Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / Начальные классы / Рабочие программы / Авторская работа по математике "Математика-гимнастика для ума" 3 класс
ВНИМАНИЮ ВСЕХ УЧИТЕЛЕЙ: согласно Федеральному закону № 313-ФЗ все педагоги должны пройти обучение навыкам оказания первой помощи.

Дистанционный курс "Оказание первой помощи детям и взрослым" от проекта "Инфоурок" даёт Вам возможность привести свои знания в соответствие с требованиями закона и получить удостоверение о повышении квалификации установленного образца (180 часов). Начало обучения новой группы: 24 мая.

Подать заявку на курс
  • Начальные классы

Авторская работа по математике "Математика-гимнастика для ума" 3 класс

библиотека
материалов

Управление образования Павлодарской области

Институт повышения квалификации подготовки кадров











Программа курса

« Математика- гимнастика для ума»

Развитие логического мышления младших школьников

на уроках математики для 3-его класса

























Павлодар, 2011


Автор составитель: Идрисова Ардак Умирбаевна – учитель начального класса Караобинской средней школы Актогайского района Павлодарской области.












Рецензент: Идилуп Айман Тулегеновна – методист кабинета содержания образования Павлодарской области ИПК ПК










В данной программе создана система знаний, направленных на развитие творческого и логического мышления у младшего школьника, включающую в себя умение наблюдать, сравнивать, обобщать, находить закономерности, строя простейшие предложения, проверять их, делая выводы, иллюстрировать их на примерах.


















Пояснительная записка.


Одна из важнейших задач начального обучения – развитие у школьников логического мышления. Благодатный детский возраст 7-10 лет открыт и восприимчив к чудесам познания, к умению удивляться богатству и красоте окружающего мира. Для осуществления развивающих целей обучения необходимо активизировать познавательную деятельность, создать ситуацию заинтересованности. Целенаправленное, интенсивное развитие логического мышления становится одной из центральных задач обучения, важнейшей проблемой его теории и практики.

Умение мыслить логически, выполнять умозаключение без опоры на наглядность, сопоставлять суждения по определённым правилам – необходимое условие успешного усвоения учебного материала. Главная цель моей работы по развитию логического мышления состоит в том, чтобы дети научились делать выводы из тех суждений, которые им предлагается в качестве исходных. Решение логических задач на уроках математики не только повышает активность учащихся и развивает их мышление, но и в значительной степени вызывает интерес к математике.

Необходимо на уроках систематически использовать задачи, способствующие целенаправленному развитию логического мышления учащихся, их математическому развитию, формированию у них познавательного интереса и самостоятельности. Такие задачи требуют от школьников наблюдательности, творчества и оригинальности. Эффективное развитие математических способностей у учащихся невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов.

Логические (мыслительные) действия, дают человеку новое знание. Но важная отличительная их способность в том, что здесь добывается знание о чём-то неявном, скрытом, незримом, недоступном органам чувств.

Умение совершать логические действия не является врожденным. По мнению многих авторов и, в частности П.П. Блонского, мыслительная деятельность успешно активизируется и развивается там, где учащиеся осознают новые вопросы, включаются в поиски ответов на них, постепенно переходя от простых к всё более усложняющимся вопросам. Системы мыслительных операций успешнее вырабатываются там, где учащиеся постепенно переходят от пользования готовыми признаками понятий, сообщенными учителем, к самостоятельному их выявлению и общению. В.В.Давыдов ввел в науку термин «содержательное обобщение», означающий теоретический образ, получаемый в человеческом сознании путем мыслительных операций, устанавливающих единство системы понятий и их взаимосвязей.

Развитие логического мышления, в свою очередь, позволяет подрастающей личности адекватно воспринимать окружающуюся действительность, реально оценивать свою роль в происходящих вокруг событиях, выбирать тождественные методы реагирования.

Решение нестандартной задачи – очень сложный процесс, для успешного осуществления которого учащийся должен уметь думать, догадываться. Необходимо также хорошее знание фактического материала, владение общими подходами к решению нестандартных задач.

Именно через задачи учащиеся могут узнать и глубоко усвоить новые математические факты, овладеть новыми математическими методами, накопить определённый опыт, сформировать умения самостоятельно, и творчески применять полученные знания.

В данной программе создана система знаний, направленных на развитие творческого и логического мышления у младшего школьника, включающую в себя умение наблюдать, сравнивать, обобщать, находить закономерности, строя простейшие предложения, проверять их, делая выводы, иллюстрировать их на примерах.





































Цель:

-развитие логического мышления младших школьников;

- формирование и развитие интереса к математике.



Задачи:

* Развитие математической речи учеников в ходе комментирования, объяснения смысла выражений, составленных для задач и использования математических терминов.

* Воспитание самостоятельности, уверенности в своих силах, чувства радости, успеха в учении.


В результате изучения данной программы ученик должен знать / уметь:

- сравнивать, анализировать полученную информацию;

- рассуждать, строить догадки, выражать свои мысли;

- определять последовательность осуществления логических операций;

- решать и составлять простейшие ребусы, кроссворды, магические квадраты;

- раскрывать общие закономерности;

- выполнять инструкции при решении учебных задач;

- ориентироваться в окружающем пространстве (планирование маршрута, выбор пути передвижения).

- работать в группе, в паре.


























Содержание программы

1.Как люди научились считать? Откуда взялись цифры и числа? - 1час

Урок-игра. Знакомство с историей математики. Первые сведения о развитии математики. История приспособления для счета. Математические игры «Составь число», «Меры длины», «Узнай фигуру».

2. Кто придумал математические знаки? – 1 час

История возникновения цифровых знаков. Решение задачи из «Счетной мудрости».

3. Магические квадраты -2 часа

Решение и составление магических квадратов. Заполнение «Магического» квадрата размером 3 клетки на 3 клетки девятью числами, в котором сумма чисел в любой строке, любом столбце, а так же по любой из двух его диагоналей одна и та же.

4. Арифметические ребусы- 2 часа

Решение и составление арифметических ребусов со знаками арифметических действий сложения и вычитания, умножения и деления.

Расшифрование ребусов, в которых некоторые цифры обозначены звездочками или буквами.

5. Задачки со спичками – 1 час

Устное соревнование: конкурс капитанов при проведении математического боя, математической карусели, устных олимпиад.

Игры «Строим дом, «Спираль», « Пять головоломок».

6. Математические цепочки – 1 час

Решение и составление математических цепочек.

Решение и составление тематических цепочек, посвященных именам поэтов, писателей, композиторов, художников, жизни животного и растительного мира.

7. « Сосчитай треугольники» - 1 час

Знакомство с буквенными обозначениями треугольников и отрезков, подсчет геометрических фигур, опираясь на цвет сторон и отрезков. Счет прямоугольников по числу клеток в квадрате. Закрепление знаний о геометрических фигурах. Игра «Сектор приз».

8. Геометрические головоломки – 2 часа

Конструирование геометрических фигур. Геометрические головоломки «Сколько окружностей?», «Размещение фигур», «Магический квадрат из фигур», «Геометрическое домино»

9. Занимательные задачи. Математика в стихах – 2 часа

« Сказочные задачи».

Решение занимательных задач в стихах, сказочных задач.

Игра «Раздели циферблат».

10. Геометрические задачи – 2 часа

Геометрические сказки о квадрате и прямоугольнике. Задачи «Определите площадь», «Найди прямые углы», «Стрелки и углы», «Отправьте письмо», «Симметрия и периметр».

11. Математическая эстафета – 1 час

Урок- соревнование. Решение нестандартных заданий повышенной трудности.

12.Задачи на переливание жидкость – 2 часа

Решение задач двух типов: задача, в которой требуется разлить поровну с помощью двух сосудов определенное количество жидкости, и задача, в которой требуется с помощью двух сосудов набрать определенное количество воды.

13. Задачи на площади – 2 часа

Решение задач, связанных с понятием площади.

Основные свойства площади.

Знакомство с методом решения трудных задач на площади.

14. Логические задачи. «Тренируем мышление» - 4 часа

Решение задач, требующих от учащихся внимательной работы с текстом, с оформлением в виде таблицы.

Решение задач, в которых требуется проверить, какие из высказанных предположений соответствуют действительности.

15 .Задачи на взвешивание – 2 часа

Решение задач на взвешивание на чашечных весах без гирь, на которых можно определить, равны ли массы двух совокупностей предметов, или масса одной совокупностей больше (меньше) массы другой совокупности предметов.

16.Задачи на разрезание фигуры на одинаковые части – 1 час

Решение задач на разрезание фигуры на одинаковые части, в которой фигуры представляют собой кусочек сетки с квадратными ячейками .

Решение задач, в которых фигуру надо разрезать на одинаковые части так, чтобы в каждую часть попала закрашенная клетка или клетка с картинкой.

17. Олимпиадные задачи – 4 часа

Решение задач из математического календаря и сборника заданий международной игры-конкурса «Кенгуру».

18. Маршруты – 2 часа

Решение задач, в которых требуется соединяющих два пункта, каждый из которых не должен проходить дважды через одно и то же место.

19. Игра «Поле чудес». Тест – 1 час

Итоговый урок. Обобщение знаний. Проверка знаний учащихся.
















Тематическое планирование

1 час в неделю

34 часа в год.


п| п

Тема занятий

кол-во часов

1



2


3-4


5-6


7


8


9


10-11


12-13



14-15


16


17-18


19-20


21-24


25-26


27


28-31


32-33


34


Как люди научились считать? Откуда взялись цифры и числа?


Кто придумал математические знаки?


Магические квадраты


Арифметические ребусы


Задачи со спичками.


Математические цепочки.


«Сосчитай треугольники»


Геометрические головоломки.


Занимательные задачи. Математика в стихах.

«Сказочные задачи»


Геометрические задачи


Математическая эстафета


Задачи на переливание жидкости.


Задачи на площади.


Логические задачи. «Тренируем мышление».


Задачи на взвешивание


Задачи на разрезание фигуры на одинаковые части.


Олимпиадные задачи


Маршруты


Игра «Поле чудес». Тест.

1



1


2


2


1


1


1


2


2



2


1


2


2


4


2


1


4


2


1


Список литературы.

1. Б.П. Гейдман, И.Э.Мишарина. Подготовка к математической олимпиаде. Начальная школа, 2-4 классы. ООО «Издательство «АЙРИС-пресс». Москва.2007г.

2. Т.И. Тарабарина. Популярное пособие для родителей и педагогов « Детям о времени». Издательство «Академия развития». Ярославль.1996г.

3. В.И. Ковалько. « Младшие школьники на уроке: 1000 развивающих игр, упражнений, физкультминуток». Издательство «Эксмо», 2007г.

4. А.Н.Клещева журнал «Начальная школа» 5-2004.

5. М.М.Колесникова журнал «Начальная школа» 6-2004.

5. С.И. Волкова, И.С.Ордынкина «Счетная мудрость». АСТ «Родничок» Москва 2006г.


























Краткое описание документа:

     Одна из важнейших задач начального обучения – развитие у школьников логического мышления. Благодатный детский возраст 7-10 лет открыт и восприимчив к чудесам познания, к умению удивляться богатству и красоте окружающего мира. Для осуществления развивающих целей обучения необходимо активизировать познавательную деятельность, создать ситуацию заинтересованности. Целенаправленное, интенсивное развитие логического мышления становится одной из центральных задач обучения, важнейшей проблемой его теории и практики.

    Умение мыслить логически, выполнять умозаключение без опоры на наглядность, сопоставлять суждения по определённым правилам – необходимое условие успешного усвоения учебного материала. Главная цель моей работы по развитию логического мышления состоит в том, чтобы дети научились делать выводы из тех суждений, которые им предлагается в качестве исходных. Решение логических задач на уроках математики не только повышает активность учащихся и развивает их мышление, но и в значительной степени вызывает интерес к математике.

    Необходимо на уроках систематически использовать задачи, способствующие целенаправленному развитию логического мышления учащихся, их математическому развитию, формированию у них познавательного интереса и самостоятельности. Такие задачи требуют от школьников наблюдательности, творчества и оригинальности. Эффективное развитие математических способностей у учащихся невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов.

    Логические  (мыслительные)  действия, дают человеку новое знание. Но важная отличительная их способность в том, что здесь добывается знание о чём-то неявном, скрытом, незримом, недоступном органам чувств.

    Умение совершать логические действия не является врожденным. По мнению многих авторов и, в частности П.П. Блонского,  мыслительная деятельность успешно активизируется и развивается там, где учащиеся осознают новые вопросы, включаются в поиски ответов на них, постепенно переходя от простых к всё более усложняющимся вопросам. Системы мыслительных операций успешнее вырабатываются там, где учащиеся постепенно переходят от пользования готовыми признаками понятий, сообщенными учителем, к самостоятельному их выявлению и общению. В.В.Давыдов ввел в науку термин «содержательное обобщение», означающий  теоретический образ, получаемый в человеческом сознании путем мыслительных операций, устанавливающих единство системы понятий и их взаимосвязей.

    Развитие логического мышления, в свою очередь, позволяет подрастающей личности адекватно воспринимать окружающуюся действительность, реально оценивать свою роль в происходящих вокруг событиях, выбирать тождественные методы реагирования.

    Решение нестандартной задачи – очень сложный процесс, для успешного осуществления которого учащийся должен уметь думать, догадываться. Необходимо также хорошее знание фактического материала, владение общими подходами к решению нестандартных задач.

     Именно через задачи учащиеся могут узнать и глубоко усвоить новые математические факты, овладеть новыми математическими методами, накопить определённый опыт, сформировать умения самостоятельно, и творчески применять полученные знания.

   В данной программе создана система знаний, направленных на развитие творческого и логического мышления у младшего школьника, включающую в себя умение наблюдать,  сравнивать, обобщать, находить закономерности, строя простейшие предложения, проверять их, делая выводы, иллюстрировать их на примерах.              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Одна из важнейших задач начального обучения – развитие у школьников логического мышления. Благодатный детский возраст 7-10 лет открыт и восприимчив к чудесам познания, к умению удивляться богатству и красоте окружающего мира. Для осуществления развивающих целей обучения необходимо активизировать познавательную деятельность, создать ситуацию заинтересованности. Целенаправленное, интенсивное развитие логического мышления становится одной из центральных задач обучения, важнейшей проблемой его теории и практики.

    Умение мыслить логически, выполнять умозаключение без опоры на наглядность, сопоставлять суждения по определённым правилам – необходимое условие успешного усвоения учебного материала. Главная цель моей работы по развитию логического мышления состоит в том, чтобы дети научились делать выводы из тех суждений, которые им предлагается в качестве исходных. Решение логических задач на уроках математики не только повышает активность учащихся и развивает их мышление, но и в значительной степени вызывает интерес к математике.

    Необходимо на уроках систематически использовать задачи, способствующие целенаправленному развитию логического мышления учащихся, их математическому развитию, формированию у них познавательного интереса и самостоятельности. Такие задачи требуют от школьников наблюдательности, творчества и оригинальности. Эффективное развитие математических способностей у учащихся невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов.

    Логические  (мыслительные)  действия, дают человеку новое знание. Но важная отличительная их способность в том, что здесь добывается знание о чём-то неявном, скрытом, незримом, недоступном органам чувств.

    Умение совершать логические действия не является врожденным. По мнению многих авторов и, в частности П.П. Блонского,  мыслительная деятельность успешно активизируется и развивается там, где учащиеся осознают новые вопросы, включаются в поиски ответов на них, постепенно переходя от простых к всё более усложняющимся вопросам. Системы мыслительных операций успешнее вырабатываются там, где учащиеся постепенно переходят от пользования готовыми признаками понятий, сообщенными учителем, к самостоятельному их выявлению и общению. В.В.Давыдов ввел в науку термин «содержательное обобщение», означающий  теоретический образ, получаемый в человеческом сознании путем мыслительных операций, устанавливающих единство системы понятий и их взаимосвязей.

    Развитие логического мышления, в свою очередь, позволяет подрастающей личности адекватно воспринимать окружающуюся действительность, реально оценивать свою роль в происходящих вокруг событиях, выбирать тождественные методы реагирования.

    Решение нестандартной задачи – очень сложный процесс, для успешного осуществления которого учащийся должен уметь думать, догадываться. Необходимо также хорошее знание фактического материала, владение общими подходами к решению нестандартных задач.

     Именно через задачи учащиеся могут узнать и глубоко усвоить новые математические факты, овладеть новыми математическими методами, накопить определённый опыт, сформировать умения самостоятельно, и творчески применять полученные знания.

   В данной программе создана система знаний, направленных на развитие творческого и логического мышления у младшего школьника, включающую в себя умение наблюдать,  сравнивать, обобщать, находить закономерности, строя простейшие предложения, проверять их, делая выводы, иллюстрировать их на примерах.              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Автор
Дата добавления 17.11.2014
Раздел Начальные классы
Подраздел Рабочие программы
Просмотров696
Номер материала 120665
Получить свидетельство о публикации

Выберите специальность, которую Вы хотите получить:

Обучение проходит дистанционно на сайте проекта "Инфоурок".
По итогам обучения слушателям выдаются печатные дипломы установленного образца.

ПЕРЕЙТИ В КАТАЛОГ КУРСОВ

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх