Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Математика / Другие методич. материалы / Сообщение по математике на тему "Целое число"

Сообщение по математике на тему "Целое число"

Идёт приём заявок на самые массовые международные олимпиады проекта "Инфоурок"

Для учителей мы подготовили самые привлекательные условия в русскоязычном интернете:

1. Бесплатные наградные документы с указанием данных образовательной Лицензии и Свидeтельства СМИ;
2. Призовой фонд 1.500.000 рублей для самых активных учителей;
3. До 100 рублей за одного ученика остаётся у учителя (при орг.взносе 150 рублей);
4. Бесплатные путёвки в Турцию (на двоих, всё включено) - розыгрыш среди активных учителей;
5. Бесплатная подписка на месяц на видеоуроки от "Инфоурок" - активным учителям;
6. Благодарность учителю будет выслана на адрес руководителя школы.

Подайте заявку на олимпиаду сейчас - https://infourok.ru/konkurs

  • Математика

Поделитесь материалом с коллегами:

Целое число

https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/Integers-line.svg/300px-Integers-line.svg.png

Целые числа на числовой прямой

Целые числа — расширение множества натуральных чисел \mathbb{N}, получаемое добавлением к \mathbb{N} нуля и отрицательных чисел вида -n. Множество целых чисел обозначается \mathbb{Z}.Необходимость рассмотрения целых чисел продиктована невозможностью, в общем случае, вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего.

Сумма, разность и произведение двух целых чисел дают снова целые числа, то есть целые числа образуют кольцо относительно операций сложения и умножения. Впервые отрицательные числа стали использовать в древнем Китае и в Индии, в Европе их ввели в математический обиход Николя Шюке (1484 год) и Михаэль Штифель (1544).

Алгебраические свойства

\mathbb{Z} не замкнуто относительно деления двух целых чисел (например, 1/2). Следующая таблица иллюстрирует несколько основных свойств сложения и умножения для любых целых a, b и c.


сложение

умножение

замкнутость:

a + b   — целое

a × b   — целое

ассоциативность:

a + (b + c)  =  (a + b) + c

a × (b × c)  =  (a × b) × c

коммутативность:

a + b  =  b + a

a × b  =  b × a

существование нейтрального элемента:

a + 0  =  a

a × 1  =  a

существование противоположного элемента:

a + (−a)  =  0

a  ≠  ±1    1/a не является целым

дистрибутивность умножения относительно сложения:

a × (b + c)  =  (a × b) + (a × c)

На языке общей алгебры первые пять вышеперечисленных свойств сложения говорят о том, что \mathbb{Z} является абелевой группой относительно бинарной операции сложения, и, следовательно, также циклической группой, так как каждый ненулевой элемент \mathbb{Z} может быть записан в виде конечной суммы 1 + 1 + … 1 или (−1) + (−1) + … + (−1). Фактически, \mathbb{Z} является единственной бесконечной циклической группой по сложению в силу того, что любая бесконечная циклическая группа изоморфна группе (\mathbb{Z},+).

Первые четыре свойства умножения говорят о том, что \mathbb{Z} — коммутативный моноид по умножению. Однако стоит заметить, что не каждое целое имеет противоположное по умножению, например, нет такого x из \mathbb{Z}, что 2x = 1, так как левая часть уравнения чётна, а правая нечётна. Из этого следует, что \mathbb{Z}не является группой по умножению, а также не является полем. Наименьшее поле, содержащее целые числа, — множество рациональных чисел (\mathbb{Q}).

Совокупность всех свойств таблицы означает, что \mathbb{Z} является коммутативным кольцом с единицей относительно сложения и умножения.

Обычное деление не определено на множестве целых чисел, но определено так называемое деление с остатком: для любых целых a и b, b \not= 0, существует единственный набор целых чисел q и r, что a = bq + r и 0 \le r < |b|, где |b| — абсолютная величина (модуль) числа b. Здесь a — делимое, b — делитель, q — частное, r — остаток. На этой операции основан алгоритм Евклида нахождения наибольшего общего делителя двух целых чисел.

Теоретико-множественные свойства

\mathbb{Z} — линейно упорядоченное множество без верхней и нижней границ. Порядок в нём задаётся соотношениями:

< −2 < −1 < 0 < 1 < 2 < …

Целое число называется положительным, если оно больше нуля, отрицательным, если меньше нуля. Нуль не является положительным или отрицательным.

Для целых чисел справедливы следующие соотношения:

  1. если a < b и c < d, тогда a + c < b + d.

  2. если a < b и 0 < c, тогда ac < bc. (Отсюда легко показать, что если c < 0, то ac > bc.)

Целые числа в вычислительной технике

Тип целое число — зачастую один из основных типов данных в языках программирования. Тем не менее, эти «целые числа» — лишь имитация класса \mathbb{Z} в математике, так как это множество бесконечно и всегда найдётся целое число, которое данный компьютер не сможет хранить в своей памяти. Целые типы данных обычно реализуются как фиксированный набор битов, но любые представления, в конце концов, приведут к тому, что свободное место на носителе (жёстком диске) закончится. С другой стороны, теоретические модели цифровых компьютеров имеют потенциально бесконечное (но счётное) пространство.

Самые низкие цены на курсы профессиональной переподготовки и повышения квалификации!

Предлагаем учителям воспользоваться 50% скидкой при обучении по программам профессиональной переподготовки.

После окончания обучения выдаётся диплом о профессиональной переподготовке установленного образца (признаётся при прохождении аттестации по всей России).

Обучение проходит заочно прямо на сайте проекта "Инфоурок".

Начало обучения ближайших групп: 18 января и 25 января. Оплата возможна в беспроцентную рассрочку (20% в начале обучения и 80% в конце обучения)!

Подайте заявку на интересующий Вас курс сейчас: https://infourok.ru/kursy

Краткое описание документа:

Целые числа — расширение множества натуральных чисел, получаемое добавлением к нуля и отрицательных чисел. Необходимость рассмотрения целых чисел продиктована невозможностью, в общем случае, вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего.

Сумма, разность и произведение двух целых чисел дают снова целые числа, то есть целые числа образуют кольцо относительно операций сложения и умножения. Впервые отрицательные числа стали использовать в древнем Китае и в Индии, в Европе их ввели в математический обиход Николя Шюке (1484 год) и Михаэль Штифель (1544).

Автор
Дата добавления 13.06.2015
Раздел Математика
Подраздел Другие методич. материалы
Просмотров708
Номер материала 565049
Получить свидетельство о публикации

УЖЕ ЧЕРЕЗ 10 МИНУТ ВЫ МОЖЕТЕ ПОЛУЧИТЬ ДИПЛОМ

от проекта "Инфоурок" с указанием данных образовательной лицензии, что важно при прохождении аттестации.

Если Вы учитель или воспитатель, то можете прямо сейчас получить документ, подтверждающий Ваши профессиональные компетенции. Выдаваемые дипломы и сертификаты помогут Вам наполнить собственное портфолио и успешно пройти аттестацию.

Список всех тестов можно посмотреть тут - https://infourok.ru/tests


Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх