Добавить материал и получить бесплатное свидетельство о публикации в СМИ
Эл. №ФС77-60625 от 20.01.2015
Инфоурок / География / Конспекты / Конспект по географии на тему "Современные космические методы исследования Земли"

Конспект по географии на тему "Современные космические методы исследования Земли"



  • География

Поделитесь материалом с коллегами:

Конспект урока на тему " Современные космические методы изучения Земли на службе



Цель: ознакомление с возможностями космических методов изучения Земли и применением результатов исследования в различных сферах деятельности человека.

Задачи:

  • изучение способ съемки Земли из космоса

  • ознакомление с историей и современным состоянием космического метода, достижениями отечественной и зарубежной космонавтики, перспективами развития

  • ознакомление с космическими снимками и овладеть основами визуального дешифрирования космических изображений


Космические исследования и освоение космического пространства – одно из важнейших проявлений современной научно-технической революции. С покорением космоса человечество открыло много нового и неизвестного. Появилась возможность изучать свой дом – Землю на расстоянии. Так было положено начало космическим методам изучения Земли.

Космические методы относятся к дистанционным, т.к. исследуемый объект изучается на дистанции. Дистанционное зондирование – это получение информации об объекте без вступления с ним в прямой контакт.

Полученные таким образом сведения имеют в науке огромную ценность. Оказалось, что дистанционные космические методы имеют существенные преимущества перед наземными методами. Прежде всего, возможность получения изображения Земли в разных масштабах (от глобального до локального), оперативность, возможность повторить исследование неоднократно. Съемка из космоса позволяет охватить единым взглядом обширные пространства и одновременно рассмотреть многообразные детали строения местности, в том числе те, которые не заметны в поверхности Земли.

В своем развитии дистанционное зондирование (исследование) имеет несколько этапов:

  • В 18 веке с помощью простейшей камеры-обскуры – светонепроницаемой коробки с небольшим отверстием в центре – получали рисованные снимки. Съемку делали с высоты птичьего полета на воздушном шаре. По таким снимкам составляли топографические карты местности. Это была сложная кропотливая работа.

  • С открытием фотографии в 1839 г. дело пошло значительно быстрее. Впервые стало возможным постоянно и объективнофиксировать изображение. Первоначально фотоаппараты размещались на простых летательных аппаратах (воздушные шары, воздушный змей) и даже птицах. Это была аэрофотосъемка местности.

  • Следующий шаг к тому, что мы теперь называем дистанционным зондированием, был связан с развитием самолетостроения. Уже в начале 20 века были получены аэрофотоснимки с самолетов. В годы Первой мировой войны выполняли аэрофотосъемку в разведывательных целях.

  • В 30-ые годы 20 века аэрофотосъемка заменила наземную съемку и стала основным методом составления карт. Так, к середине 50-х годов с помощью аэрофотоснимков были составлены топографические карты всей территории СССР.

  • Важнейшим толчком в развитии метода дистанционно зондирования послужило покорение космоса человеком. В 60-ые годы 20 века стало возможным получение снимков, сделанных из космоса. Это событие послужило толчком в разработке новых типов съемочных аппаратов. В США и СССР разрабатываются новые оптико-электронные системы – сканеры, выполняющие многозональнуюсъемка земной поверхности.

  • В 80-ые годы стало возможным широкое применение комических снимков во всех областях изучения земли.


В настоящее время вокруг Земли движется множество спутников-съемщиков разных стран, которые регулярно делают съемку Земли и поставляют на Землю тысячи разных снимков земной поверхности.

Для получения снимков различной степени детальности, спутники запускают на разные высоты. Выделяют три основных высотных яруса их полета:

  • Спутники самого верхнего яруса, запускаемые на высоту 36 000 км, летают над экватором. Их называют геостационарными, поскольку, вращаются вместе с земным шаром и делая полны оборот вокруг земли ровно за одни сутки. Такие спутник как бы висят в небе над одной и той же точкой земли. Геостационар может выполнить съемку почти целого полушария Земли.

К геостационарным спутникам относятся российский «Электро», спутник Евросоюза «Мeteosat», американский «GOES-W» и « GOES- Е», японский «GMS», индийский «Insat». Они ведут непрерывное глобальное «патрулирование» планеты, каждые полчаса передавая по радиоканалам обзорные снимки.

  • Спутники среднего яруса, орбита которых проходит над полюсами (поэтому их называют полярными), летают на высоте от 600 до 1500 км. Для съемки всей земной поверхности им требуется от одних суток до 2-3 недель.

К спутникам среднего яруса относятся: российский спутник «Метеор 1» и «Метеор2», американский спутник NOAA, спутники России «Ресурс – П», «Ресурс – О», американский Landsat, французский SPOT.

  • Спутники самого нижнего яруса, летающие на высоте 200-300 км, ведут детальную съемку отдельных участков земной поверхности, расположенных вдоль трассы полета.


Космические системы наблюдения Земли подразделяются по своему назначения на метеорологические, ресурсные, океанологические, картографические, навигационные, научно-исследовательские.

Для получения снимков со спутников применяют различную съемочную аппаратуру. Сравнивая ее с человеческими глазами, можно сказать, что эти глаза бывают разными – дальнозорким и близорукими, одни видят в темноте, другие сквозь туман и облака, есть даже «дальтоники», которые видят объекты в искаженных цветах.

Различают следующие группы таких аппаратов:

  • Фотографические аппараты. Получаемые таким аппаратом снимки называют плановые, т.к. по геометрическим свойствам они приближены к плану местности. С помощью космических фотоаппаратов получают снимки только в видимом диапазоне.

  • Спутниковые сканеры. В отличие от фотоаппаратов работают во многих диапазонах электромагнитного спектра (получают снимки не только в видимом, но и инфракрасном диапазоне)

  • Радиолокаторы. Если фотоаппараты и сканеры регистрируют отраженное объектами солнечное или собственное излучение, то радиолокаторы сами «освещают» местность радиолучом и принимают отраженный радиосигнал. Радиолуч как бы ощупывает, зондирует поверхность, чутко реагируя на ее шероховатость. Поэтому на радиолокационных снимках видны даже небольшие неровности рельефа.


В результате выполнения космических съемок накоплен многомиллионный фонд снимков. Для того, чтобы эффективно использовать эти изображения, они систематизированы, сгруппированы по возможностям их применения. При всем многообразии снимков у них можно выделить ряд общих характеристик:

  1. Масштаб снимка. Снимки, как и карты, различаются по масштабу. Они бывают:

  • крупномасштабные – в 1 см – 10 м и даже крупнее.

  • среднемасштабные

  • мелкомасштабные (в 1 см – 100 км)

Масштаб снимка зависит от высоты выполнения съемки, фокусного расстояния аппарата, кривизны земной поверхности. От масштаба зависит обзорность снимка: на крупномасштабных снимках изображены лишь отдельные дома, на мелкомасштабных можно увидеть целые континенты.

  1. Обзорность снимков – это охват территории одним снимком.

По обзорности снимки разделяют: глобальные (охватываю всю планету), крупнорегиональные (охватывают крупные регионы мира: Европа, Азия и т.д.), региональные (регион и его часть: Бельгия, Московская область); локальные (изображают небольшой участок местности: небольшой город, микрорайон)

  1. Разрешение. С масштабом снимков связана их способность воспроизводить мелкие объекты и отдельные детали. Крупномасштабные снимки имеют разрешение в десятки сантиметров, т.е. на них могут быть видны даже ветки деревьев. Мелкомасштабные снимки имеют разрешение в несколько км, в результате наблюдатель видит очень большие участки леса или всю лесную зону.

  2. Ретроспективность. Снимок объективно фиксирует состояние местности, отдельных объектов и явлений на момент съемки. Сопоставляя снимки разных лет, можно оценить динамику природных процессов: например, насколько отступил ледник, как растут овраги, изменяются площади лесов.

  3. Стереоскопичность. Два снимка одно и того же участка местности, полученные с разных точек, образуют стереоскопическую (т.е. воссоздающую объемное изображение) пару снимков. Вооружившись стереоскопом, можно наблюдать по этим снимкам не плоское изображение, а объемную и очень выразительную модель местности. Это замечательное свойство снимков важно для изучения рельефа земной поверхности и составления карт.

  4. Спектральный диапазон.Современная съемочная аппаратура способна делать съемку в разных диапазонах электромагнитного излучения.

По этому признаку выделяют три группы снимков:

  • в видимом диапазоне, который называют световым

  • в тепловом инфракрасном диапазоне

  • в радиодиапазоне.

От выбора диапазона зависит то, какие объекты будут изображены на снимках. На снимках в видимом диапазоне изображается все, что видно человеческим глазом; снимки в инфракрасном тепловом диапазоне позволяют определить температуру поверхности, а радиодиапазоне – ее шероховатость (т.е. неровности поверхности). Очень часто одновременно получают не один, а целую серию снимков в разных спектральных диапазонах. Такие снимки называются многозональными.


С космическим методом изучения земли, появлением космической съемки и съемочной аппаратуры, расширились возможности визуальных наблюдений. Человеческий глаз воспринимает только световое излучение, а современные приборы позволяют «видеть» земную поверхность в невидимых лучах: ультрафиолетовых, инфракрасных, в радиодиапазоне. И каждый прибор «видит» то, что не различают другие.

Спутниковая информация представляет огромную ценность не только для науки. Она позволяет решить ряд задач во многих отраслях экономики. Например: в сельском хозяйстве. Так, спутниковая информация позволяет обнаружить районы, пораженные засухой, вредителями, техногенными выбросами. Интересный факт: В 70-е и 80-е гг. Советский Союз закупал в больших объемах зерно за рубежом – в США, Канаде и других странах. Нет сомнения, что зарубежные партнеры при определении цены учитывали виды на урожай и использовали спутниковую информацию для оценки состояния сельхозугодий в СССР.

Активно используется космический мониторинг в борьбе с лесными пожарами. По данным, полученным со спутников, можно определить координаты очагов пожаров, площадь и объем сгоревшего леса, величину экономического ущерба. Например: на фото, сделанном в районе Амурской области летом 2014 года, четко выделяются очаги пожаров с дымовыми шлейфами.


По космоснимкам можно осуществлять экологический контроль атмосферного воздуха, отслеживая загрязнение снежного покрова и дымовые выбросы промышленных предприятий. На рисунке представлена карта экологического состояния воздушного бассейна над Москвой. Как видно, наиболее загрязненными районами являются районы железнодорожных вокзалов и территория вокруг завода имени Лихачева.


Данные дистанционного зондирования Земли, благодаря периодичности спутниковой съемки, позволяют оперативно оценить обстановку в районах возникновения стихийных бедствий (наводнений, циклонов, засух, землетрясений, пожаров) и служат основой для своевременного прогноза природных катастроф.

Пример мы видим на слайде: представлены два снимка одно и того же участка побережье Индонезии в декабре 2004 года с интервалом в несколько часов. Хорошо видны последствия цунами, охватившего побережье Индийского океана.

На следующих фотографиях, сделанных с интервалом 10-15 лет, можно наблюдать возникновение проблемы, связанной с пересыханием озера Чад. Подобное явление переживает и Аральское море.


Данные космического мониторинга можно использовать для принятия мер по предупреждению возникновения чрезвычайных ситуаций. Так, регулярный космический мониторинг ледовой обстановки на реках Сибири в весенний период позволяет своевременно выявлять места возникновения ледовых заторов с целью их ликвидации (например, взрывным методом) и тем самым не допустить возникновения сильного наводнения, приводящего к большому социальному и материальному ущербу.


Одной из наиболее важных задач, которую можно решить с помощью данных дистанционного зондирования Земли, является контроль развития инфраструктуры территории для целей регионального планирования. Как правило, при решении задач регионального планирования используются топографические карты. Но, как показывает опыт, данные карты перестают отражать истинное положение дел уже через несколько лет после составления. Появляются новые дороги, населенные пункты и др., не намеченные на карте. Все это в значительной степени затрудняет процесс регионального планирования. В этой связи применение систем дистанционного зондирования Землиоткрывает большие возможности для организации эффективного регионального планирования, особенно в условиях бурного развития страны или отдельных ее территорий.

Рисунок иллюстрирует вышесказанное. Как видно, сопоставление топографической карты района Туапсе, составленной в 1994 г., с космическим снимком того же района 2009 г. наглядно показывает преимущества использования систем дистанционного зондирования Земли. По снимку можно провести уточнение береговой линии, выявить вновь появившиеся объекты, не отмеченные на топографической карте.

Мы убедились, что в настоящее время космические снимки необходимы не только географам, но и метеорологам, геологам, картографам. С помощью космических снимков изучают строение земной коры, ищут полезные ископаемые, обнаруживают лесные пожары, исследуют богатые рыбой районы в океане. Таким образом, космический метод изучения Земли популярен, актуален, представляет неограниченные возможности.


Активно использовать данные дистанционного зондирования Земли имеют возможность не все отрасли и предприятия страны. Некоторые субъекты Федерации ввели в практику применение космоснимков для решения региональных задач. На территории Ярославской области крупными организациями, которые ввели в практику использование космоснимков являются «Геомониторинг» для исследования подземных вод, компании «Кадастр» и «Недра». Мы обнаружили, что существует проект программы использования данных дистанционного зондирования Земли для планирования территории Ярославля, разработке его генерального плана. С помощью снимка, сделанного из космоса, можно оперативно определить наиболее загруженные дороги с тем, чтобы с большей эффективностью спланировать строительство новых транспортных магистралей. Данные дистанционного зондирования пригодятся в планировании городской застройки и пригородных территорий, в решении экологических вопросов, для планирования системы озеленения и санитарных зон предприятий. Будем надеяться, что современные достижения в области космического мониторинга будут основой эффективного управления нашего региона.


Уже сейчас у каждого из нас есть персональный доступ к результатам космического зондирования Земли для использования в образовательных целях. Еще несколько лет назад это было бы фантастикой. Но ведь запуск первого искусственного спутника Земли и первый полет человека в космос даже за несколько лет до их осуществления тоже казался необыкновенной фантастикой.


Знание обладает великолепной особенностью – постоянно напоминает, что оно лишь трамплин в будущее и слишком много нам еще не известно. Выход человека в космос позволил решить много новых задач и сделать новые открытия. Но процесс познания таков, что, решая одни задачи, мы сталкивается с новыми нерешенными проблемами, ведь сам процесс познания бесконечен.




Автор
Дата добавления 07.02.2016
Раздел География
Подраздел Конспекты
Просмотров608
Номер материала ДВ-424535
Получить свидетельство о публикации

Похожие материалы

Включите уведомления прямо сейчас и мы сразу сообщим Вам о важных новостях. Не волнуйтесь, мы будем отправлять только самое главное.
Специальное предложение
Вверх