

2

2

Площади параллелограмма, треугольника и трапеции

6

3

Теорема Пифагора

3


Решение задач по теме: «Площадь»

2


Контрольная работа №2 по теме: «Площадь»

1

Глава VII. Подобные треугольники.

19

Объяснять понятие пропорциональности отрезков. Формулировать определения подобных треугольников и коэффициента подобия. Формулировать и доказывать теоремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о пропорциональных отрезках в прямоугольном треугольнике. Объяснять, что такое метод подобия в задачах на построение, и приводить примеры этого метода. Объяснять, как можно использовать свойства подобных треугольников в измерительных работах на местности. Объяснять, как ввести понятие подобия для произвольных фигур. Формулировать определения и иллюстрировать понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника. Выводить основное тригонометрическое тождество и значения синуса, косинуса, тангенса углов 300,450,600. Решать задачи, связанные с подобием треугольников и нахождением неизвестных элементов прямоугольного треугольника. Для вычисления значений тригонометрических функций использовать компьютерные программы.

1

Определение подобных треугольников

2

2

Признаки подобия треугольников

5


Контрольная работа №3 по теме: « Признаки подобия треугольников»

1

3

Применение подобия к доказательству и решению задач

7

4

Соотношение между сторонами и углами прямоугольного треугольника.

3


Контрольная работа №4 по теме: « Подобные треугольники»

1

Глава VIII. Окружность.

17

Исследовать взаимное расположение прямой и окружности. Формулировать определение касательной к окружности. Формулировать и доказывать теоремы: о свойстве касательной, об отрезках касательных, проведенных из одной точки. Формулировать понятия центрального угла и градусной меры дуги окружности. Формулировать и доказывать теоремы: о вписанном угле, о произведении отрезков хорд,. Формулировать и доказывать теоремы, связанные с замечательными точками треугольника: о биссектрисе угла и, как следствие, о пересечении биссектрис треугольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикулярах к сторонам треугольника; о пересечении высот треугольника. Формулировать определения окружностей, вписанной в многоугольник и описанной около многоугольника. Формулировать и доказывать теоремы: об окружности, вписанной в треугольник, об окружности, описанной около треугольника, об окружности, описанной около треугольника, о свойстве сторон описанного четырехугольника, о свойстве углов вписанного четырехугольника. Решать задачи на вычисление, доказательство, построение, связанные с окружностью, вписанными и описанными треугольниками и четырехугольниками. Исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ.

1

Касательная к окружности

3

2

Центральные и вписанные углы

4

3

Четыре замечательные точки треугольника

3

4

Вписанная и описанная окружность

4


Решение задач по теме: «Окружность»

2


Контрольная работа № 5 по теме: «Окружность»

1

Повторение. Решение задач

4


9 класс



Разделы программы

Всего часов

Характеристика основных видов деятельности ученика

(на уровне учебных действий)

Глава IX.Векторы

8

Формулировать определения и иллюстрировать понятия вектора, его длины, коллинеарных и равных векторов. Выполнять построение вектора, равного сумме и разности двух векторов, используя при этом правила треугольника и параллелограмма. Применять правило многоугольника при нахождении суммы нескольких векторов. Выполнять построение вектора, равного произведению вектора на число. Применять векторы и действия над ними при решении геометрических задач

1

Понятия вектора

2

2

Сложение и вычитания векторов

3

3

Умножение вектора на число. Применение векторов к решению задач

3

Глава Х. Метод координат

10

Объяснять и иллюстрировать понятия прямоугольной системы координат, координат точки и координат вектора. Выводить и использовать при решении задач формулы координат середины отрезка, длины вектора, расстояния между двумя точками, уравнения окружности и прямой

1

Координаты вектора

2

2

Простейшие задачи в координатах

2

3

Уравнение окружности и прямой

3


Решение задач по теме: «Векторы и метод координат»

2


Контрольная работа № 1 по теме: «Векторы и метод координат»

1

Глава ХI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

11

Формулировать и иллюстрировать определения синуса, косинуса и тангенса углов от 0 до 1800. Выводить основное тригонометрическое тождество и формулы приведения. Формулировать и доказывать теоремы синусов и косинусов, применять их при решении треугольников. Объяснять как используются тригонометрические формулы в измерительных работах на местности. Формулировать определения угла между векторами и скалярного произведения векторов. Выводить формулу скалярного произведения векторов через координаты векторов. Формулировать и обосновывать утверждение о свойствах скалярного произведения. Использовать скалярное произведение при решении задач.

1

Синус, косинус, тангенс, котангес угла

3

2

Соотношения между сторонами и углами треугольника

4

3

Скалярное произведение векторов

2


Решение задач по теме: «Соотношения между сторонами и углами треугольника»

1


Контрольная работа № 2 по теме: «Соотношения между сторонами и углами треугольника»

1


Глава XII. Длина окружности и площадь круга

12

Формулировать определение правильного многоугольника. Формулировать и доказывать теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. Выводить и использовать формулы для вычисления площади правильного многоугольника, радиуса вписанной и описанной окружностей. Решать задачи на построение правильных многоугольников. Объяснять понятия длины окружности и площади круга. Выводить формулы для вычисления длины окружности и длины дуги окружности, площади круга и площади круговых сектора и сегмента. Применять эти формулы при решении задач.

1

Правильные многоугольники

4

2

Длина окружности. Площадь круга

4


Решение задач по теме: «Длина окружности и площадь круга»

3


Контрольная работа № 3 по теме: «Длина окружности и площадь круга»

1

Глава XIII. Движения

8

Объяснять, что такое отображение плоскости на себя, и в каком случае оно называется движением плоскости. Объяснять, что такое осевая симметрия, центральная симметрия, параллельный перенос и поворот. Обосновывать, что эти отображения плоскости на себя являются движениями. Объяснять, какова связь между движениями и наложениями. Иллюстрировать основные виды движений, в том числе с помощью компьютерных программ

1

Понятие движения

1

2

Параллельный перенос и поворот

1


Решение задач по теме: «Движения»

1


Контрольная работа № 4 по теме: «Движения»

1

Глава XIV. Начальные сведения из стереометрии

8

Объяснять, что такое многогранник, его грани, ребра, вершины, диагонали. Какой многогранник называется выпуклы. Что такое n- угольная призма, ее основания, боковые грани и боковые ребра. Какая призма называется прямой, и какая наклонной, что такое высота призмы, какая призма называется параллелепипедом и какой параллелепипед называется прямоугольным. Формулировать и обосновывать утверждения о свойстве диагоналей параллелепипеда и квадрате диагонали прямоугольного параллелепипеда. Объяснять, что такое объем многогранника. Выводить( с помощью принципа Кавальери) формулу объема прямоугольного параллелепипеда. Объяснять. Какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые ребра, и высота пирамиды. Какая пирамида называется правильной, что такое апофема правильной пирамиды. Знать формулу объема пирамиды. Объяснять, какое тело называется цилиндром. Знать, что такое его ось, высота, основания, радиус, боковая поверхность, образующие, развертка боковой поверхности. Какими формулами выражается объем и площадь боковой поверхности цилиндра. Объяснять, какое тело называется конусом. Знать, что такое его ось, высота, основание, радиус, боковая поверхность, образующие, развертка боковой поверхности. Какими формулами выражается объем и площадь боковой поверхности конуса Объяснять, какая поверхность называется сферой и какое тело называется шаром. Что такое радиус и диаметр сферы(шара). Какими формулами выражаются объем шара и площадь сферы. Изображать и распознавать на рисунках призму, параллелепипед, пирамиду, цилиндр, конус, шар.

1

Многогранники

4

2

Тела и поверхности вращения

4

Об аксиомах планиметрии

2


Повторение. Решение задач

9



VII. Описание учебно-методического и материально-технического обеспечения

Учебно-методический комплект учителя:

основной:

  1. Артюнян Е. Б., Волович М. Б., Глазков Ю. А., Левитас Г. Г. Математические диктанты для 5-9 классов. – М.: Просвещение, 1991.

  2. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия 7-9. – М.: Просвещение, 2013.

  3. Буланова Л. М., Дудницын Ю. П. Проверочные задания по математике для учащихся 5-8 и 10 классов. – М.: Просвещение, 1998.

  4. Зив Б. Г., Мейлер В. М. Дидактические материалы по геометрии за 7, 8, 9 класс. – М.: Просвещение, 2005.

  5. Иченская М. А. Самостоятельные и контрольные работы к учебнику Л. С. Атанасяна 7-9 классы. – Волгоград: Учитель, 2006.

  6. Контрольно-измерительные материалы. Геометрия. 7, 8, 9 класс/ Сост.Л. П. Попова. 2011.

  7. Самостоятельные и контрольные работы по алгебре и геометрии для 7, 8, 9 класса / Ершова А. П., Голобородько В. В. – М.: Илекса – 2009

  8. Карточки для коррекции знаний по математике для 7, 8, 9 класса/ Г. Г. Левитас – М.: Илекса, 2008

  9. Гаврилова Н. Ф. Универсальные поурочные разработки по геометрии: 7, 8, 9 класс – М.: Вако, 2011

  10. Геометрия. Дидактические материалы. 7,8 ,9 класс/ Б. Г. Зив, В. М. Мейлер – М.: Просвещение, 2011

  11. Геометрия. Тематические тесты. 7, 8, 9 класс/ Т. М. Мищенко, А. Д. Блинков – М.: Просвещение, 2011

  12. Рабинович Е. М. Задачи и упражнения на готовых чертежах. 7 – 9 классы. Геометрия – М.: ИЛЕКСА, 2008

дополнительный:

  1. Математика в стихах: задачи, сказки, рифмованные правила. 5-11 классы/ О. В. Панишева – Волгоград: Учитель, 2009

  2. Формирование вычислительных навыков на уроках математики. 5-9 классы/Хлевнюк Н. Н., Иванова М. В. – М.: Илекса, 2010

  3. Математика. 5-7 классы: таблицы-тренажеры/ С. В. Токаревак – Волгоград: Учитель, 2009

  4. Диктанты по алгебре. 7 – 11 классы. Дидактические материалы – М.: Илекса, 2008

  5. Геометрия. 7 – 9 классы: опорные конспекты. Ключевые задачи/ авт.-сост. Т. А. Лепехина – Волгоград: Учитель, 2009


Учебно-методический комплект ученика:

  1. Геометрия 7 – 9 класс: учебник для общеобразовательных учреждений/ Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев – М.: Просвещение, 2008

  2. Рабочая тетрадь по геометрии 7, 8, 9 класс/ Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев – М.: Просвещение, 2013


Технические средства обучения

Компьютер, медиапроектор, интерактивная доска

Интернет-ресурсы

1. www. edu - "Российское образование" Федеральный портал.

2. www.school.edu - "Российский общеобразовательный портал".

3. www.school-collection.edu.ru/ Единая коллекция цифровых образовательных ресурсов

4. www.mathvaz.ru - docье школьного учителя математики

Документация, рабочие материалы для учителя математики
5. www.it-n.ru"Сеть творческих учителей"

6. www .festival.1september.ru   Фестиваль педагогических идей "Открытый урок"  


Интернет- ресурсы:

http://festival.1september.ru/ - Я иду на урок математики ( методические разработки)

http://pedsovet.su/load/18 - Уроки, конспекты.

http://www.prosv.ru - сайт издательства «Просвещение» (рубрика «Математика»)

http:/www.drofa.ru - сайт издательства Дрофа (рубрика «Математика»)

http://www.fipi.ru - портал информационной поддержки мониторинга качества образования, здесь можно найти Федеральный банк тестовых заданий.

Материально- техническая база

Учебно-методическая база

Информационно- коммуникативная база

Персональный компьютер с принтером

Мультимедиапроектор с экраном

Интерактивная доска или приставка MIMIO

Аудиторная доска с магнитной поверхностью и набором приспособлений для крепления таблиц

Доска магнитная с координатной сеткой

Комплект инструментов классных: линейка, транспортир, угольник(300,600), угольник(450,450), циркуль

Комплект стереометрических тел

Набор планиметрических фигур

Комплект таблиц по геометрии (7 - 9 классы). Площади плоских фигур, геометрия треугольника и четырехугольника.

Комплект портретов для кабинета математики


Учебник «Геометрия 7 класс» Авторы: Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Л. С. Киселева

Учебник «Геометрия 8 класс» Авторы: Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Л. С. Киселева

Учебник «Геометрия 9 класс» Авторы: Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Л. С. Киселев

Дидактические материалы по геометрии 7 класс / Б. Г. Зив, В. М. Мейлер

Дидактические материалы по геометрии 8 класс / Б. Г. Зив, В. М. Мейлер

Дидактические материалы по геометрии 9 класс / Б. Г. Зив, В. М. Мейлер



CD-ROM «Геометрия 7 класс»: мультимедийное приложение к учебнику

CD-ROM «Геометрия 8 класс»: мультимедийное приложение к учебнику

CD-ROM «Геометрия 9 класс»: мультимедийное приложение к учебнику


VIII. Планируемые результаты изучения курса геометрии

в 7-9 классах

Наглядная геометрия

Выпускник научиться:

  1. Распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

  2. Распознавать развертки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра, конуса;

  3. Определять по линейным размерам развертки фигуры линейные размеры самой фигуры и наоборот;

  4. Вычислять объем прямоугольного параллелепипеда;

Выпускник получит возможность:

  1. Вычислять объемы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;

  2. Углубить и развить представления о пространственных геометрических фигурах;

  3. Применять понятие развертки для выполнения практических расчетов.

Геометрические фигуры

Выпускник научиться:

  1. Пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

  2. Распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

  3. Находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 1800, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрия, поворот, параллельный перенос);

  4. Оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

  5. Решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

  6. Решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

  7. Решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

  1. Овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

  2. Приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

  3. Овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

  4. Научиться решать задачи на построение методом геометрического места точек и методом подобия;

  5. Приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

  6. Приобрести опыт выполнения проектов «на построение».

Измерение геометрических величин

Выпускник научиться:

  1. Использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

  2. Вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

  3. Вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов, секторов;

  4. Вычислять длину окружности, длину дуги окружности;

  5. Решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

  6. Решать практические задачи, связанные с нахождением геометрических величин ( используя при необходимости справочники и технические средства).

Выпускник получит возможность:

  1. Вычислять площади фигур, составленных из двух и более прямоугольников, параллелограммов, треугольников, круга и сектора;

  2. Вычислять площади многоугольников, используя отношение равновеликости и равносоставленности;

  3. Приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научиться:

  1. Вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

  2. Использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

  1. Овладеть координатным методом решения задач на вычисление и доказательство;

  2. Приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

  3. Приобрести опыт выполнения проектов на применение координатного метода при решении задач на вычисление и доказательство.

Векторы

Выпускник научиться:

  1. Оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

  2. Находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный переместительный и распределительный законы;

  3. Вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

  1. Овладеть векторным методом для решения задач на вычисление и доказательство;

  2. Приобрести опыт выполнения проектов на применение векторного метода при решении задач на вычисление и доказательство.









57 вебинаров для учителей на разные темы
ПЕРЕЙТИ к бесплатному просмотру
(заказ свидетельства о просмотре - только до 11 декабря)


Краткое описание документа:

I. Пояснительная записка

Предлагаемая  рабочая программа составлена на основе рабочей программы по геометрии к учебнику «Геометрия 7-9 классы», авторы   Л. С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев, Э.Г.Позняк, И.И. Юдина; М.: Просвещение, 2014г.

Данная линия учебников соответствует Федеральному государственному образовательному стандарту основного общего образования, одобрена РАО и РАН, имеет гриф «Рекомендовано» включена в Федеральный перечень.

 

Изучение геометрии в7-9 классах направлено на достижение следующих целей:

- Овладение системой геометрических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования.

- Формирование представлений об идеях и методах математики как универсального       языка науки и техники, средства моделирования явлений и процессов.

Практическая значимость школьного курса геометрии обусловлена тем, что ее объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С ее помощью моделируются и изучаются явления и процессы, происходящие в природе. Геометрия обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышления при изучении геометрии способствует также усвоению предметов гуманитарного цикла. Практические умения и навыки необходимы для трудовой деятельности и профессиональной подготовки школьников.

               - Формирование научного мировоззрения.

Развитие у учащихся правильных представлений о происхождении геометрических   абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

            - Интеллектуальное развитие, продолжение формирований качеств личности, свойственных математической деятельности: ясности и точности мышления, критичности мышления, интуиции как свернутого сознания, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности(настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

При изучении геометрии формируются умения и навыки умственного труда – планирование своей работы, поиск рациональных путей ее выполнения, критическая оценка ее результатов. В процессе изучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и емко, приобрести навыки четкого, аккуратного и грамотного выполнения математических записей.

В ходе изучения геометрии развивается логическое мышление учащихся.Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить четкие определения, развивают логическую интуицию, кратко и наглядно показывают механизм логических построений и учат их применению.

- Воспитание культуры личности, отношения к математике как к части общечеловеческой культуры.

Геометрия раскрывает внутреннюю гармонию математики, формирует понимание красоты и изящества математических рассуждений, способствует восприятию геометрических форм, усвоению понятия симметрия. Ее изучение развивает воображение, существенно обогащает и развивает пространственные представления.

 

II. Общая характеристика учебного предмета

                    

В курсе геометрии можно выделить следующие основные содержательные линии: «Наглядная геометрия», «Геометрические фигуры», Измерение геометрических величин», «Координаты»,  «Векторы»,  «Логика и множества», «Геометрия в историческом развитии»

Линия «Наглядная геометрия» ( элементы наглядной стереометрии)- способствует развитию пространственных представлений учащихся в рамках изучения планиметрии.

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин»нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также практических.

Материал, относящийся к содержательным линиям  «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

 Особенностью линии  «Логика и множества» является то, что представленный здесь материал изучается преимущественно при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно. Сжато и ясно излагать мысли в устной и письменной речи.

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно- исторической среды обучения.

III. Место предмета в учебном плане

 

  Базисный учебный (общеобразовательный) план на изучение геометрии в 7-9 классах  основной школы отводит 2 учебных часа в неделю в течение каждого года обучения, всего 210 уроков.

Автор
Дата добавления 25.07.2015
Раздел Математика
Подраздел Рабочие программы
Просмотров425
Номер материала 589038
Получить свидетельство о публикации
Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх